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Abstract. In this paper we propose a new lens through which to observe the in-
formation contained in a formal context. Instead of focusing on the hierarchical
relation between objects or attributes induced by their incidence, we focus on the
“unrelatedness” of the objects with respect to those attributes with which they
are not incident. The crucial order concept for this is that of maximal anti-chain
and the corresponding representation capabilities are provided by Behrendt’s the-
orem. With these tools we introduce the fundamental theorem of Formal Inde-
pendence Analysis and use it to provide an example of what its affordances are
for the analysis of data tables. We also discuss its relation to Formal Concept
Analysis.

1 Introduction

The original intent of Wille on creating Formal Concept Analysis (FCA) was, in his
own words, an “attempt to unfold lattice-theoretical concepts, results, and methods in
a continuous relationship with their surrounding” [9, §1]. In an interesting Final re-
marks of that seminal work Wille renounces any attempt at exhaustiveness of the lattice
restructuring program and recommends: “Besides the interpretation by hierarchies of
concepts, other basic interpretations of lattices should be introduced; . . . ” In this light,
we may wonder what other views of the information carried by a context might be.

In this paper we propose an alternative conceptualization for the information con-
tained in a formal context. Since the intuitive interpretation of the analogues of formal
concepts, which we have named formal tomoi, describe sets of objects and attributes
that have nothing to do with each other, we call this conceptualization Formal Indepen-
dence Analysis (FIA).

We base it in terms of the anti-chains of a certain order related to the context, and
its lattice of anti-chains (Section 2) using Behrendt’s theorem [1] which has universal
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representation capabilities for finite complete lattices. In this paper, we study mathe-
matical properties of the lattice of anti-chains, in relation to the possible extension of
Behrendt’s theorem to a more general framework.

The set of anti-chains of a given a poset can be ordered by using two natural ap-
proaches (?4 and 4?) which lead to isomorphic structures, namely, a distributive lat-
tice. The lattice of anti-chains of a distributive lattice L turns out to be isomorphic to L;
however, the lattice of maximal anti-chains with any of the previous orderings is also
a lattice, but not necessarily distributive. Now Behrendt’s theorem states that any lat-
tice (distributive or not) is isomorphic to the lattice of maximal anti-chains of certain
poset. The focus of this paper is to study the existence of a representation theorem by
using maximal anti-chains within the original lattice. For this, we rephrase Behrendt’s
theorem in terms of FCA using tomoi, and analyze possible extensions.

2 Preliminaries

Adjunctions and Galois connections. Different notions of Galois connection or ad-
junction can be found in the literature; these notions are strongly related, but do not
coincide. The transition between the two types of adjunctions (connections) relies on
using the opposite ordering in both preordered sets, whereas the transition between ad-
junctions to connections and vice versa relies on using the opposite ordering in just one
of the preordered sets. The four different types of Galois connections and adjunctions
are summarized in Table 1.

Table 1: Galois connections and adjunctions: equivalent characterizations
Galois Connections

Right-Galois Connection between A and B Left-Galois Connection between A and B
( f ,g) : A ↼⇀ B ( f ,g) : A⇁↽ B

b≤ f (a)⇔ a≤ g(b) f (a)≤ b⇔ g(b)≤ a
for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B
f and g are antitone and f and g are antitone and

g◦ f and f ◦g inflationary g◦ f and f ◦g deflationary
Adjunctions

Adjunction between A and B Co-adjunction between A and B
( f ,g) : A� B ( f ,g) : A
 B

f (a)≤ b⇔ a≤ g(b) b≤ f (a)⇔ g(b)≤ a
for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B

f and g are isotone, f and g are isotone,
g◦ f inflationary and f ◦g deflationary g◦ f deflationary and f ◦g inflationary

See [4,6] for a revision of the genesis and importance of Galois Connections and
adjunctions, as well as a discussion of the different notation and nomenclatures for these
concepts. [5] is an early tutorial with mathematical applications in mind, and [8] deals



fully on how to extend FCA with the different types of connections to provide different
“flavors” of FCA, as well as extending it to non-binary incidences.

The analysis of (in)comparability in a poset. Let 〈P,≤〉 be a poset. We say that
x,y ∈ P are comparable if x≤ y or y≤ x, and incomparable otherwise, and write x ‖ y .
The initial analysis of posets is made in terms of comparability [2].

