
A new approach to completeness
for multi-adjoint logic programming

Jesús Medina, Manuel Ojeda-Aciego∗

Dept. Matemática Aplicada
E.T.S.I. Informática

Universidad de Málaga
{jmedina,aciego}@ctima.uma.es

Abstract

The hypotheses required for the quasi-
completeness theorems [5, 7] are re-
stated in terms of termination proper-
ties of a calculation algorithm.

1 Introduction

Several papers can be found in the liter-
ature on applications of definite fuzzy lo-
gic programming, which are based either on
�Lukasiewicz, or product, or Gödel implica-
tions on the unit real interval (an overview
can be seen in [8]); if one is interested in more
complex systems, it is reasonable to allow con-
sidering more general sets of truth-values to
reflect uncertainty.

The following example, taken and simplified
from [2], considers truth-values in a set other
than the unit interval: Assume that if the
CEO of a company sells the stock, and retires
with a probability over 85%, then the prob-
ability that the stock of the company drops
is 40-90%

price drop : [0.4, 0.9] ←
(ch sells stock ∧ ch retires) : [0.85, 1]

Several approaches to the generalisation of the
set of truth-values can be found; for instance,
that given by the structure of bilattice, which
has been used to handle negation in logic pro-
gramming; also in [1] the set of truth-values

∗ Partially supported by Spanish DGI project
BFM2000-1054-C02-02

is generalised to a residuated lattice (in order
to embed possibilistic, and hybrid probabil-
istic logic programs), but only one implication
was considered and no study of continuity of
its semantics was given.

Multi-adjoint logic programming was intro-
duced in [6] as a generalisation of monotonic
and residuated logic programming [1]. Its spe-
cial features are that: it is possible to use a
number of different implications in the rules
of our programs; sufficient conditions for con-
tinuity of the immediate consequences oper-
ator are known; and the requirements on the
lattice of truth-values are weaker than those
on the residuated approach.

In practical systems we need a computational
model, whose existence is guaranteed by the
continuity of the semantics. The purpose
of this work is to prove a completeness the-
orem for the computational model, which im-
proves two quasi-completeness results intro-
duced in [5, 7].

The structure of the paper is the following: in
Section 2 the relevant definitions concerning
multi-adjoint logic programming are presen-
ted. Then in Section 3, a study of the rela-
tionships between the greatest correct answer
and the immediate consequence operator is
given, and the concept of reductant for multi-
adjoint logic programs is stated. In Section 4
the main theorem is proved, the greatest com-
puted answer coincides with the greatest cor-
rect answer and, assuming termination, can
be algorithmically obtained using the proced-
ural semantics. The final section contains
some conclusions and pointers to future work.



2 Preliminary definitions

To make this paper as self-contained as pos-
sible, the necessary definitions about multi-
adjoint structures are included in this sec-
tion. For motivating comments, the inter-
ested reader is referred to [6].

Definition 1: Let 〈L,�〉 be a complete lat-
tice. A multi-adjoint lattice L is a tuple
(L,�,←1,&1, . . . ,←n,&n) satisfying the fol-
lowing items:

1. 〈L,�〉 is bounded, i.e. it has bottom and
top elements;

2. �&i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for
i = 1, . . . , n;

3. (←i,&i) is an adjoint pair in 〈L,�〉 for
i = 1, . . . , n; i.e.

(a) Operation &i is increasing in both
arguments,

(b) Operation ←i is increasing in the
first argument and decreasing in the
second argument,

(c) For any x, y, z ∈ P , we have that
x � (y ←i z) holds if and only if
(x&i z) � y holds.

From the point of view of expressiveness, it is
interesting to allow extra operators to be in-
volved with the operators in the multi-adjoint
lattice. The structure which captures this
possibility is that of a multi-adjoint Ω-algebra
which can be understood as an extension of
a multi-adjoint lattice containing a number of
extra operators given by a signature Ω.

We will be working with two Ω-algebras: the
first one, F, to define the syntax of our pro-
grams, and the second one, L, to host the
manipulation of the truth-values of the formu-
las in the programs. To avoid possible name-
clashes, we will denote the interpretation of
an operator symbol ω in Ω under L as

.
ω (a

dot on the operator), whereas ω itself will de-
note its interpretation under F.

