
Termination Results for Sorted Multi-Adjoint Logic Programs

C.V. Damásio
Centro Inteligência Artificial

Univ. Nova de Lisboa
Portugal

cd@di.fct.unl.pt

J. Medina
Dept. Matemática Aplicada

Univ. de Málaga
Spain

jmedina@ctima.uma.es

M. Ojeda-Aciego
Dept. Matemática Aplicada

Univ. de Málaga
Spain

aciego@ctima.uma.es

Abstract

In this paper we present a logic
programming-based language allowing
for the combination of several adjoint
lattices of truth-values. A model and
fixpoint theory are presented, but the
main contribution of the paper is the
study of general properties guarantee-
ing termination of all queries. New re-
sults are presented and related to other
alternative formalisms.

Keywords: Fuzzy Logic Program-
ming, Termination Results, Probabilis-
tic Deductive Databases

1 Introduction

The interest in the development of logics for
dealing with information which might be ei-
ther vague or uncertain has increased in the
recent years. Several different approaches
to the so-called inexact or fuzzy or approx-
imate reasoning have been proposed, involv-
ing either fuzzy or annotated or probabilis-
tic or similarity-based logic programming, e.g.
[1, 7, 8, 13, 6, 5, 15, 9].

Our proposal uses a sorted language, where
each sort identifies an underlying lattice of
truth-values (weights) which must satisfy ad-
joint conditions. This allows, for instance,
the combination of arbitrary t-norms and t-
conorms, with other operators. This seems
very appropriate for performing and repre-
senting several reasoning tasks with impre-
cise and incomplete information, and is based
on the proposal of Lakshmanan and Sadri [9]

for probabilistic deductive databases. We re-
strict to the ground case but allow infinite
programs, and thus do not loose generality.

The semantics of sorted multi-adjoint logic
program is characterised, as usual, by the
post-fixpoints of the immediate consequence
operator TP, which is proved to be mono-
tonic and continuous under very general hy-
potheses, see [10]. The current proposal is
an important enhancement of our previous
works [2, 3, 4, 10, 11].

The major contributions of this paper are
the termination results for several classes of
sorted multi-adjoint logic programs, extend-
ing or complementing existing results in the
literature [8, 12, 6, 9, 5]. In particular, the
case of programs obtained by arbitrary com-
position of operators obeying the boundary
condition ϑ⊗1 = 1⊗ϑ ≤ ϑ over the unit inter-
val are shown to be terminating. As argued,
the results extend to the first-order case.

The structure of the paper is as follows. In
Section 2, we introduce the preliminary con-
cepts necessary for the definition of the syn-
tax and semantics of sorted multi-adjoint logic
programs, presented in Section 3. In Section
4, we state several results regarding the termi-
nation properties of our semantics. Section 5
presents some comparisons to existing termi-
nation results for other proposals. The paper
finishes with some conclusions and pointers to
future work. The proof of our main theorem
is annexed.

2 Preliminary Definitions

We will make extensive use of the construc-
tions and terminology of universal algebra, in
order to define formally the syntax and the
semantics of the languages we will deal with.
A minimal set of concepts from universal al-
gebra, which will be used in the sequel in the
style of [4], is introduced below.

2.1 Some Definitions from Universal
Algebra

The notions of signature and Σ-algebra will
allow the interpretation of the function and
constant symbols in the language, as well as
for specifying the syntax.

Definition 1 (Signature) A signature is a
pair Σ = 〈S, F 〉 where S is a set of ele-
ments, designated sorts, and F is a collec-
tion F of pairs 〈f, s1 × · · · × sk → s〉 denot-
ing functions, such that s, s1, . . . sk are sorts
and no symbol f occurs in two different pairs.
The number k is the arity of f . If k is 0 then
f is a constant symbol.

To simplify notation, we write f : τ to denote
a pair 〈f, τ〉 belonging to F .