Definition 1. Let 〈P,≤〉 be a poset, and Q⊆ P . Then
1. Q is an (order) ideal if x ∈ Q and y≤ x, then y ∈ Q .
2. Q is an (order) filter if x ∈ Q and y≥ x, then y ∈ Q .
3. ↓Q = {y ∈ P : there exists x ∈ Q with x≤ y} is called the ideal generated by Q
4. ↑Q = {y ∈ P : there exists x ∈ Q with y≤ x} is called the filter generated by Q.

We will write O(P) and F(P) to denote the sets of ideals and filters (respectively)
of 〈P,≤〉. If considered as posets, ordered by set inclusion, both are distributive lattices
and are dually-isomorphic.

Definition 2. For a poset 〈P,≤〉 and Q⊆ P define:
1. a ∈ Q is a minimal element of Q if a≥ x and x ∈ Q imply a = x .
2. a ∈ Q is a maximal element of Q if a≤ x and x ∈ Q imply a = x .

We will write Minl(Q) and Maxl(Q) to denote the set of minimal, respectively max-
imal, elements of Q.

Definition 3 ([2]). For a poset P = 〈P,≤〉, a set of pairwise incomparable elements of
P is called an anti-chain. We denote the set of anti-chains of a poset as A(P).

Definition 4. Given 〈P,≤〉 a poset, it is possible to lift the ordering structure to the
powerset 2P by defining

X ?4 Y ⇐⇒ for all x ∈ X there exists y ∈ Y such that x≤ y (1)

X 4? Y ⇐⇒ for all y ∈ Y there exists x ∈ X such that x≤ y (2)

X 4 Y ⇐⇒ X ?4 Y and X 4? Y (3)

In general ?4 and4? are both simply preordering relations in 〈2P,⊆〉. Observe that
in the set of anti-chains A(P), the relations ?4 and 4? are also antisymmetric.

There exists a relationship with the inclusion ordering of ideals and filters since
given S,T ⊆ P then S ?4 T ⇐⇒ ↓ S ⊆ ↓ T and S 4? T ⇐⇒ ↑ T ⊆ ↑ S. Because
of these equivalences, we will call ?4 as ideal containment relation and 4? as filter
containment relation.

Maximal anti-chains.

Definition 5. For a poset 〈P,≤〉, an anti-chain γ ∈ A(P) is said to be maximal if every
element of P is comparable to some element of γ .



For any subset Q ⊆ P, the set of elements of P which are comparable to some
element of Q is called the neighborhood of Q and it is denoted by l Q = ↑ Q∪↓ Q. An
anti-chain γ is maximal if and only if l γ = P. The set of maximal anti-chains of a set
is denoted as MA(P),

MA(P) = {γ ∈ A(P) | l γ = P}.

It is worth noting that the orderings ?4 and 4? coincide in MA(P).

Proposition 1 ([1]). If P is a finite poset then 〈MA(P),?4〉 is a lattice.

In [7] Reuter asserts, “Given an anti-chain A of P, the completion of A to a maximal
anti-chain is not unique but there exists a unique lowest completion.” This completion
can be described in terms of the operators below:

Definition 6. For a finite partial order 〈P,≤〉, and A,B ∈ 2P we define the highest anti-
chain complement of A, denoted A−, and the lowest anti-chain complement of B, de-
noted B−, as

·− : 2P→ 2P ·− : 2P→ 2P

A 7→ A− = max(PrlA) B 7→ B− = min(PrlB) . (4)

The analysis of incomparability by means of FCA. Due to the universal complete
lattice representation capabilities of FCA, we must expect the lattices of anti-chains to
be describable as the concept lattice of a context. The first result in this direction is due
to Wille himself [10, Proposition 1, in our notation].

Proposition 2. Let 〈P,≤〉 be an ordered set. The concepts of the context (P,P, 6≥) are
exactly the pairs (A,PrA) where A is an order ideal of P; especially

B(P,P, 6≥)∼= 〈A(P),?4〉 ∼= 〈O(P),⊆〉 B(P,P, 6≥)d ∼= 〈A(P),4?〉 ∼= 〈F(P),⊆〉

Moreover, when focusing on maximal anti-chains, we have the following isomor-
phism is credited by Reuter [7] to Behrendt [1] and Wille [10].

Proposition 3. Let P= 〈P,≤〉 be a poset. Then 〈MA(P),4〉 ∼=B(P,P, 6>) .

The proposition above states that maximal anti-chains can be obtained as a concept
lattice for a certain context. On the other hand, Behrendt’s theorem [1] is a universal
representation theorem for lattices in terms of maximal anti-chains.

