
Measuring Instability in Normal Residuated
Logic Programs: Discarding Information

Nicolás Madrid Manuel Ojeda-Aciego

Dept. Matemática Aplicada?

Univ. Málaga, Spain

Abstract. Inconsistency in the framework of general residuated logic
programs can be, somehow, decomposed in two notions: incoherence and
instability. In this work, we focus on the measure of instability of normal
residuated programs. Some measures are provided and initial results are
obtained in terms of the amount of information that have to be discarded
in order to recover stability.

1 Introduction

In many fields of automated information processing it becomes crucial to con-
sider together imprecise, uncertain or inconsistent information. Although in-
consistency is an undesirable property, it arises naturally in many real-world
problems (for instance, consider the integration of information coming from dif-
ferent sources). Anyway, the analysis of inconsistent knowledge-bases can lead
us to obtain useful information: for instance, a big number of contradictions in
the statements of a suspect of a crime with respect to the forensic evidences may
lead us to increase our confidence on his/her being the culprit; a sensor which
send data which contradict other sensors may indicate a possible malfunction.
In both cases, a good estimation of the degree of inconsistency of the data can
help us to estimate the truth-degree up to which this new information can be
safely considered.

There are several papers dealing with inconsistency in a classical logic pro-
gramming framework. For instance, [1] uses consistency restoring rules as a
means to recover whenever possible the consistency of a normal logic program;
this approach has been used in [13] to formalize negotiations dealing with incom-
plete information, preferences, and changing goals. The Answer Set Program-
ming (ASP) framework has been used to detect inconsistencies in large biological
networks [2]. Argumentation theory is a suitable framework for inconsistency to
arise. There are several non-classical approaches to ASP argumentation, some
based on possibility theory, some other based on, for instance, fuzzy set the-
ory [7, 12].

The problem of measuring the degree of inconsistency contained in a knowl-
edgebase has been already considered in the literature [4–6]. This approach shows

? Partially supported by the Spanish Ministry of Science projects TIN06-15455-C03-01
and TIN09-14562-C05-01 & Junta de Andalućıa projects FQM-2049 and FQM-5233.

that measuring the inconsistency of a knowledgebase is useful to allow for the
comparison of the inconsistency of various knowledgebases. On the other hand,
Lozinskii provided a method [8] for defining the quantity of information of a
knowledgebase in propositional logic. However, that method is not suitable when
the knowledgebase is inconsistent. Furthermore, it is certainly false that all in-
consistent knowledgebases contain the same (null) amount of information, this
is especially relevant when considering fuzzy extensions of the theory.

This work is based on the Fuzzy Answer Set Programming for residuated
logic programs defined in [9,10], in which we consider a fuzzy answer set attend-
ing to two dimensions: coherence and stability, the former is related to strong
negation, whereas the latter is related to default negation and the GL-reduct [3].
An inconsistent fuzzy program is a program without fuzzy answer sets, and this
can be due to the lack of stable models (instability) or, perhaps, to the incon-
sistency of every stable model (incoherence). This is why we talk about the two
dimensions of inconsistency. In [11] some measures of inconsistency were defined
in terms of incoherence; in this work, we aim at providing an initial step towards
the measuring the degree of instability in normal residuated logic programs.

The structure of the paper is described as follows. In Section 2 we recall
the definition of stable model. Section 3 describes the possible causes of the
instability of a residuated logic program and defines the notion of information
measure, which assigns a degree of information to any value in the truth space.
In Section 4 we define the measure of instability which establish how many
information has to be deleted from a set of rules in order to recovering the
stability in the residuated logic program.

2 Preliminaries

Let us start this section recalling the definition of residuated lattice, which fixes
the set of truth values and the relationship between the conjunction and the
implication (the adjoint condition) occurring in our logic programs.

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In the rest of the paper we will consider a residuated lattice enriched with a
negation operator, (L, ∗,←,¬). The negation ¬ will model the notion of default
negation often used in logic programming. As usual, a negation operator, over L,
is any decreasing mapping n : L → L satisfying n(0) = 1 and n(1) = 0. In the
examples, we will use the following familiy of negation operators:

nα(x) =

{
1 if x ≤ α
0 if x > α

n(x) = 1− x

Definition 2. Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal
residuated logic program P is a set of weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols.