Definition 2 (Σ-Algebra) Given a signa-
ture Σ = 〈S, F 〉, a Σ-algebra A is a pair〈
{As}s∈S , I

〉
where:

1. Each As is a nonempty set called the car-
rier of sort s,

2. and I is a function which assigns a map

I(f) : As1 × · · · ×Ask → As

to each f : s1 × · · · × sk → s ∈ F , where
k > 0, and an element I(c) ∈ As to each
constant symbol c : s in F.

2.2 Multi-Adjoint Lattices and
Multi-Adjoint Algebras

The main concept we will need in this section
is that of adjoint pair.

Definition 3 (Adjoint pair) Let 〈P,�〉 be
a partially ordered set and (←, &) a pair of
binary operations in P such that:

(a1) Operation & is increasing in both argu-
ments

(a2) Operation ← is increasing in the first ar-
gument (the consequent) and decreasing
in the second argument (the antecedent).

(a3) For any x, y, z ∈ P , we have that

x � (y ← z) iff (x & z) � y

Then we say that (←, &) forms an adjoint
pair in 〈P,�〉.

Extending the results in [4, 3, 15] to a more
general setting, in which different implica-
tions (Lukasiewicz, Gödel, product) and thus,
several modus ponens-like inference rules are
used, naturally leads to considering several
adjoint pairs in the lattice. More formally,

Definition 4 (Multi-Adjoint Lattice)
Let 〈L,�〉 be a lattice. A multi-adjoint lat-
tice L is a tuple (L,�,←1, &1, . . . ,←n, &n)
satisfying the following items:

(l1) 〈L,�〉 is bounded, i.e. it has bottom (⊥)
and top (>) elements;

(l2) (←i, &i) is an adjoint pair in 〈L,�〉 for
i = 1, . . . , n;

(l3) >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for
i = 1, . . . , n.

Remark 1 Note that residuated lattices are a
special case of multi-adjoint lattice, in which
the underlying poset has a lattice structure,
has monoidal structure wrt & and >, and only
one adjoint pair is present.

From the point of view of expressiveness, it is
interesting to allow extra operators to be in-
volved with the operators in the multi-adjoint
lattice. The structure which captures this
possibility is that of a multi-adjoint algebra.

Definition 5 (Multi-Adjoint Σ-Algebra)
A Σ-Algebra L is a Multi-Adjoint Σ-Algebra
whenever:

• The carrier Ls of each sort is a lattice
under a partial order �s.

• Each sort s contains operators ←s
i : s ×

s→ s and &s
i : s×s→ s for i = 1, . . . , ns

(and possibly some extra operators) such
that the tuple Ls

(Ls,�s, I(←s
1), I(&s

1), . . . , I(←s
n), I(&s

n))

is a multi-adjoint lattice.

A practical application of Multi-Adjoint Σ-
Algebras can be found in the probabilistic de-
ductive databases framework of Lakshmanan
and Sadri [9] where our sorts correspond to
disjunctive modes and the adjoint operators
to different conjunctive modes for combining
probabilistic knowledge. Our framework is
richer since we do not restrain ourselves to
a single and particular carrier set and allow
more operators.

In practice, we will usually have to assume
some properties on the extra operators consid-
ered. These extra operators will be assumed
to be either aggregators, or conjunctors or dis-
junctors, all of which are monotone functions
(the latter, in addition, are required to gener-
alize their Boolean counterparts).

Note that the use of aggregators as weighted
sums somehow covers the approach taken
in [1] when considering the evidential support
logic rules of combination.

3 Syntax and Semantics of Sorted
Multi-Adjoint Logic Programs

Sorted multi-adjoint logic programs will be
constructed from the abstract syntax induced
by a multi-adjoint Σ-algebra on a set of sorted
propositional symbols (or variables). Specif-
ically, we will consider a multi-adjoint Σ-
algebra L whose extra operators can be ar-
bitrary monotone operators. This algebra
will host the manipulation the truth-values of
the formulas in our programs.

