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Abstract

A synthesis of results of the recently
introduced paradigm of multi-adjoint
logic programming is presented. These
results range from a proof theory to-
gether with some (quasi)completeness
results to general termination results,
and from the neural-like implementa-
tion of its fix-point semantics to the
more general biresiduated multi-adjoint
logic programming and its relationship
with other approaches.

1 Introduction

Fuzzy logic is a powerful mathematical tool
for dealing with modeling and control aspects
of complex processes, as well as with uncer-
tain, incomplete and/or inconsistent informa-
tion. The main advantages of fuzzy logic sys-
tems are the capability to express nonlinear
input/output relationships by a set of qual-
itative if-then rules, and to handle both nu-
merical data and linguistic knowledge, which
is extremely difficult to quantify by means of
traditional mathematics.

A number of logic approaches have been in-
troduced in the recent years motivated by the
problem of reasoning in situations where in-
formation may be vague or uncertain, involv-
ing either fuzzy or annotated or probabilis-
tic or similarity-based logic programming, e.g.
[2, 9, 10, 11, 16, 18, 31, 34].

We present here a synthesis of results ob-
tained from a lattice-valued logic program-
ming paradigm called multi-adjoint, which

permits the articulation of vague concepts and
generalizes several approaches to the exten-
sion of logic programming techniques to the
fuzzy case.

Multi-adjoint logic programming was intro-
duced in [22] as a refinement of both [7, 34].
It allows for very general connectives in the
body of the rules and, in addition, different
types of implications to build the rules in the
program. Such an approach is interesting for
applications in which connectives depend on
different users preferences; or in which knowl-
edge is described by a many-valued logic pro-
gram where connectives can be general ag-
gregation operators (conjunctors, disjunctors,
arithmetic mean, weighted sum, . . . ), even
different aggregators for different users.

2 Multi-adjoint logic programs

The main concept on which multi-adjoint pro-
grams are built is that of adjoint pair.

Definition 1 Let 〈P,�〉 be a partially or-
dered set and (←, &) a pair of binary oper-
ations in P such that:

• & is increasing in both arguments.

• ← is increasing in the first argument (the
consequent) and decreasing in the second
argument (the antecedent).

• For any x, y, z ∈ P , we have that

x � (y ← z) iff (x & z) � y

Then we say that (←, &) forms an adjoint
pair in 〈P,�〉.



Extending the results in [7, 8, 34] to a more
general setting, in which different implica-
tions ( Lukasiewicz, Gödel, product) and thus,
several modus ponens-like inference rules are
used, naturally leads to considering several
adjoint pairs in the lattice. More formally,

Definition 2 (Multi-Adjoint Lattice)
Let 〈L,�〉 be a lattice. A multi-adjoint lat-
tice L is a tuple (L,�,←1, &1, . . . ,←n, &n)
satisfying the following items:

• 〈L,�〉 is bounded, i.e. it has bottom (⊥)
and top (>) elements;

• (←i, &i) is an adjoint pair in 〈L,�〉 for
i = 1, . . . , n;

• >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for
i = 1, . . . , n.

Note that residuated lattices are a special case
of multi-adjoint lattice, in which the underly-
ing poset has a lattice structure, has monoidal
structure wrt & and >, and only one adjoint
pair is present.

From the point of view of expressiveness, it is
interesting to allow extra operators to be in-
volved with the operators in the multi-adjoint
lattice. The structure which captures this
possibility is that of a multi-adjoint algebra.

In practice, we will usually have to assume
some properties on the extra operators consid-
ered. These extra operators will be assumed
to be either aggregators, or conjunctors or dis-
junctors, all of which are monotone functions
(the latter, in addition, are required to gener-
alize their Boolean counterparts). Note that
the use of aggregators as weighted sums some-
how covers the approach taken in [2] when
considering the evidential support logic rules
of combination.

The definition of multi-adjoint logic program
is given, as usual, as a set of rules and facts.
The particular syntax of these rules and facts
is given below:

Definition 3 A multi-adjoint logic program
is a set of weighted rules 〈A←i B, ϑ〉 such
that:

1. The head A is a propositional symbol.

2. The body formula B is a formula built
from propositional symbols by the use of
monotone operators.

3. The weight ϑ is an element of L.

Facts are rules with body >.

