
A Framework for Unification using Powersets of Terms∗

P. Eklund, M.A. Galán
Dept of Computing Science

Ume̊a University
SE-901 87 Ume̊a, Sweden

{peklund,magalan}@cs.umu.se

J. Medina, M. Ojeda-Aciego, A. Valverde
Dept Matemática Aplicada †

Universidad de Málaga
E-29071 Málaga, Spain

{jmedina,aciego,a valverde}@ctima.uma.es

Abstract

Many-valued logic programming with
generalised terms requires an extended
notion of unification in order to handle
powersets of terms. In this paper we
present substitutions and unifiers in a
categorical framework based on power-
sets of terms as monads. We build upon
developments for monad compositions
initiated in [5].

1 Introduction

Extensions of logic programming using clas-
sical sets of terms, and involving only truth
values, lead mostly to lattice-theoretic con-
siderations. Much work has been done
in these directions, and developments build
upon achievements in many-valued extensions
of corresponding propositional calculi [9]. On
the other hand, extensions allowing for the use
of generalised terms, in particular in form of
various powersets of terms, has drawn much
less attention as this leads to complications
with respect to unification. However, some
work has been done, and a typical first step is
to allow only for constants to be used in term
sets [2, 8].

In this paper we show how to use powersets
of terms in their full range, i.e. allowing also
to use functions in the operator domain. In
order to allow for this, we propose a categor-
ical framework for handling substitutions and

∗This work has been developed as a cooperation
organised within COST 274.

† Partially supported by Spanish DGI project
BFM2000-1054-C02-02

unifiers. A categorical approach provides not
only a well-founded formalism but also reveals
properties of powersets of terms required e.g.
for composing substitutions.

Generalised terms based on monad composi-
tions and used in a unification framework re-
quire inventiveness concerning the provision
of monad compositions. We build upon pre-
vious work on monad compositions where we
have investigated conditions [5] under which
compositions of monads again produce mon-
ads. In [6] we showed how composite expres-
sions involving natural transformations could
be pictorially represented in order to provide
graphical proof support for providing monad
compositions. We have also seen how new
monads can be constructed from old ones, e.g.
by using techniques given by submonads [7].
This, in fact, led to a more formal concept of
generalised terms but, in this paper we take a
more informal approach in that we exemplify
generalised terms, in particular, with conven-
tional powersets of terms, and terms over con-
ventional powersets.

The paper is organised as follows. In Sec-
tion 2, we provide required definitions and
notations of the categorical framework. Sec-
tion 3 introduces the concept of similarity,
and some examples are given for selected func-
tors: the term functor, the powerset term
functor and the term powerset functor. Later,
in Section 4 the definitions of variable substi-
tutions and unifier are given for generalised
terms. Finally, in Section 5 some conclusions
and pointers to related work are presented.



2 Definitions and notations

Moving from conventional terms to a categor-
ical framework involving powersets of terms
calls for a level of formalism required to fully
make use of the categorical machinery.

It is not an easy task to identify situations in
which the underlying behavior corresponds to
a precise categorical concept. For instance,
note that in the classical case, terms over
terms are flattened to terms.

This is possible due to a “flattening” operator
which embeds terms over terms into terms.
The existence of such an operator is not ob-
vious, and usually not credited to the term
monad, as done in [11]. In this section we in-
troduce the necessary requirements from cat-
egory theory that will be used in the sequel.

A monad (or triple, or algebraic theory) over
a category C is written as Φ = (Φ, η, µ),
where Φ: C → C is a (covariant) functor, and
η : id → Φ and µ : Φ ◦ Φ → Φ are natural
transformations, respectively called unit and
multiplication, for which µ ◦ Φµ = µ ◦ µΦ
and µ ◦ Φη = µ ◦ ηΦ = idΦ hold. The
Kleisli category CΦ for Φ over C consists of
objects in C, and the morphisms are given by
homC(X, ΦY ). See [1, 3] for category theor-
etic notions.

Let 2 be the usual covariant powerset monad
(2, η, µ), where 2X is the set of subsets of X,
ηX(x) = {x} and µX(B) =

⋃
B.

The term functor TΩ, or T for short, with TX
being the set of terms over the operator do-
main Ω and the variable set X, is extended
to a monad in the usual way. A strict cat-
egorical notation was adopted in [5]. A term
ω(m1, . . . , mn) is in this paper more formally
written as (n, ω, (mi)i≤n).