In addition, let Π be an infinite set of sorted
propositional symbols, disjoint from the set
of function symbols in L, and the corre-
sponding term Σ-algebra1 of formulas F =

1Shortly, this corresponds to the algebra freely gen-
erated from Π and the set of function symbols in L,
respecting sort assignments.

Terms(Σ, Π). To denote that a symbol A ∈ Π
has sort s we will often write A ∈ Πs.

Remark 2 As we are working with two Σ-
algebras, and to discharge the notation, we
introduce a special notation to clarify which
algebra a function symbols belongs to, instead
of continuously using either σL or σF. Let σ
be a function symbol in Σ, its interpretation
under L is denoted

.
σ (a dot on the operator),

whereas σ itself will denote σF when there is
no risk of confusion.

3.1 Syntax of Sorted Multi-Adjoint
Logic Programs

The definition of sorted multi-adjoint logic
program is given, as usual, as a set of rules
and facts. The particular syntax of these rules
and facts is given below:

Definition 6 (Sorted MA Logic Programs)
A sorted multi-adjoint logic program is a set
P of rules of the form 〈A←s

i B, ϑ〉 such that:

1. The rule (A ←s
i B) is a formula (an al-

gebraic term) of F;

2. The weight ϑ is an element (a truth-
value) of Ls;

3. The head of the rule A is a propositional
symbol of Π of sort s.

4. The body formula B is a formula of F

with sort s, built from sorted proposi-
tional symbols B1, . . . , Bn (n ≥ 0) by the
use of function symbols in Σ.

5. Facts are rules with body >s, the top ele-
ment of lattice Ls.

6. A query (or goal) is a propositional sym-
bol intended as a question ?A prompting
the system.

3.2 Semantics of Sorted
Multi-Adjoint Logic Programs

Definition 7 (Interpretation) An inter-
pretation is a mapping I: Π →

⋃
s Ls such

that for every propositional symbol p of sort s
then I(p) ∈ Ls. The set of all interpretations

of the sorted propositions defined by the
Σ-algebra F in the Σ-algebra L is denoted IL.

Note that by the unique homomorphic ex-
tension theorem, each of these interpretations
can be uniquely extended to the whole set of
formulas F.

The orderings �s of the truth-values Ls can
be easily extended to the set of interpretations
as follows:

Definition 8 (Lattice of interpretations)
Consider I1, I2 ∈ IL. Then, 〈IL,v〉 is a
lattice where I1 v I2 iff I1(p) �s I2(p) for
all p ∈ Πs. The least interpretation M maps
every propositional symbol of sort s to the
least element ⊥s ∈ Ls.

A rule of a sorted multi-adjoint logic program
is satisfied whenever the truth-value of the
rule is greater or equal than the weight as-
sociated with the rule. Formally:

Definition 9 (Satisfaction, Model)
Given an interpretation I ∈ IL, a weighted
rule 〈A ←s

i B, ϑ〉 is satisfied by I iff
ϑ �s Î (A←s

i B). An interpretation I ∈ IL
is a model of a sorted multi-adjoint logic
program P iff all weighted rules in P are
satisfied by I.

Definition 10 An element λ ∈ Ls is a cor-
rect answer for a program P and a query ?A
of sort s if for an arbitrary interpretation I
which is a model of P we have λ �s I(A).

The immediate consequences operator, given
by van Emden and Kowalski, can be easily
generalised to the framework of sorted multi-
adjoint logic programs.

Definition 11 Let P be a sorted multi-
adjoint logic program. The immediate conse-
quences operator TP maps interpretations to
interpretations, and is defined by

TP(I)(A) =
⊔
s

{ϑ
.

&s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}

where A is an arbitrary propositional symbol
of sort s, and ts is the least upper bound in
the lattice Ls.