Syntax

Definition 2: A multi-adjoint logic program
on a multi-adjoint Ω-algebra F with values

in a multi-adjoint lattice L (in short multi-
adjoint program) is a set P of rules of the form
〈A ←i B, ϑ〉.

1. The rule A ←i B is a formula of F;

2. The confidence factor ϑ is an element (a
truth-value) of L;

3. The head of the rule A is a propositional
symbol of Π.

4. The body formula B is a formula of F built
from propositional symbols B1, . . . , Bn

(n ≥ 0) by the use of conjunctors
∧1, . . . ,∧k, disjunctors ∨1, . . . ,∨l and ag-
gregators @1, . . . ,@m .

A fact is rules with body �. A rule which is
not a fact will be called a proper rule. A query
(or goal) is a propositional symbol intended as
a question ?A prompting the system.

Model semantics

An interpretation is a mapping I : Π → L.
Note that each of these interpretations can be
uniquely extended to the whole set of formu-
las, Î : FΩ → L. The set of all interpretations
of the formulas defined by the Ω-algebra F in
the Ω-algebra L is denoted IL. The ordering
� of the truth-values L can be easily exten-
ded to IL, which also inherits the structure of
complete lattice.

Definition 3:

1. An interpretation I satisfies 〈A ←i B, ϑ〉
if and only if ϑ � Î (A ←i B).

2. An interpretation I is a model of a multi-
adjoint logic program P iff all weighted
rules in P are satisfied by I.

3. An element λ ∈ L is a correct answer for
a program P and a query ?A if for any
interpretation I which is a model of P we
have λ � I(A).

Fix-point semantics

The immediate consequences operator, given
by van Emden and Kowalski [3], can be easily

2



generalised to the framework of multi-adjoint
logic programs.

Definition 4: Let P be a multi-adjoint pro-
gram. The immediate consequences operator
TP : IL → IL, mapping interpretations to in-
terpretations, is defined by

TP(I)(A) = sup
{

ϑ
.

&i Î(B) | A
ϑ←i B ∈ P

}

As usual, the semantics of a multi-adjoint
logic program is characterised by the post-
fixpoints of TP, see [6]; that is, an interpret-
ation I of IL is a model of a multi-adjoint
logic program P iff TP(I) � I. It is remark-
able the fact that this result is still true even
without any further assumptions on conjunc-
tors (definitely they need not be commutative
and associative).

Regarding continuity, the following theorem
was proved in [6].

Theorem 1

1. If all the operators occurring in the bod-
ies of the rules of a program P are con-
tinuous, and the adjoint conjunctions
are continuous in their second argument,
then TP is continuous.

2. If the operator TP is continuous for all
program P on L, then any operator in
the body of the rules is continuous, and
the adjoint conjunctions are continuous
in their second argument.

Procedural semantics

Once we know that the TP operator can
be continuous under very general hypotheses
then, by the Knaster-Tarski theorem, the
least model can be reached in at most count-
ably many iterations, that is Tω

P
(�). There-

fore, it is worth to define a procedural se-
mantics which allow us to actually construct
the answer to a query against a given pro-
gram.

For the formal description of the computa-
tional model, we consider an extended lan-
guage Fe defined on the same signature set,

but whose carrier is a subset of the disjoint
union Π � L; this way we can work simultan-
eously with propositional symbols and with
the truth-values they represent.

Definition 5: Let P be a multi-adjoint pro-
gram, and let V ⊂ L be the set of truth val-
ues of the rules in P. The extended language
Fe is the corresponding Ω-algebra of formulas
freely generated from the disjoint union of Π
and V .

We will refer to the formulas in the language
Fe simply as extended formulas, or e-formulas.
An operator symbol ω interpreted under Fe

will be denoted as ω̄.

Our computational model takes a query
(atom), and provides a lower bound of the
value of A under any model of the program.
Note that if an e-formula turns out to have no
propositional symbols, then it can be directly
interpreted in the multi-adjoint Ω-algebra L.
This justifies the following definition of com-
puted answer.