As stated in the introduction, we will focus
essentially on powersets of terms, in particu-
lar, we will be concerned with the composed
functor 2T .

To define the natural transformations as-
sociated to the composed functor 2T , our
monad construction makes use of the mapping
σX : T2X → 2TX, called the swapper. Func-

tor compositions require the utility of such a
swapping natural transformation in order to
arrive at suitable multiplications for the func-
tor composition. Functor compositions being
extendable to monads are usually subject to
conditions related to this swapper. In [4], a
set of such conditions, or distributive laws,
were given.

The swapper for the composed functor 2T is
recursively defined by σX |2X = id2X , and by

σX(l) = {(n, ω, (mi)i≤n) | mi ∈ σX(li)}.

otherwise.

The natural transformation η2T : id → 2T ,
defined as η2T

X (x) = {x}, and the natural
transformation µ2T : 2T2T → 2T defined for
R = {(nj , ωj , (rij)i≤nj ) | j ∈ J} ∈ 2T2TX as

{(nj , ωj , (mij)i≤nj ) | j ∈ J, mij ∈ σTX(rij)}

provide 2T with the structure of a monad. See
[5] for details.

3 Similarities

There are several references in the literature
that include concepts as either fuzzy equal-
ity relation, or fuzzy equivalence relation, or
similarity relation. We will adopt the latter
terminology which is defined below.

For a formal treatment of similarities and
equalities used in many-valued predicate lo-
gics, see [9].

In the rest of the section, L will denote a com-
pletely distributive lattice. Proofs omitted are
included in an extended version of this paper.

Definition 3.1 A similarity on X is a map-
ping E : X × X → L satisfying the following
axioms,

E(x, x) = 1 (reflexivity)

E(x, y) = E(y, x) (symmetry)

E(x, y) ∧ E(y, z) ≤ E(x, z) (transitivity)

for all x, y, z ∈ X.



Let Ω be a set of operations, and let EΩ be a
similarity on Ω. In the following we will use
EΩ in order to define a similarity on TX.

Definition 3.2 The relation

ET : TX × TX → L

is defined as follows: For x1, x2 ∈ X,

ET (x1, x2) =

{
1 if x1 = x2

0 otherwise

and further, for terms t =
(
n, ω, (mi)i≤n

)
,

and t′ =
(
n′, ω′, (m′

i)i≤n′
)

we have ET (t, t′){
EΩ(ω, ω′) ∧

∧
i≤n ET (mi, m

′
i) if n = n′

0 otherwise

Proposition 3.1 ET is a similarity on TX.

For unification we will need a similarity
between powersets of terms, and for this pur-
pose we will now use ET in order to define a
similarity on 2TX.

Definition 3.3 The relation

E2T : 2TX × 2TX → L

is defined for all M1, M2 ∈ 2TX as,

E2T (M1, M2) =
∧

m1∈M1

∨
m2∈M2

ET (m1, m2)

∧
∧

m2∈M2

∨
m1∈M1

ET (m1, m2)

This definition can be seen as a bi-implication
measure, in the sense of [10].

Proposition 3.2 The relation E2T is a sim-
ilarity on 2TX.

Remark 3.1 The choice of a similarity on
2TX as in Definition 3.3 is not obvious. In
[8], the following pseudosimilarity was used:

E′(M1, M2) =
∧

m1,m2∈M1∪M2

E′
T (m1, m2).

Obviously, E′ is not reflexive.

A similarity on T2X can now easily be given
using the similarity on 2TX.

Definition 3.4 The relation

ET2 : T2X × T2X → L

is defined as follows:

ET2(l1, l2) = E2T

(
σX(l1), σX(l2)

)
where σX : T2X → 2TX is the swapper.

Proposition 3.3 The relation ET2 is a sim-
ilarity on T2X.

Remark 3.2 It is an open question whether
the functor composition T2 can be extended to
a monad.

4 Unifiers

In this section we introduce the concepts
of variable substitutions and unifiers in par-
ticular within the context of powersets of
terms. In the classical situation, variable sub-
stitutions are mappings assigning variables to
terms, i.e. mappings θ : X → TY . For power-
sets of terms, a variable substitution should
then be viewed as mappings

θ : X → 2TY

Given a generalised term M ∈ 2TX in form of
a powerset of terms, the result Mθ of applying
a variable substition θ on M is given by

Mθ = (µ2T
Y ◦ 2Tθ)(M)

i.e. Mθ is kind of a flattening of a set of terms
over sets of terms, where µ2T

Y provides the flat-
tening operation.