The semantics of a sorted multi-adjoint logic
program can be characterised, as usual, by the
post-fixpoints of TP; that is, an interpretation
I is a model of a sorted multi-adjoint logic
program P iff TP(I) v I. The single-sorted
TP operator is proved to be monotonic and
continuous under very general hypotheses,
see [10, 11], and it is remarkable that these re-
sults are true even for non-commutative and
non-associative conjunctors. In particular, by
continuity, the least model can be reached in
at most countably many iterations of TP on
the least interpretation. These results imme-
diately extend to the sorted case.

4 Termination Results

In this section we analyse the termination
properties of the TP operator, and show new
results for some classes of sorted multi-adjoint
logic programs. In what follows we as-
sume that every operator is computable. If
only monotone and continuous operators are
present in the underlying sorted multi-adjoint
Σ-algebra L then the immediate consequences
operator reaches the least fixpoint at most af-
ter ω iterations. The following adaptation of
an example due to [8] shows that, even for fi-
nite programs, ω iterations may be necessary
to reach the least fixpoint:

Example 1 Consider the following single-
sorted multi-adjoint logic program

a
1.0←−

unit
f(a)

over the lattice Lunit = ([0, 1],≤,←G,min)
with Gödel’s adjoint pair: minimum t-norm
and corresponding residuum. The extra con-
nective function symbol f has signature f :
unit→ unit, where [0, 1] is the carrier of sort
unit, and I(f) is the function:

I(f) : [0, 1] −→ [0, 1]
x 7→ 1+x

2

We present below several results in order to
guarantee that every query can be answered
after a finite number of iterations. In partic-
ular, this means that for finite programs the
least fixpoint of TP can also be reached after

a finite number of iterations, ensuring com-
putability of the semantics.

Definition 12 (Termination) Let P be a
sorted multi-adjoint logic program with respect
to a multi-adjoint Σ-algebra L and a sorted set
of propositional symbols Π. We say that TP
terminates for every query iff for every propo-
sitional symbol A there is a finite n such that
Tn

P (M)(A) is identical to lfp(TP)(A).

In order to not limit the discussion to finite
programs, our results will be applicable to
special classes of infinite sorted multi-adjoint
logic programs, designated finitary.

Definition 13 (Finitary programs) A
sorted multi-adjoint logic program such that,
for every propositional symbol A the number
of rules with head A is finite, is said to be
finitary.

The dependency graph of P has a vertex for
each propositional symbol in Π, and there is
an arc from a propositional symbol A to a
propositional symbol B iff A is the head of
a rule with body containing an occurrence of
B. The dependency graph for a propositional
symbol A is the subgraph of the dependency
graph containing all nodes accessible from A
and corresponding edges. A special case of
finitary programs is:

Definition 14 (Finite dependencies)
A sorted multi-adjoint logic program P has
finite dependencies iff for every proposi-
tional symbol A the number of edges in the
dependency graph for A is finite.

A first immediate result is that all queries are
computable for acyclic sorted multi-adjoint
logic programs with finite dependencies:

Theorem 1 Let P be a sorted multi-adjoint
logic programs with respect a the multi-adjoint
Σ-algebra L. If P has finite dependencies and
the dependency graph does not contain cycles
then TP terminates for every query.

Clearly, if the program is finite then the above
theorem reduces to checking of cycles in the
dependency graph of the program. An usual

way of guaranteeing that the dependency sub-
graph, generated from a first-order program,
is finite for every propositional symbol A is to
assume the bounded term-size property [14],
i.e. that the complexity of atoms in the body
of programs is less than that of the head.

Another straightforward sufficient condition
for termination arises when considering the
cardinality of the set of computable values of
the program:

Construct the signature Σ′ from the weights
of the rules in P, the constant and function
symbols in Σ occurring in the bodies of P, all
the adjoint operators &s

i , and a new function
symbol ts for each sort s of type s × s → s
interpreted as the join of Ls, and let:

Vs =
{
M̂(t) such that t ∈ Termss(Σ′)

}
where Termss(Σ′) are the algebraic terms of
sort s.