Definition 4

1. An interpretation is a mapping I from
the set of propositional symbols Π to the
lattice 〈L,�〉.
Note that each interpretation I can be
uniquely extended to the whole set of for-
mulas, and this extension is noted as Î.

2. An interpretation I satisfies 〈A←i B, ϑ〉
if and only if ϑ � Î (A←i B).

3. An interpretation I is a model of a multi-
adjoint logic program P iff all weighted
rules in P are satisfied by I.

A procedural semantics for the general the-
ory of multi-adjoint logic programming, to-
gether with two quasi-completeness theorems
are presented in [23].

From the point of view of automation of the
deduction process, this procedural semantics
was not suitable for implementation. Instead,
the fixpoint semantics has been chosen in [20]
for implementation issues, this is the subject
of the section below.

3 Neural implementation of
multi-adjoint LP

A hybrid approach to handling uncertainty
has been presented in [20], which is expressed
in the rich language of multi-adjoint logic but
is implemented by using ideas borrowed from
the world of neural networks. This choice was
motivated because of the have a massively
parallel architecture-based dynamics of neu-
ral networks, inspired by the structure of hu-
man brain, adaptation capabilities, and fault
tolerance.

Using neural networks in the context of logic
programming is not a completely novel idea;



for instance, in [13] it is shown how fuzzy
logic programs can be transformed into neural
nets, where adaptations of uncertainties in the
knowledge base increase the reliability of the
program and are carried out automatically.

Regarding the approximation of the seman-
tics of logic programs, in [14] the fixpoint of
the TP operator for a certain class of classical
propositional logic programs (called acyclic
logic programs) is constructed by using a 3-
layered recurrent neural network, as a means
of providing a massively parallel computa-
tional model for logic programming; this re-
sult is later extended in [15] to deal with the
first order case.

The approach taken tries to join somehow the
two approaches above, and it is interesting
since our logic is much richer than classical
or the usual versions of fuzzy logic in the lit-
erature.

The implementation makes use of a prepro-
cessing stage, in which the initial rules are
transformed into homogeneous form.

Definition 5 A rule is said to be homoge-
neous if it has one of the following forms:

• 〈A←i &i(B1, . . . Bn), ϑ〉

• 〈A←i @(B1, . . . , Bn), 1〉

• 〈A←i B1, ϑ〉

where A and Bi are propositional symbols.

A procedure to homogenize a given multi-
adjoint program is presented and proved
to fulfill the translation in linear time and
space [21]. Then, transformation rules carry
programs into neural networks, where truth-
values of rules relate to output of neurons,
truth-values of facts represent input, and net-
work functions are determined by a set of gen-
eral operators; the net outputs the values of
propositional variables under the immediate
consequences operator TP. By iterating the
calculation it is possible to reproduce the suc-
cessive iterated powers of TP and, hence, to
approximate the fixed point of TP (the mini-
mal model of P) up to any level of precision.

It is remarkable that no learning capability is
considered in the implementation of the min-
imal model semantics is given. Our approach
being more complex than usual systems, con-
cerning learning aspects it seems likely that
some ideas from hybrid type networks should
have to be taken into account, for instance re-
inforcement for fuzzy control like systems [3].
Learning is expected to be a key point when
facing the general goal of this line of research,
the development of a multi-adjoint approach
to abductive logic programming.

4 Multi-Adjoint Languages and
Similarity

A source of applications of the multi-adjoint
languages is the study of similarity-based
fuzzy unification. Several approaches have
been proposed for similarity-based fuzzy uni-
fication we choose the way of including addi-
tional information about fuzzy similarities of
different objects and using axioms of equality
to transfer properties between these objects.

Based on the soundness and completeness of
the declarative and procedural semantics of
multi-adjoint logic programming, especially
the fix-point semantics, it is possible to give a
basis for a model of fuzzy unification. Our
approach to fuzzy unification [25] is based
on a theory of fuzzy logic programming with
crisp unification constructed on the first-order
multi-adjoint framework. On this computa-
tional model, a similarity-based unification
approach is constructed by simply adding ax-
ioms of fuzzy similarities and using classical
crisp unification which provides a semantic
framework for logic programming with differ-
ent notions of similarity.

It should be remarked there are different pos-
sible definitions of the concept of similarity
all of them with their pros and cons, see [?]
and its references. We will use the definition
used in [29], where we will assume that 〈L,�〉
denotes a lattice.