Theorem 1 (Behrendt). Let L = 〈L,≤〉 be a finite lattice. Then there exists a poset
P= 〈P,≤P〉 such that |P|= 2|L|, where any chain has at most 2 elements and such that
L∼= MA(P), i.e., L is isomorphic to the lattice of maximal anti-chains of (P,≤P).

This is our starting point for the development of Formal Independence Analysis.



3 Formal Independence Analysis (FIA).

It is straightforward that the three following structures are equivalent: formal contexts,
bipartite graphs, and posets without chains with length higher than 2. As an example of
the interoperability of the three structures: given a formal context (G,M, I), a bipartite
graph can be obtained as 〈GtM, I′〉 where GtM = (G×{0})∪ (M×{1}) is the
disjoint union of G and M, and I′ is defined as (g,0) I′ (m,1) if and only if g I m. From
such a bipartite graph, a poset can be obtained with simply considering the reflexive
closure of I′. Finally, from a poset (P,≤) without chains of length higher than 2, a formal
context can be obtained by setting G and M to be, respectively, the sets of minimals and
maximals of P.

To begin with, it is worth analyzing the proof of Behrendt’s Theorem, using the
terminology of FCA. Given a finite lattice3 L = 〈L,≤〉, the proof considers another
poset (of twice the cardinality of L) whose set of maximal anti-chains is isomorphic
to L. Specifically, given L = 〈L,≤〉, the new poset is obtained as the disjoint union
LtL = L×{0,1} with the ordering relation defined as the reflexive closure of

(z1,0) I (z2,1) if and only if z1 < z2 or z1 ‖ z2 .

The isomorphism is the following: given z ∈ L is associated to the maximal anti-chain
γz = αz∪βz where

αz = {(z′,0) ∈ L | z≤ z′}= ↑ z×{0} βz = {(z′,1) ∈ L | z′ ≤ z}= ↓ z×{1}

Instead of considering γz as the union αz∪βz, one might consider the pairs (αz,βz),
which leads to the notion formal tomoi4 in a formal context.

In order to formally introduce the definition, we will use one of the alternative in-
terpretations above in order to apply the mappings ·− and ·− within a formal context
(G,M, I).

Specifically, we will consider the 2-height poset (GtM,≤) and, given α ⊆ G we
will define α− = M r lα = M r ↑ α = M r

⋃
g∈α I(g, ·), and similarly for β− given

β ⊆ M. It is not difficult to see that there is a bijection between maximal anti-chains
and pairs (α,β ) ∈ 2G×2M satisfying α− = β and β− = α .

The following example shows a subtle difference in the behaviour of the operators
of highest and lowest complement depending on whether they are applied within a poset
or within a formal context.

Example 1. Consider the following poset

1 3 5

2 4 6

On the one hand, considering the poset structure above, given α = {4}we would obtain
α− = {2,5}; on the other hand, in the interpretation within a formal context, we would
obtain α− = {5}. ut

3 But it is easy to see that the proof is also applicable to arbitrary complete lattices.
4 From greek tomos, division pl. tomoi.



Notation. The situation above suggests to introduce a specific notation in order to
avoid possible misunderstandings. Hence, we will use α∼ and β∼ to indicate that we
are assuming the construction within a formal context.

Now, the definition of a formal tomos is given as follows:

Definition 7. Given a context (G,M, I), a formal tomos is a pair (α,β ) ∈ 2G× 2M ,
such that α∼ = β and β∼ = α . The set of formal tomoi of the context (G,M, I) will be
denoted by A(G,M, I).

It is worth noting that the set of formal tomoi with the supset-subset hierarchical
ordering, denoted A(G,M, I), is isomorphic to the corresponding lattice of maximal
anti-chains. In fact, it turns out that A(G,M, I) =B(G,M, I\)d , since

α
∼ = Mr

⋃
g∈α

I(g, ·) = {m ∈M | g \I m for all g ∈ α} (5)

β∼ = Gr
⋃

m∈β

I(·,m) = {g ∈ G | g \I m for all m ∈ β} (6)

These operators adequately reflect the underlying philosophy of formal independence
analysis and, in this terminology, we can obtain the following corollary of Theorem 1:

Corollary 1 (Behrendt’s theorem in terms of tomoi). Every finite lattice is isomor-
phic to a lattice of tomoi.

Continuing this line of reasoning, we can state an analogue for tomoi of the basic
theorem of FCA as follows:

Theorem 2 (Basic theorem of formal independence analysis).
1. The context analysis phase: Given a formal context (G,M, I),

(a) The operators ·∼ : 2G→ 2M and ·∼ : 2M → 2G form a right-Galois connection
(·∼, ·∼) : (2G,⊆)↼⇀(2M,⊆) whose formal tomoi are the pairs (α,β ) such that
α∼ = β and α = β∼.