Theorem 2 Let P be a sorted multi-adjoint
logic program with respect to a multi-adjoint
Σ-algebra L, and the set of sorted proposi-
tional symbols Π.

If Vs does not have infinite ascending chains
of values for all s, then TP operator terminates
for every query over program P.

Corollary 1 If the carriers of the multi-
adjoint Σ-algebra L are all finite then TP ter-
minates for every program P.

The intuition of the last corollary is that if
all the combinations of operators in the pro-
gram with least upper bound operators gen-
erate values in a finite subset of all possible
truth-values, then it is impossible to gener-
ate infinite ascending chains for each propo-
sitional symbol A and thus the TP must ter-
minate foe every query. The following is an
extension of previous results in [2] for finite
programs:

Theorem 3 Consider the single-sorted Σ-
algebra L over the unit interval [0, 1] where the
only operators are a t-norm and its residuum.
Let P be a finitary sorted multi-adjoint logic
program with respect to L, and the set of

sorted propositional symbols Π, such that the
set of truth-values occurring in P is finite;
then operator TP terminates for every query.

Proof. Under these conditions it is not pos-
sible to construct infinite ascending chains of
values. ♦

We proceed by presenting our new major ter-
mination result valid for an important class
of sorted multi-adjoint logic programs, where
neither acyclicity nor finiteness properties are
required:

Definition 15 A multi-adjoint Σ-algebra is
said to be local when the following conditions
are satisfied:

• For every pair of sorts s1 and s2 there is a
unary monotone casting function symbol
cs1s2 : s2 → s1 in Σ.

• All other function symbols have types of
the form f : s × · · · × s → s, i.e. are
closed operations in each sort, satisfying
the following boundary conditions for ev-
ery v ∈ Ls:

I(f)(v, 1s, . . . , 1s) �s v
I(f)(1s, v, 1s, . . . , 1s) �s v

...
I(f)(1s, . . . , 1s, v) �s v

where 1s is the top element of Ls. In par-
ticular, if f is a unary function symbol
then I(f)(v) �s v.

• The following property is obeyed:

(css1 ◦ cs1s2 ◦ . . . ◦ csns) (v) �s v

for every v ∈ Ls and finite composition of
casting functions with overall sort s→ s.

In local sorted multi-adjoint Σ-algebras the
non-casting function symbols are restricted to
operations in a unique sort. In order to com-
bine values from different sorts, one is deemed
to use explicitly the casting functions in the
appropriate places. This restriction simplifies
the proof of our main result.

Definition 16 (Relevant values/Culprits)
Let P be a multi-adjoint program, and A ∈ Πs.
The set RI

P(A) of relevant values for A with
respect to interpretation I is the set of
maximal values of the set{

ϑ
.

&s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P
}

The culprit set for A with respect to I is
the set of rules 〈A ←s

i B, ϑ〉 of P such that
ϑ

.
&s

i Î(B) belongs to RI
P(A). Rules in a cul-

prit set are called culprits.

The rationale is to use the set of relevant val-
ues for a propositional symbol A to collect the
maximal values contributing to the computa-
tion of A in an iteration of the TP operator.
The non-maximal values are irrelevant for de-
termining the new value for A by TP. Assum-
ing the finitary condition, the set of rule val-
ues is always non-empty and finite, and thus
infinite ascending chains of rule values cannot
occur. The culprits are the contributing rules
for relevant values. These concepts are used
in the proof of the following major new result:

Theorem 4 Let P be a sorted multi-adjoint
logic program with respect to a local multi-
adjoint Σ-algebra L and the set of sorted
propositional symbols Π, and having finite de-
pendencies.

If for every iteration n and propositional sym-
bol A of sort s the set of relevant values for A
with respect to Tn

P (M) is a singleton, then TP
terminates for every query .