Definition 6 A similarity on X is a mapping
s: X ×X → L satisfying

1. s(x, x) = 1 (reflexivity)



2. s(x, y) = E(y, x) (symmetry)

3. s(x, y) ∧ s(y, z) � s(x, z) (transitivity)

for all x, y, z ∈ X.

Our approach considers similarities acting on
elements of domains of attributes. The idea
is based on the fact that part of our knowl-
edge base, the multi-adjoint program P, might
consist of graded facts representing informa-
tion about existent similarities on different
domains which depend on the predicate they
are used in, e.g. consider different spellings
of a name in different languages (Salas, Salaš,
Sza las, Szálás)

〈s(Salas, Salaš), 0.9〉
〈s(Sza las, Szálás), 0.9〉
〈s(Salas, Szálás), 0.8〉 · · ·

The particular semantics of the multi-adjoint
paradigm, enables one to easily implement a
version of fuzzy unification by extending suit-
ably the given program P.

An extension of P is constructed by adding
a parameterized theory (which introduces a
number of similarities depending on the pred-
icate and function symbols in P), such as those
below

〈s(x, x),>〉
〈s(x, y)← s(y, x),>〉

〈s(x, z)← s(x, y) & s(y, z),>〉

For all function symbol we also have

〈s(f(x1, . . . , xn), f(y1, . . . , yn))←
sf
1(x1, y1) & · · · & sf

n(xn, yn),>〉

Finally, given a predicate symbol, then the
following rules are added

〈P (y1, . . . , yn)← P (x1, . . . , xn) &
& sP

1 (x1, y1) & · · · & sP
n (xn, yn),>〉

where & is some conjunction suitably describ-
ing the situation formalized by the program.

This way we get a multi-adjoint logic program
PE in which it is possible to get computed

answers wrt PE with similarity match in uni-
fication. Similarity-based computed answers
are nothing but computed answers with crisp
unification on a program extended by axioms
of equality.

As an example of the flexibility of this formal
approach, it is shown that the weak unifica-
tion algorithm introduced in [29] can be emu-
lated by our unification model. From a prac-
tical point of view, the proposed approach
seems to be appropriate for some applications
for information retrieval systems such as those
studied in [19]. Moreover, in [17] different
approaches were introduced to generate sim-
ilarities to be used in flexible query answer-
ing systems, such as statistical generation of
fuzzy similarities, or generation by some in-
formation retrieval techniques, or similarities
arising from fuzzy conceptual lattices.

5 Termination results

An important issue regarding the computa-
tional behaviour of the proposed semantics is
related to termination results. Specifically,
when considering the fixpoint semantics (as
it was implemented as stated in Section 3)
it is interesting to obtain sufficient conditions
under which the TP operator attains its least
fixpoint after finitely many iterations; this is
the aim of [6], whose main contribution is the
study of general properties guaranteeing ter-
mination.

The proposal uses a sorted version of a multi-
adjoint language, where each sort identifies
an underlying lattice of truth-values (weights)
which must satisfy adjoint conditions. This
seems very appropriate for performing and
representing several reasoning tasks with im-
precise and incomplete information, and is
based on probabilistic deductive databases
proposed in [18]. The semantics of sorted
multi-adjoint logic program is characterised,
as usual, by the post-fixpoints of the immedi-
ate consequence operator TP.

The major contributions of [6] are the ter-
mination results for several classes of sorted
multi-adjoint logic programs, extending or
complementing existing results in the litera-



ture [9, 10, 16, 18, 28]. In particular, the case
of programs obtained by arbitrary composi-
tion of operators obeying the boundary con-
dition ϑ⊗1 = 1⊗ϑ ≤ ϑ over the unit interval
are shown to be terminating.

A practical application of Multi-Adjoint Σ-
Algebras can be found in the probabilistic de-
ductive databases framework of Lakshmanan
and Sadri [18] where our sorts correspond to
disjunctive modes and the adjoint operators
to different conjunctive modes for combining
probabilistic knowledge. The proposed frame-
work is richer since we do not restrain our-
selves to a single and particular carrier set
and allow more operators.