Definition 6: Let P be a multi-adjoint pro-
gram, and let ?A be a goal. An element
.
@(r1, . . . , rm), with ri ∈ L, for all i ∈
{1, . . . , m} is said to be a computed answer
if there is a sequence G0, . . . , Gn+1 such that

1. G0 = A and Gn+1 = @̄(r1, . . . , rm) where
ri ∈ L for all i = 1, . . . n.

2. Every Gi+1 is inferred from Gi by one of
the admissible rules below:

(a) Substitute an atom A in an extended
formula by (ϑ&̄iB) whenever there
exists a rule 〈A←iB, ϑ〉 in P.

(b) Substitute an atom A in an extended
formula by ⊥.

(c) Substitute an atom A in an extended
formula by ϑ whenever there exists
a fact 〈A←i�, ϑ〉 in P.

Note that our procedural semantics is not
refutation-based, for negation is not allowed
in our approach. Instead, it is oriented to ob-
taining a bound of the optimal correct answer
of the query.

3



Quasi-completeness results

Two quasi-completeness results for the pro-
cedural semantics of multi-adjoint logic pro-
gramming were proved in [7]. Their proofs
follow from some technical results. The first
lemma below states that the least fix-point is
also the least model of a program; the second
states a characterisation of correct answers in
terms of the TP operator.

Lemma 1 For all model I of P we have that
Tω

P
(�) � I.

Lemma 2 λ ∈ L is a correct answer for a
program P and a query ?A iff λ � Tω

P
(�)(A).

Now, in order to match correct and computed
answers, the proposition below, whose proof
is based induction on n, shows that any itera-
tion of the TP operator is, indeed, a computed
answer.

Proposition 1 Let P be a program, then
Tn

P
(�)(A) is a computed answer for all n and

for all query ?A.

We have now all the required background to
state the first quasi-completeness result.

Theorem 2 For every correct answer λ ∈ L
for a program P and a query ?A, there exists
a chain of elements λn such that λ � supλn,
such that for arbitrary n0 there exists a com-
puted answer δ such that λn0 � δ.

The theorem above could be further refined
under the assumption of the so-called su-
premum property [6]:

Definition 7: A cpo L is said to satisfy the
supremum property if for all directed set X ⊂
L and for all ε we have that if ε ≺ supX then
there exists δ ∈ X such that ε ≺ δ � supX.

Theorem 3 below states that any correct an-
swer can be approximated up to any lower
bound.

Theorem 3 Assume L has the supremum
property, then for every correct answer λ ∈ L
for a program P and a query ?A, and arbit-
rary ε ≺ λ there exists a computed answer δ
such that ε ≺ δ.

3 Greatest answers. Reductants

Note that the definition of correct answer is
not entirely satisfactory in that ⊥ is always
a correct answer. Actually, we should be in-
terested in the greatest confidence factor we
can assume on the query, consistenly with the
information in the program.

Definition 8: Given a complete lattice L, we
define the greatest correct answer, λCM , for a
program P and a query ?A as

sup{λ | λ is a correct answer for P and ?A}

The following theorem states that the greatest
correct answer is reached by the least fix-point
of the TP operator.

Theorem 4 Given a complete lattice L, a
program P and a propositional symbol A, we
have that Tω

P
(�)(A) is the greatest correct an-

swer.

Proof: It is indeed a correct answer, since for
any model I of P, we have by Lemma 1 that
Tω

P
(�)(A) � I(A), for Tω

P
(�) is the minimal

model.

It is also the greatest, since by Lemma 2, for
any correct answer λ, we have λ � Tω

P
(�)(A),

and taking supremum we obtain the following
chain of inequalities:

Tω
P

(�)(A) � λCM � Tω
P

(�)(A)

�

Reductants

It might be the case that for some lattices,
our procedural semantics cannot compute the
greatest correct answer, simply consider L to
be the powerset of a two-element set {a, b}
ordered by inclusion, and the following ex-
ample from Morishita, used in [4]:

Example 1: Consider a multi-adjoint program
P with rules A

a← B and A
b← B and fact

〈B ← �,�〉. Assuming that the adjoint con-
junction to ← has the usual boundary con-
ditions, then the greatest correct answer to

4



the query ?A is �, since it has to be an up-
per bound of all the models of the program,
therefore it has to be greater than both a and
b. But the only computed answers are either
a or b. �

The idea to cope with this problem is the
generalisation of the concept of reductant [4].
Namely, that whenever we have a finite num-
ber of rules A

ϑi←i @i(Di
1, . . . , D

i
ni

) for i =
1, . . . , k, then there should exist another rule
which allows us to get the greatest possible
value of A under the program.