Note that variable substitutions can
be defined more generally over monads
(F, ηF , µF ). Indeed for an object A ∈ FX,
and a variable substitution θ : X → FY , we
will have

Aθ = (µF
Y ◦ Fθ)(A)

Definition 4.1 The composition of two sub-
stitutions θ1 : X → 2TY and θ2 : Y → 2TZ is
given by

θ1θ2 = µ2T
Z ◦ 2Tθ2 ◦ θ1

i.e. the composition in the Kleisli category
Set2T for the powerset monad 2T over the
category of sets.



Given M1, M2 ∈ 2TX, let [M1;M2] represent
an equation over 2TX. In order to define gen-
eralised unifiers for equations we will assume
the existence of similarities.

Definition 4.2 A unifier of the equation
[M1;M2] over 2TX is a substitution, θ : X →
2TY , such that E2T (M1θ, M2θ) equals

sup{E2T (M1ϑ, M2ϑ) | ϑ is a substitution}.

It might be possible that the supremum above
could not be attained by any substitution.
The particular features of the lattice or the
underlying application might require a weaker
version of the definition, as follows:

Let θ be a substitution, and [M1;M2] an equa-
tion over 2TX. We say that θ is a unifier
if E2T (M1, M2) ≤ E2T (M1θ, M2θ), that is, if
the substitution increases the similarity de-
gree.

5 Conclusions and future work

We have shown how generalised terms, as
given by powersets of terms, can be handled
in equational settings involving substitutions
and unifiers. The utility of categorical tech-
niques as provided by monads is obvious
and indeed encouraging for further investiga-
tions on more elaborate compositions and cat-
egorical techniques for unification as initiated
in [11].

In further work it is important to merge
our efforts with developments, such as in [2],
that have focused more on semantic aspects
of many-valued logic programming. These
developments have a rather specialised use
of terms as they typically restrict to using
powersets of constants instead of generalised
terms in their full range. However, restrict-
ing to powersets of constants seems more to
be a struggle with unification than with proof
procedural issues, and there are no indications
that the specialised use of terms is enforced by
the semantic developments. The procedural
issues being important it is equally worth-
while to underline the importance of further
studies on monad compositions.

References

[1] J. Adámek, H. Herrlich, G. Strecker,
Abstract and Concrete Categories, John
Wiley & Sons, 1990.

[2] T. Alsinet, L. Godo, A complete cal-
culus for possibilistic logic programming
with propositional variables, Proc. Uncer-
tainty in AI conference, 2000, pp. 1–10.

[3] M. Barr, C. Wells, Toposes, Triples and
Theories, Springer-Verlag, 1985.

[4] J. Beck, Distributive laws, Seminars on
Triples and Categorical Homology The-
ory, 1966/67, Lect. Notes in Mathemat-
ics 80, pp. 119–140. Springer, 1969.

[5] P. Eklund, M.A. Galán, M. Ojeda-
Aciego, A. Valverde, Set functors and
generalised terms, Proc. IPMU 2000, 8th
Information Processing and Management
of Uncertainty in Knowledge-Based Sys-
tems Conference, 2000, 1595-1599.

[6] P. Eklund, M.A. Galán, J. Medina,
M. Ojeda Aciego, A. Valverde, A
graphical approach to monad com-
position, Electronic Notes in The-
oretical Computer Science 40 (2001).
(www.elsevier.nl/locate/entcs/volume40.html)

[7] P. Eklund, M.A. Galán, J. Medina, M.
Ojeda-Aciego, A. Valverde, Composing
submonads, Proc. 31st IEEE Int. Sym-
posium on Multiple-Valued Logic (IS-
MVL 2001), 2001, 367-372.

[8] F. Formato, G. Gerla, M.I. Sessa,
Similarity-based unification, Funda-
menta Informaticae 40 (2000), 393-414.

[9] P. Hájek, Metamathematics of Fuzzy Lo-
gic, Kluwer Academic Publishers, 1998.

[10] Ruspini, E., On the semantics of fuzzy lo-
gic, International Journal of Approxim-
ate Reasoning 5, pp. 45-88, 1991.

[11] D.E. Rydeheard, R.M. Burstall, A cat-
egorical unification algorithm, Proc. Cat-
egory Theory and Computer Program-
ming, 1985, LNCS 240, Springer-Verlag,
1986, 493-505.