(b) The set of formal tomoi A(G,M, I) with the relation

(α1,β1)≤ (α2,β2) iff α1 ⊇ α2 iff β1 ⊆ β2

is a complete lattice, which is called the tomoi lattice of (G,M, I) and denoted
A(G,M, I), where infima and suprema are given by:

∧
t∈T

(αt ,βt) =

(⋃
t∈T

αt ,
(⋂

t∈T

βt

)
∼

∼
) ∨

t∈T

(αt ,βt) =

((⋂
t∈T

αt

)∼
∼
,
⋃
t∈T

βt

)

(c) The mappings γ : G→ A(G,M, I) and µ : M→ A(G,M, I)

g 7→ γ(g) = ({g}∼∼,{g}
∼) m 7→ µ(m) = ({m}∼,{m}∼

∼)

are such that γ(G) is infimum-dense in A(G,M, I) , µ(M) is supremum-dense
in A(G,M, I).

2. The context synthesis phase: Given a complete lattice L= 〈L,≤〉



(a) L is isomorphic to5 A(G,M, I) if and only if there are mappings γ : G→ L and
µ : M→ L such that

– γ(G) is infimum-dense in L , µ(M) is supremum-dense in L, and
– g I m is equivalent to γ(g) 6≥ µ(m) for all g ∈ G and all m ∈M.

(b) In particular, L ∼= A(L,L, 6≥) and, if L is finite, L ∼= A(M(L),J(L), 6≥) where
M(L) and J(L) are the sets of meet- and join-irreducibles, respectively, of L.

Notice that the differences between the basic theorems of FIA and FCA are due to
the fact that FCA focuses on the notion of “being related” which, in algebraic terms,
leads to complete bipartite subgraphs and, in FCA terminology, to maximal rectangles,
whereas FIA focuses on “unrelatedness”, leading to completely independent subsets.

Example 2. Figure 1.a is the tabular representation of a context which admits a non-
trivial block-diagonal form. Figure 1.b is the bipartite graph representation, where this
block structure is also apparent. If we represent the concept lattice, as in Figure 2.a,
these appear adjoined by top and bottom.

K1 a b c d e1 e2 g
1 ×
2 × ×
3a ×
3b ×
4 × × ×
5 × ×
6 ×
7

(a) Tabular representation of K1

a b c d e1 e2 g

1 2 3a 3b 4 5 6 7

(b) Bipartite graph representation of K1

Fig. 1: Equivalent representations of an example context K1 = (G,M, I). a) tabular
representation. b) bipartite graph representation.

Consider the formal context of (G,M, I), e.g. that of Figure 1.a: we would like to
find its independence lattice A(G,M, I). Note that there is an isolated object 7 and an
isolated attribute g. These are both ignored and re-introduced later. To find the meet-
irreducibles, we use the object-tomos mapping γ over the whole of G. The result of
this operation can be seen in Table 2.a. Likewise, the result of the application of the
attribute-tomos mapping µ over the whole of M can be found in Table 2.b.

Since the object-tomoi are meet-irreducible and the attribute tomoi join-irreducible,
the Dedekind-MacNeille completion using the lattice operations finds the lattice of
tomoi A(G,M, I) as seen in Figure 2.b. Note that the illustration is actually built as
B(M,G, Icd) since the SW used to represent the lattice only understand concept lat-
tices.

5 Read can be built as.



g\ γ(g) γ µ

1 {1} {b,c,d,e1,e2}
2 {2,3a,3b} {a,d,e1,e2}
3a {3a,3b} {a,b,d,e1,e2}
3b {3a,3b} {a,b,e,e1,e2}
4 {4,5,6} {a,b,c}
5 {5} {a,b,c,d}
6 {6} {a,b,c,e1,e2}

(a) Object tomoi of A(G,M, I)

m\µ(m) γ µ

a {2,3a,3b,4,5,6} {a}
b {1,3a,3b,4,5,6} {b}
c {1,4,5,6} {b,c}
d {1,2,3a,3b,5} {d}
e1 {1,2,3a,3b,6} {e1,e2}
e2 {1,2,3a,3b,6} {e1,e2}

(b) Attribute tomoi of A(G,M, I)

Table 2: Object and attribute tomoi for K1 and A(K1). Not seen are object 7, ap-
pearing in each object-tomos, and attribute g, in every attribute-tomos.