As any rule A
ϑi←i @i(D1, . . . , Dni) contrib-

utes, by means of the adjoint property (3c) in
Def. 1, with a value of the form ϑi

.
&i bi for the

calculation of the lower bound for the truth-
value of A, we would like to have the possib-
ility of reaching the supremum of all the con-
tributions, in the computational model, in a
single step. This leads to the following defin-
ition.

Definition 9: Let P be a multi-adjoint pro-
gram; assume that the set of rules in P with
head A can be written as 〈A←iBi, ϑi〉 for
i = 1, . . . , n, and contains at least a proper
rule; a reductant for A is any rule

〈A ← @(B1, . . . ,Bn),�〉

where ← is any implication with an adjoint
conjunctor and the aggregator @ is defined as

.
@(b1, . . . , bn) = sup{ϑ1

.
&1 b1, . . . , ϑn

.
&n bn}

If there were just facts with head A, but not a
single proper rule, then the expression above
does not give a well-formed formula. In this
case, the reductant is defined to be a fact
which aggregates all the knowledge about A,
that is,

〈A ← �, sup{ϑ1, . . . , ϑn}〉

As a consequence of the definition, and the
boundary conditions in the definition of bi-
residuated multi-adjoint lattice, the choice of
the implication to represent the corresponding
reductant is irrelevant for the computational
model. Therefore, in the following, we will

assume that our language has a distinguished
implication to be selected in the construction
of reductants, leading to the so-called canon-
ical reductants.

It is immediate to prove that the rule con-
structed in the definition above, in presence
of proper rules, behaves as a reductant (in the
standard sense) for A in P, in that it provides
in a single step the greatest amount of inform-
ation about A which can be obtained from the
rules (and facts) with head A.

It will be interesting to consider only pro-
grams which contain all its reductants, but
this might be a too heavy condition on our
programs; the following proposition shows
that it is not true, therefore we can assume
that a program contains all its reductants,
since its set of models is not modified.

Proposition 2 Any reductant A
ϑ← B of P is

satisfied by any model of P.

Note that we have followed just traditional
techniques of logic programming, and dis-
carded non-determinism by using reductants.

4 Completeness

It is time now to consider the possibility of ob-
taining a maximal (or greatest) computed an-
swer for a query to a program. The definition
of greatest computed answer follows directly
its intended meaning.

Definition 10: Given a program P and a query
?A, the greatest computed answer is a com-
puted answer λ such that whenever λ′ is any
computed answer, then λ′ � λ.

Consider the following procedure, given a pro-
gram P and a query ?A:

1. Apply rule R2 only on atoms B for which
there are neither rules nor facts with
head B.

2. Use the canonical reductant, otherwise.

The proposition below states that the pro-
cedure can be used for obtaining the greatest
computed answer.

5



Proposition 3 Given a program P and a
query ?A, and assume that the procedure
above terminates, then the output of the pro-
cedure is the greatest computed answer.

Before starting the proof, we should recall
that all the reductants can be assumed to be-
long to the program. On the other hand, note
that, although rules R1 and R3 are not expli-
citly mentioned in the statement of the pro-
position, they are special cases of application
of a reductant.

Proof: Firstly, note that only one computed
answer can be obtained by following the pro-
cedure.

The maximality of the computed answer fol-
lows from the monotonicity of the operators
in the bodies of our rules, together with the
definition of reductant:

Let λ be the computed answer for program
P and a query ?A obtained by the procedure,
and let λ′ be any computed answer for pro-
gram P and a query ?A. We will use induction
on the length of the chain which computes λ′

to prove that λ′ � λ.

If the length n of the chain is 1, it because
either rule R2 or R3 has been applied. There-
fore,

1. If R2 has been applied, then λ′ = ⊥ � λ;

2. If R3 has been applied on a fact, say
〈A ←j1 �, ϑ1〉, then λ′ = ϑ1, and is ob-
tained by the chain

G′
0 = A G′

1 = ϑ1

Now, for λ there are two possibilities:

(a) If all the rules with head A are facts
〈A ←ji �, ϑi〉 with i ∈ {1, . . . , l}, then
the canonical reductant has the form
〈A ← �, ϑ〉 where ϑ = sup{ϑ1, . . . , ϑl},
and λ = ϑ has the chain of computation

G0 = A G1 = ϑ

therefore, λ′ = ϑ1 � ϑ = λ.