6 Biresiduation, gaggles,
implication triples

Many different “and” and “or” operations
have been proposed for use in fuzzy logic. Sev-
eral papers discuss the optimal choice of these
operations for fuzzy control, when the main
criterion is to get the most stable control. In
reasoning applications, however, it is more ap-
propriate to select operations which are the
best in reflecting human reasoning, i.e., op-
erations which are “the most logical”. The
need of biresiduated pairs is justified in [24] by
presenting analytical evidence of reasonable
non-commutative (moreover, non-associative)
conjunctors, which lead to the consideration
of two residuated implications.

Building on the fact that conjunctors in
multi-adjoint logic programs need not be ei-
ther commutative or associative, a further
generalization of the multi-adjoint frame-
work was presented, introducing biresiduated
multi-adjoint logic programming and its fix-
point semantics.

To the best of our knowledge, there is not
much work done using biresidua in the sense
considered in [24]. Recently, in [32] a study
of the representability of biresiduated alge-
bras was presented. This type of algebras
were introduced in a purely algebraic con-
text, being studied for instance in [4], and,
in the framework of substructural logics, in
[12] under the name of (partial) gaggles. On

a different basis, in [26] an axiom system is
developed based on a biresiduation construc-
tion (called implication triple) and the com-
pleteness and soundness theorems are proved;
in [30], a structure of biresiduated algebra is
defined together with a corresponding logical
system regarding the use of fuzzy sets in the
representation of multicriteria decision prob-
lems.

The biresiduated multi-adjoint framework is
based on the definitions of biresiduated triple
and biresiduated multi-adjoint lattice.

Definition 7 A biresiduated triple on L is
an ordered triple (&,↙,↖) in which & is a
conjunction on L and ↙ and ↖ are implica-
tions on L, mutually related by the following
adjointness condition

β ≤ γ↖ α iff α & β ≤ γ iff α ≤ γ↙ β

Definition 8 Let 〈L,�〉 be a lattice. A
biresiduated multi-adjoint lattice L is a tu-
ple (L,�,↙1,↖1, &1, . . . ,↙n,↖n, &n) satis-
fying the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and
top elements;

2. (&i,↙i,↖i) are biresiduated triples, for
all i = 1, . . . , n.

The adjointness conditions of a biresiduated
triple, make this algebraic structure a flexi-
ble and suitable tool for being used in a log-
ical context, for they can be interpreted as a
two possible multiple-valued modus ponens-
like rules. From a categorical point of view,
these conditions arise when considering the
conjunctor as a bifunctor, and applying the
adjointness either in its second or first argu-
ment, respectively.

The structure of biresiduated multi-adjoint
lattice is the basis of the definition of biresidu-
ated multi-adjoint logic program. Some prac-
tical applications are envisaged for the ob-
tained results, such as the development of a
generalized multiple-valued resolution. In a
generalized context it is not possible to deal
with Horn clauses and refutation, mainly due



to the fact that A∧¬A can have strictly posi-
tive truth-value, but also to the fact that ma-
terial implication (the truth value function of
¬A∨B) has not commutative adjoint conjunc-
tor. As our approach does not require adjoint
conjunctors to be commutative, it would al-
low the development of a sound and complete
graded resolution.

7 Conclusions and future work

Multi-adjoint logic programs are capable of
capturing and combining several reasoning
paradigms dealing with imprecision and un-
certainty. A synthesis of recent results ob-
tained for the framework of multi-adjoint logic
has been presented. There are still a number
of issues which are worth to be investigated.

The embedding of other proposals in the lit-
erature into our framework has to be explored
in subsequent work.

Regarding the neural implementation, a theo-
retical analysis of the convergence rate of the
net to the minimal model have to be devel-
oped, at least for some particular classes of
multi-adjoint programs. At a different level,
the consideration of the learning capabilities
of the net are providing promising results for
diagnosis/abduction problems, which encour-
ages further research in this area.

The study of termination of the semantics has
to be extended to considering tabling proof
procedures for first-order sorted multi-adjoint
logic programs, relying mainly in the above
cited results.

A thorough study of biresiduated triples (un-
der the name of implication triples) has been
recently developed in [27]. The interaction
among the theoretical study of implication
triples in the setting of biresiduated multi-
adjoint logic programs has to be studied.
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[17] S. Krajči, R. Lencses, J. Medina, M. Ojeda-
Aciego, and P. Vojtáš. A similarity-based
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