4 Generalizing the construction of tomoi to posets

We have just seen that the operators ·∼ and ·∼ on a formal context, whose definition
raised from a suitable modification of ·− and ·−. In this section, we focus on the possible
extensions of the notion of tomoi in a poset as general as possible. In the rest of the
paper, we consider a poset P= 〈P,≤〉 without infinite chains.

Proposition 4. For any Q⊆ P, the following properties hold

Minl(Q), Maxl(Q) ∈ A(P) (7)
Minl(Q)4? Q ?4Maxl(Q) (8)

We will now explore the properties of the operators of highest (resp. lowest) anti-
chain complement ·− and ·−.

Definition 8. A set Q⊆ P is said to be convex if a,b ∈ Q and a≤ p≤ b imply p ∈ Q.

Proposition 5.
1. For any convex set Q⊆ P, we have that Q = ↑Minl(Q)∩↓Maxl(Q).
2. For any Q⊆ P, the set PrlQ is convex and, therefore,

PrlQ = {p ∈ P | ∀a ∈ Q, p ‖ a}= ↑Minl(PrlQ)∩↓Maxl(PrlQ)

In addition, if we write Q‖ = PrlQ, then (·‖, ·‖) is a Galois connection in (2P,⊆).

Proof. Since P has not infinite chains, we have that Q⊆↑Minl(Q)∩ ↓Maxl(Q). By the
other side, since Q is convex, any element p ∈↑Minl(Q)∩ ↓Maxl(Q) belongs to Q.

The second item follows from the definition of lQ = ↑Q∪ ↓Q as the neighborhood
of Q. Therefore Pr lQ are those elements not related to any element in Q. Note that
Pr (↑Q∪↓Q) = (Pr↑Q)∩ (Pr↓Q) and it is convex.

Finally, for all A,B⊆ P, it easy to see that A⊆ PrlB if and only if B⊆ PrlA. ut

The following result can be obtained as a consequence of the previous propositions:



(a) Concept lattice B(G,M, I) (b) Tomoi lattice A(G,M, I)

Fig. 2: Two different lattices for context K1 = (G,M, I); in (a) the lattice of formal
concepts showing three adjoint sublattices; in (b) the lattice of formal tomoi describing
the three adjoint sublattices. Notice that object-concepts are join-irreducible in (a), but
object-tomoi are meet-irreducible in (b), and likewise mutatis mutandis for attribute-
concepts and attribute-tomoi.

Corollary 2. For anti-chains α,β ∈ A(P), we have that:
1. β− 4? α ?4 β− if and only if α− 4? β ?4 α−

2. α−− 4
? α ?4 α−

−

3. α−− 4
? α ?4 α−

−

Proof.
1. We have that β ‖ = Prlβ = ↑ β−∩ ↓ β−. Therefore, α ⊆ β ‖ if and only if β− 4?

α ?4 β−. Then, the first item is a consequence of the fact trhat (·‖, ·‖) is a Galois
connection in (2P,⊆).
Now, notice that (8) implies α− 4? α− and α− ?4 α−.

2. Since α− 4? α− ?4 α−, by the first equivalence, one has α−− 4
? α ?4 α−−.

3. Similar. ut

Note that the first item of the corollary suggests the possible structure of Galois con-
nection/adjunction of the pair operators (·−, ·−); moreover, from the second and third
items, we have α−− 4

? α ?4 α−
−. This means that the only possibility for (·−, ·−) is

to be an adjunction. Unfortunately, this is not the case, as shown in the example below.

Example 3. Given the poset P with the ordering depicted in the figure below

1 3 5

2 4

it is not the case that (·−, ·−) :
(
A(P),4?

)
�
(
A(P),?4

)
, since {1,4}− ?4 {5} holds

but {1,4}4? {5}− does not hold. ut



7

5 6

2 3 4

1

(a) Poset P= (P,≤)

〈7,∅〉

〈5,4〉 〈26,3〉 〈36,2〉

〈2,34〉 〈3,24〉 〈6,23〉

〈∅,1〉

(b) Tomoi lattice A(P)

7

56

54 236

234

1

(c) Lattice MA(P)

Fig. 3: Tomoi for an arbitrary poset and its maximal anti-chains do not always match.

Although, the operators do not form any kind of connection or adjunction, the notion
of tomos still behaves properly, in the sense that it is strongly related to maximal anti-
chains.

Proposition 6. Let α,β be anti-chains such that α− = β and β− = α . Then α ∪β is a
maximal anti-chain.