(b) Otherwise, if some of the rules with head
A is not a fact, we will write 〈A←jiBi, ϑi〉

with i = 1, . . . , l to denote all the rules
with head A. Then the canonical reduct-
ant is written as

〈A ← @(B1, . . . ,Bl),�〉

where the operator @ is defined on each
tuple (b1, . . . , bn) ∈ Ln by
.
@(b1, . . . , bl) = sup{ϑ1

.
&j1 b1, . . . , ϑl

.
&jl

bl}

where without loss of generality, we have
considered the first rule 〈A←j1B1, ϑ1〉 as
the fact 〈A ←j1 �, ϑ1〉. Now, the follow-
ing chain computes λ:

G0 = A

G1 = �&̄@̄(�,B2, . . . ,Bl)
...

Gr = �&̄@̄(�, λ2, . . . , λl)

therefore:

λ′ = ϑ1

� sup{ϑ1

.
&j1 �, . . . , ϑl

.
&jl

λl}
=

.
@(�, λ2, . . . , λl)

= �
.
&

.
@(�, λ2, . . . , λl)

= λ

For the inductive step, let us assume that the
result is true for all computed answer with
chain of computation with length less than n,
where n > 1.

The first rule applied in the computation of
λ′ should have been R1; let 〈A←j1B1, ϑ1〉 be
the rule used in the application of R1 among
all the rules with head A, which we will write
〈A←jiBi, ϑi〉 con i = 1, . . . , l (without loss of
generality we have considered the first one to
be selected in the computation of λ′). Then,
we have the following chain of e-formulas:

G0 = A

G1 = ϑ1&̄B1,
...

Gn = ϑ1&̄ µ′

On the other hand, let

〈A ← @(B1, . . . ,Bl),�〉

6



be the canonical reductant, then the chain of
computation for λ is the following:

G0 = A

G1 = �&̄@̄(B1, . . . ,Bl)
...

Gr = �&̄@̄(µ, λ2, . . . , λl)

Clearly, the atoms occurring in B1 have a
chain of computation with length less than
n, then by the induction hypothesis the com-
puted (sub)answers for them are less or equal
than the corresponding greatest computed
answers and, therefore µ′ ≤ µ, and con-
sequently:

λ′ = ϑ1

.
&j1 µ′

� ϑ1

.
&j1 µ

� sup{ϑ1

.
&j1 µ, ϑ2

.
&j2 λ2 . . . , ϑl

.
&jl

λl}
=

.
@(µ, λ2, . . . , λl)

= �
.
&

.
@(µ, λ2, . . . , λl)

= λ

�

The proposition above is interesting both
from a practical and from a theoretical point
of view: For the former, it gives an al-
gorithm for, assuming termination, comput-
ing the greatest confidence factor for a query
to a program; for the latter, it is the key to
prove that, under the assumption of continu-
ity of the fix-point semantics, the least fix-
point is indeed the greatest computed answer.

Theorem 5 Given a program P and an atom
A, if λA is the greatest computed answer for
P and query ?A, then λA = Tω

P
(�)(A).

Proof: By induction on the length n of the
computation of λA.

If n = 1, then only rules R2 or R3 have been
applied. In either case the result is obvious,
as stated below:

• If R2 has been applied, then the char-
acterisation of greatest computed answer
says that no rule with head A exists in

the program P, therefore Tω
P

(�)(A) =
sup(∅) = ⊥ = λA.

• If R3 has been applied, the canonical re-
ductant for A is a fact 〈A ← �, ϑ〉, there-
fore no proper rules with head A exist,
and ϑ = sup{ϑ1, . . . , ϑn}, where the ϑi

are all the confidence values for A. Now,
as Tω

P
(�) is a model of the program P we

have that

ϑi � Tω
P

(�)(A)

for i = 1, . . . , n. Furthermore, as it is
the minimal model, then Tω

P
(�)(A) is the

lower upper bound, that is

Tω
P

(�)(A) = sup {ϑ1, . . . , ϑn} = λA

For the inductive step, let us assume the result
is true for all computation with length less
than n, with n > 1. In this case, the first
applied rule is R1.