Proof. Included in the appendix. ♦

From the above result, the following corollar-
ies are immediate, under the global assump-
tion of being interpreted in a local multi-
adjoint Σ-algebra:

Corollary 2 If the conditions of Theorem 4
are fulfilled then at most m iterations of TP
are necessary to answer query A, where m is
the number of rules in the dependency graph
for A.

Corollary 3 If all the carrier lattices Ls are
totally ordered then TP terminates for every

query over any program P having finite de-
pendencies.

Proof. It is easy to see that RI
P(A) contains

at most one element, by finiteness of the rules
for A and the fact that �s is a total order. ♦

An important instance of the above is the case
of the unit interval:

Corollary 4 If the carrier of each sort s is
the unit interval [0, 1] then TP terminates for
every query over any program P having finite
dependencies.

Proof. Obvious from the fact that [0, 1] is
totally ordered and that there are no casting
functions. ♦

Clearly, programs where only t-norms over
the unit interval are used in weighted rules
are catered by the previous result.

5 Comparisons

The seminal work by van Emden [13] presents
a syntax and semantics for quantitative rules.
These quantitative rules use product t-norm
and corresponding residuum operation for
defining the semantics of the ← symbol and
weights in the rules, and the Gödel t-norm
(minimum operation) to combine atoms in
the body. Thus, after grounding of quanti-
tative programs, it is obtained a single-sorted
multi-adjoint logic program over the unit in-
terval. A termination result for arbitrary fi-
nite first-order quantitative programs is pre-
sented. The proof is based on the impossibil-
ity of constructing infinite ascending chains,
as in Theorem 2. However, the proof proce-
dure described in [13] assumes finite depen-
dencies and thus our Corollary 4 generalizes
these results.

Generalized Annotated Logic Programs
(GAPs) are one of the most important
formalisms for dealing with uncertainty in
rule-based expert systems [8]. If all opera-
tors are continuous, then the semantics of
single-sorted multi-adjoint logic programs
can be captured by GAPs with only variable
annotations in the bodies but with complex
annotations in the heads. However, most

of our results do not assume continuity
conditions of the operators and thus our
results complement the ones appearing in [8],
namely Theorem 4 and its corollaries. The
exact relations between the two semantics
hinges upon the existence of translations
from sorted multi-adjoint logic programs into
GAPs, which we intend to fully explore.

More recently, Hybrid Probabilistic Logic
Programs [6] have been proposed for con-
structing rule systems which allow the user
to reason with and combine probabilistic in-
formation under different probabilistic strate-
gies. The conjunctive (disjunctive) proba-
bilistic strategies are pairwise combinations of
t-norms (t-conorms, respectively) over pairs
of real numbers in the unit interval [0, 1], i.e.
intervals. The termination results presented
in [5] either only allow constant annotation or
(finite) ground programs. From the analysis
of the fixpoint construction one can see that
only a finite number of different intervals can
be generated. Thus by a simple cardinality
argument the termination results follow.

The use of a sorted language is described in
Lakshmanan and Sadri’s work [9] for defining
a theory of probabilistic deductive databases
via p-programs. The syntax allows for vari-
ables but not arbitrary first-order terms, thus
from a theoretical point of view all these pro-
grams can be considered finite. Several dis-
junctive and conjunctive modes for combining
events are presented. The truth-values (con-
fidence levels) are pairs of intervals. A dis-
junctive mode corresponds to a sort in our
programs, while a conjunctive mode is re-
lated to our adjoint operators. The atoms
occurring in a body can be combined with a
conjunctive mode, but different rules for the
same proposition may use different conjunc-
tive modes. Ground p-programs can be imme-
diately translated to our framework. The au-
thors present a termination result for the case
of p-program having rules combined solely
with positive correlation mode, but arbitrary
conjunctive modes. The positive correlation
modes corresponds to maximum and mini-
mum operations over the unit interval. The
confidence levels are combined via t-norms

and t-conorms, independently in the several
component of the confidence levels. These re-
sults carry over to our setting, extensions to
our framework are under study, but are re-
lated to applications of Corollary 3.