It is usual to denote the rules as 〈p← B;ϑ〉. The formula B is usually called
the body of the rule whereas p is called its head. A fact is a rule with empty body,
i.e facts are rules with this form 〈p ← ;ϑ〉. The set of propositional symbols
appearing in P is denoted by ΠP.

Definition 3. A fuzzy L-interpretation is a mapping I : ΠP → L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈`← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(`) or,
equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules (and facts) in P.

Note that the order relation in the residuated lattice (L,≤) can be ex-
tended over the set of all L-interpretations as follows: Let I and J be two
L-interpretations, then I ≤ J if and only if I(p) ≤ J(p) for all propositional
symbol p ∈ ΠP.

Stable Models

Our aim in this section is to adapt the approach given in [3] to the normal
residuated logic programs just defined in the section above.

Let us consider a normal residuated logic program P together with a fuzzy
L-interpretation I. To begin with, we will construct a new normal program PI
by substituting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive , that is, does not contain any nega-
tion; in fact, the construction closely resembles that of a reduct in the classical
case, this is why we introduce the following:

Definition 4. The program PI is called the reduct of P wrt the interpretation I.

1 Note the overloaded use of the negation symbol, as a syntactic function in the for-
mulas and as the algebraic negation in the truth-values.

As a result of the definition, note that given two fuzzy L-interpretations I
and J , then the reducts PI and PJ have the same rules, and might only differ in
the values of the weights. By the monotonicity properties of ∗ and ¬, we have
that if I ≤ J then the weight of a rule in PI is greater or equal than its weight
in PJ .

It is not difficult to prove that every model M of the program P is a model
of the reduct PM .

Recall that a fuzzy interpretation can be interpreted as a L-fuzzy subset. Now,
as usual, the notion of reduct allows for defining a stable set for a program.

Definition 5. Let P be a normal residuated logic program and let I be a fuzzy
L-interpretation; I is said to be a stable set of P iff I is the least model of PI .

Theorem 1. Any stable set of P is a minimal model of P.

Thanks to Theorem 1 we know that every stable set is a model, therefore
we will be able to use the term stable model to refer to a stable set. Obviously,
this approach is a conservative extension of the classical approach. Note, as well,
that a residuated logic program can have infinitely many stable models.

In the following example we use a simple normal logic program with just one
rule in order to clarify the definition of stable set (stable model).

Example 1. Consider the program 〈p← ¬q ;ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ;ϑ∗¬I(q)〉 for which
the least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is a stable
model of P if and only if I(p) = ϑ ∗¬I(q) = ϑ ∗¬(0) = ϑ ∗ 1 = ϑ and I(q) = 0. �

The following example shows that stable models for a normal residuated logic
program need not exist.

Example 2. Consider the the following normal residuated logic program on the
product logic

〈p← ¬p ; 1〉

defined over the residuated lattice ([0, 1],≤, ∗P ,←P , nα) (for any α ∈ [0, 1)).
This normal residuated logic program does not have stable models. Let I be an
interpretation. The reduct w.r.t. I is either the fact 〈p ← ; 1〉 if I(p) ≤ α or
the fact 〈p ← ; 0〉 if I(p) > α. In any case, if I is a stable model then I(p) is
equal either 1 or 0. However, none of the interpretations is stable model of this
normal residuated logic program. �

The aim of this work is to study normal residuated logic programs without
any stable model by means of measures which determine how much information
one has to add or delete in order to recover at least one stable model. We start
by proposing the following definition:

Definition 6. A normal residuated logic program P is stable if and only if there
is an L-interpretation I that is a stable model of P; i.e I is the least model of PI .
Otherwise, P is called unstable.