Let A
ϑ← @(B1, . . . ,Bl) be the canonical re-

ductant for A. Its body will be more conveni-
ently denoted as @′[B1, . . . , Bk], where the
Bi are the propositional symbols occurring in
@(B1, . . . ,Bl).

After the first step in the computation, we
get ϑ &̄ @̄′[B1, . . . , Bk]; by the induction hypo-
thesis we know that βi = Tω

P
(�)(Bi), where βi

is the greatest computed answer for the query
?Bi, for i = 1, . . . , k and, therefore, we get the
following chain of e-formulas for each by us-
ing the rules in the chains of computation for
each Bi

G0 = A

G1 = ϑ &̄ @̄′[B1, . . . , Bk]
...

Gr = ϑ &̄ @̄′[β1, . . . , βk]

therefore, the greatest computed answer has
the form

λA = ϑ
.
&

.
@′(β1, . . . , βk)

Finally, interpreting all the function symbols

7



in the lattice L we have

ϑ
.
&

.
@′(β1, . . . , βk) =

= ϑ
.
&

.
@′(Tω

P
(�)(B1), . . . , Tω

P
(�)(Bk))

= ϑ
.
& T̂ω

P
(�)(@′[B1, . . . , Bk])

= ϑ
.
& T̂ω

P
(�)(@(B1, . . . ,Bl))

= ϑ
.
&

.
@(T̂ω

P
(�)(B1), . . . , T̂ω

P
(�)(Bl))

(�)
= sup{ϑ

.
&i T̂ω

P
(�)(B) | A

ϑ←i B ∈ P}
= Tω

P
(�)(A)

where the equality (�) follows from the
application of a reductant. �

This is an interesting result, for it shows that
the minimal model for a program P on each
propositional symbol A is the greatest com-
puted answer for program P and query ?A.

5 Conclusions and future work

We have re-stated the hypothesis required for
completeness on multi-adjoint logic program-
ming in terms of termination of a particular
procedure. As a consequence, we have new in-
sight about the computational nature of the
problem of completeness in the multi-adjoint
case. As future work we will further invest-
igate the algebraic properties of the lattice of
truth-values which imply completeness.

The approach taken of considering reductants
follows traditional techniques of logic pro-
gramming, and non-determinism is discarded
by using reductants. A possible disadvant-
age of this technique is that the full search
space must be traversed (every rule of every
atom must be evaluated), although this need
not be necessary in many circumstances. It
is clear that some evaluation strategies might
start by executing non-deterministically the
rules for a given atom, and finally the re-
ductant. This joined with some memoizing or
tabling technique would not have significant
overhead, and could improve performance.

References

[1] C.V. Damásio and L. Moniz Pereira. Mono-
tonic and residuated logic programs. In Sym-

bolic and Quantitative Approaches to Reas-
oning with Uncertainty, ECSQARU’01, pages
748–759. Lect. Notes in Artificial Intelligence,
2143, 2001.

[2] A. Dekhtyar and V. S. Subrahmanian. Hybrid
probabilistic programs. J. of Logic Program-
ming, 43:187–250, 2000.

[3] M. van Emden and R. Kowalski. The se-
mantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733–742,
1976.

[4] M. Kifer and V. S. Subrahmanian. Theory
of generalized annotated logic programming
and its applications. J. of Logic Programming,
12:335–367, 1992.

[5] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A
completeness theorem for multi-adjoint logic
programming. In Proc. FUZZ-IEEE’01. The
10th IEEE International Conference on Fuzzy
Systems, IEEE Press, 2001.

[6] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Multi-adjoint logic programming with continu-
ous semantics. In Logic Programming and
Non-Monotonic Reasoning, LPNMR’01, pages
351–364. Lect. Notes in Artificial Intelligence
2173, 2001.

[7] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
A procedural semantics for multi-adjoint logic
programming. In Progress in Artificial Intel-
ligence, EPIA’01, pages 290–297. Lect. Notes
in Artificial Intelligence 2258, 2001.

[8] P. Vojtáš. Fuzzy logic programming. Fuzzy
sets and systems, 124(3):361–370, 2001.

8