Pauĺık proved a termination result for fuzzy
SLD-resolution in a context which can now
be seen as a particular case of our general ap-
proach. In [12], by using a result in the line
of our Corollary 1, the following complete-
ness theorem was proved:2 Given a first-order
fuzzy logic program P built from one adjoint
pair whose conjunctor is a continuous t-norm
(and no extra operators), then for all query A,
the sequence {Tn

P (M)(A)} is eventually con-
stant.

Since all t-norms obey to the property ϑ⊗t1 =
1 ⊗t ϑ = ϑ Pauĺık’s result can be general-
ized in order to allow arbitrary combinations
of t-norms. Our results also apply to the
recent framework of Fuzzy Logic Program-
ming [15], which can be seen as single-sorted
multi-adjoint logic programs.

6 Conclusions

We have presented a sorted multi-adjoint logic
programming language, capable of capturing
and combining several reasoning paradigms
dealing with imprecision and uncertainty.
Several important termination results are pre-
sented and compared with other ones in the
literature. We intend to extend this work with
tabling proof procedures for first-order sorted
multi-adjoint logic programs, relying in the
above results. The embedding of other pro-
posals in the literature into our framework
will be explored in subsequent work.

References

[1] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril - Fuzzy and Evidential Rea-
soning in Artificial Intelligence. Research
Studies Press Ltd, 1995.

[2] C.V. Damásio and M. Ojeda-Aciego On ter-
mination of a tabulation procedure for resid-

2Stated in a different terminology, we have written
the statement with the notation a names used in this
paper.

uated logic programming. 6th Intl Workshop
on Termination, pp. 40-43, 2003

[3] C. V. Damásio and L. M. Pereira. Monotonic
and residuated logic programs. Lect. Notes
in Artificial Intelligence 2143, pp. 748–759,
2001.

[4] C. V. Damásio and L. M. Pereira. Hybrid
probabilistic logic programs as residuated
logic programs. Studia Logica, 72(1):113–138,
2002.

[5] M. Dekhtyar, A. Dekhtyar and V.S. Subrah-
manian. Hybrid Probabilistic Programs: Al-
gorithms and Complexity. Proc. of Uncer-
tainty in AI’99 conference, 1999

[6] A. Dekhtyar and V.S. Subrahmanian. Hy-
brid Probabilistic Programs, Journal of Logic
Programming 43(3):187–250, 2000

[7] D. Dubois, J. Lang and H. Prade. Towards
Possibilistic Logic Programming. Proc. of
International Conference on Logic Program-
ming, pp. 581–598, MIT Press, 1991

[8] M. Kifer and V. S. Subrahmanian, Theory
of generalized annotated logic programming
and its applications. J. of Logic Programming
12(4):335–367, 1992

[9] L. Lakhsmanan and F. Sadri, On a theory
of probabilistic deductive databases. Theory
and Practice of Logic Programming 1(1):5–
42, 2001

[10] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Multi-adjoint logic programming with contin-
uous semantics. Lect. Notes in Artificial In-
telligence 2173, pp. 351–364, 2001.

[11] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
A procedural semantics for multi-adjoint
logic programming. Lect. Notes in Artificial
Intelligence 2258, pp. 290–297, 2001.

[12] L. Pauĺık. Best possible answer is computable
for fuzzy SLD-resolution. Lecture Notes on
Logic 6, pp. 257–266, 1996.

[13] M. H. van Emden. Quantitative deduction
and its fixpoint theory. Journal of Logic Pro-
gramming, 4(1):37–53, 1986.

[14] A. van Gelder Negation as failure using tight
derivations for general logic programs. Foun-
dations of deductive databases and logic pro-
gramming, pp. 149–176, Morgan Kaufmann
Publishers Inc., 1988

[15] P. Vojtáš. Fuzzy logic programming. Fuzzy
Sets and Systems, 124(3):361–370, 2001.