Proof. Since both α,β are anti-chains and α = Minl(Prlβ )⊆ Prlβ , it is obvious
that α ∪ β is also an anti-chain. To show that it is maximal, assume that there exists
x ∈ P which is not related to any element of α ∪ β . If x ∈ Pr lα , there exists b ∈
β = Maxl(Pr lα) such that x ≤ b, which contradicts that x ∈ Pr lβ . Analogously,
assuming that x ∈ Prlβ also yields to a contradiction. ut

The relationship, however, is not one-one, as shown in the next example.

Example 4. For poset P in Fig. 3, the function which merges the two components of
every tomos in order to obtain a maximal anti chain need not be either one-one nor onto.
The three pairs 〈26,3〉,〈36,2〉,〈6,23〉 are mapped to the same maximal anti-chain. On
the other hand, no tomos leads to the maximal anti-chain 56. ut

Since operators (·−, ·−) do not behave properly because of the previous example,
it is worth considering what happens when it is complemented with the original chain,
i.e., consider the highest and lowest completions of a chain. In both cases, they are
closure operators whose closures are, precisely, the maximal anti-chains.

Proposition 7. Let α be a chain in P
1. The mapping α 7→ α ∪α− is a closure operator in (A(P),?4) whose set of closed

elements is MA(P).



2. The mapping α 7→ α ∪α− is a closure operator in (A(P),4?) whose set of closed
elements is MA(P).

Proof. We only prove the first item, since the second is analogous.
The mapping is obviously inflationary and idempotent (the latter because for any

anti-chain α , since α ∪α− is maximal, trivially holds that (α ∪α−)
− is empty).

To show that the mapping is isotone, we first observe that, for any anti-chain α , the
highest completion α ∪α− satisfies that

↓(α ∪α
−) = Pr↑α where ↑α = {x ∈ P : a < x for some a ∈ α}.

As a consequence, α ∪α− ⊆Maxl(Pr ↑α) which implies α ∪α− = Maxl(Pr ↑α)
since α ∪α− is a maximal anti-chain.

Assume now that α1 ?4 α2 and let us show that α1∪α1
−

?4 α2∪α2
−. By Propo-

sition 6, we know that the highest completion α ∪α− is maximal for all anti-chain α ,
then α1 ∪α1

−
?4 α2 ∪α2

− if and only if α1 ∪α1
− 4? α2 ∪α2

−. Hence, let us show
that α1∪α1

− 4? α2∪α2
− or equivalently α1∪α1

− ⊆ ↓(α2∪α2
−).

Since α2 ⊆ ↑α1, then ↑α2 ⊆ ↑α1 ⊆ lα1. Therefore, Prlα1 ⊆ Pr↑α2 whence

α1
− ⊆ Prlα1 ⊆ Pr↑α2 =↓(α2∪α2

−)

On the other hand, if we suppose that x ∈ α1∩↑α2, then there exists y ∈ α2 with y < x,
but since α2 ⊆↑α1 there exists z ∈ α2 such that y < x ≤ z, which is a contradiction
because α2 is an anti-chain. Thus, α1 ⊆ Pr↑α2 =↓(α2∪α2

−) ut

5 Conclusions

In this paper we have tried to propose a new lens through which to observe the infor-
mation contained in a formal context. Instead of focusing on the hierarchical relation
between objects or attributes induced by their incidence we focus on the “unrelated-
ness” of the objects with respect to those attributes with which they are not incident.

We have named the framework that appears “Formal Independence Analysis” be-
cause it allows us to block-diagonalize formal contexts providing a means for decom-
posing them in terms of independent sub-contexts, in the sense that two independent
sub-contexts do not share common attributes nor objects. Even if the formal context
cannot be block-diagonalized the procedure still obtains joint sets of objects and at-
tributes which are mutually unrelated, which we have named formal tomoi (that is “sep-
arations”).

We have provided a fundamental theorem for Formal Independence Analysis and
an example of use based on a formal context for which the context is effectively block-
diagonalized to illustrate the possibilities of the technique.

The procedure seems to be specially interesting in data analysis where, dual to what
formal concepts can glean from data describing the existence of hierarchy, formal tomoi
would describe when data contexts—e.g. from genomics, contingency matrices, etc.—
can be broken down into parts susceptible of independent analysis.

Further work is necessary to ascertain the relationship of lattices of formal tomoi to
lattices of formal concepts, as well as to find out whether these are the only information
lenses available for formal contexts.
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