Proof of Theorem 4

Let the culprit collection for Tn
P (M)(A) be the

set of culprits used in the tree of recursive calls
of TP in the calculation. We proceed by in-
duction on n, showing that if Tn+1

P (M)(A) �s

Tn
P (M)(A) for A ∈ Π, then the culprit collec-

tion for Tn+1
P (M)(A) has cardinality at least

n + 1. Since the number of rules in the de-
pendency graph for for A is finite then the TP
operator must terminate after a finite number
of steps, by using all the rules relevant for the
computation of A.

Base case: For n = 0, consider A ∈ Πs and
assume T 1

P (M)(A) �s T 0
P (M)(A) = M(A) and

then, by definition of TP, we must have used at
least one rule, and thus the culprit collection
contains at least one element.

Induction step: Now, we assume as the in-
duction hypothesis that given B ∈ Πt such
that Tn

P (M)(B) �t Tn−1
P (M)(B), then the cul-

prit collection for Tn
P (M)(B) has at least n dif-

ferent rules for all sorts t and B ∈ Π.

Let A ∈ Πs and assume Tn+1
P (M)(A) �s Tn

P (M
)(A), then there is at least one rule in the
program, 〈A←s

i B, ϑ〉, such that

Tn+1
P (M)(A) = ϑ

.
&s

i T̂n
P (M)(B)

Summing up, we have:

Tn+1
P (M)(A) = ϑ

.
&s

i T̂n
P (M)(B)

�s Tn
P (M)(A)

�s ϑ
.

&s
i

̂Tn−1
P (M)(B)

By monotonicity of the TP operator and of
.

&s
i

then there must be at least one propositional
symbol C ∈ Πu occurring in the body B which
changed value from step n− 1 to step n, i.e.

Tn
P (M)(C) �u Tn−1

P (M)(C)

Applying the induction hypothesis, at least
n different rules are in the culprit collection
of Tn

P (M)(C), and belong to the dependency
graph for A since C occurs in the body of a
rule for A. We will prove by contradiction
that 〈A←s

i B, ϑ〉 is not in that culprit collec-
tion.

&s
i

ϑ css1

f1

... cs1s2

f2

...
...

fk

T1 csks

Tm
P (M)(A)

Ts

...

...

Figure 1: Computation term for Tn+1
P (M)(A)

Assume that there exists m < n+ 1 such that
〈A←s

i B, ϑ〉 is also a culprit for Tm
P (M)(A). In

this case, we can view the computation per-
formed by the TP operator as the evaluation
of the term in Fig 1, where each csisj is ei-
ther a casting function or the identity function
on sort s css, and Ti’s are again terms. Fur-
thermore, there are no occurrences of propo-
sitional symbols in the above term.

By the boundary condition one can easily con-
clude that

Tn+1
P (M)(A) �s .

css1

(
.(

.
csks ((Tm

P (M)A))
)

Now, by resorting to the properties of the
casting functions we will obtain that:

Tn+1
P (M)(A) �s Tm

P (M)(A) (1)

obtaining a contradiction with the monotonic-
ity of TP since

Tn+1
P (M)(A) �s Tn

P (M)(A) �s Tm
P (M)(A)

For the proof of inequality (1) recall that, for
the function operator fk in the above term we
know that:

.
T1 �sk 1sk . . .

.
Ts �sk 1sk

By the boundary conditions we conclude im-
mediately that

.
fk

(.
T1, . . . ,

.
csks (Tm

P (M)(A)) , . . . ,
.

Ts

)
�sk

�sk
.

csks (Tm
P (M)(A))

This argument can be applied to any function
symbol in the computation tree.

As a result, we obtain that the culprit collec-
tion for Tn+1

P (M)(A) has cardinality at least
n + 1, and the theorem is proved.