3 Causes of instability: measures of information

Instability is an undesirable feature of a logic program. When representing knowl-
edge as a (residuated) logic program it is usual to implement rules according to
a set of external data (obtained either from sensors or from suggestion of an
expert); this data is subject to mistake and/or imprecisions, and may lead to
the following shortcomings:

– Not to include relevant information. (Missing information)
– Include information which is either false or leading to contradiction. (Excess

of information)

Any of the situations above might lead to instability. Let us further discuss this
by means of an example: the following program tries to simulate a procedure to
deduce which sports are practised by a person give some data.

r1 : 〈Football← n0.4(Basketball) ∗G LivesInSuburb ∗G AthleticBody ; 0.6〉
r2 : 〈Basketball← n0.4(Cycling) ∗G Tall ∗G AthleticBody ; 0.6〉
r3 : 〈Cycling ← n0.4(Football) ∗G Slim ∗G AthleticBody ; 0.6〉

The first rule determines that if a person with an athletic body, which lives in a
suburb and we do not know whether he practices regularly basketball, then this
person practices football frequently (the interpretation of the other two rules is
similar). These three rules do not imply any contradiction, in fact, the program
consisting of the three rules has just one stable model2 I⊥. However, if we add
the following facts

r4 : 〈AthleticBody ← ; 0.8〉 r5 : 〈LivesInSuburb← ; 1〉
r6 : 〈Tall← ; 0.7〉 r7 : 〈Slim← ; 0.8〉

the program turns out to be unstable. What are the reasons for this behaviour?
As we said above, it may be because of excess or lack of information. For the

former, excess of information can reside in any of the seven rules, it might be
that too much information is obtained by default from r1, r2 and r3. Notice that
if the weights are changed to 0.39, therefore reducing the amount of information
provided by those rules, the program would remain stable. Lack of information
is more difficult to handle, in that it is not possible to know which rules are
needed; it might be just a fact (if we include the fact 〈Football ← ; 0.5〉, the
program gets stable again), or a more complex rule or set of rules.

In this work we focus on the treatment of excess of information, and we
propose a framework to measure the instability of a program by means of the
minimum amount of information which we have to delete in order to obtain a
stable program. Our approach to reducing the amount of information provided
by a program is based of the values of the weights, since the smaller they are
the less information is produced. The key point is how to measure the amount
of information which is eliminated.

We propose to fix an operator m : L→ R+ such that:

2 I⊥ denotes the bottom element of the complete lattice of L-interpretations.

– m(x) = 0 if and only if x = ⊥
– m is monotonic

Such an operator will be called an information measure.
It is not difficult to provide examples of these operators in the unit interval

or in any finite lattice:

Example 3. Any norm || · || on the lattice ([0, 1],≤) is an information measure,
since ||x|| = 0 if and only if x = 0; and if x ≤ y then

||x|| = ||x
y
· y|| = |x

y
| · ||y|| ≤ ||y||

�

Example 4. Let (L,≤) be a finite lattice. An information measure can be defined
as follows:

m(x) = max{n : ⊥ < x1 < · · · < xn = x}

Let us check that, in fact, it is an information measure: if x 6= ⊥, then ⊥ < x,
and this implies m(x) ≥ 1. On the other hand, if x < y, then for all chain
⊥ < x1 < · · · < xn = x we have the chain ⊥ < x1 < · · · < xn = x < xn+1 = y
which has a greater length, and this implies m(x) < m(y). �

Information measures will be used to determine the amount of information
inherently contained in any element of the lattice. From now on, we will consider
that any lattice has an associated information measure.

4 Measuring instability of normal residuated programs

In this section we define an instability measure based on the amount of informa-
tion deleted from a unsatble program so that it gets stable. Contrariwise to the
classical case, in which the only form to delete information is by deleting rules
completely, in our framework we can just reduce their weights by some amount.
A specific operator will be defined for this task.

For that purpose, we need to fix a t-norm t to handle the values of L (recall
that a t-norm is a commutative and monotonic map L × L → L satisfying
t(⊥, x) = ⊥ and t(>, x) = x). Fixed such a t-norm, we can define an operator
to modify the weights of rules.

Given a normal residuated logic program P, a set {〈ri;ϑi〉}i of rules in P
and a set of values {ϕi}i we define a new general residuated logic program
OP({〈ri;ϑi〉}i, {ϕ}i) as follows:

OP({〈ri;ϑi〉}i, {ϕ}i) = (P r {〈ri;ϑi〉}i) ∪ {〈ri; t(ϑi, ϕi)〉}i

In other words, the operator OP substitutes the weight of any rule 〈rj ;ϑj〉 in the
given set by t(ϑj , ϕj).

It is not difficult to note that the resulting program has smaller weights than
the original one. The following example illustrates this fact.

Example 5. Consider the residuated lattice with negation ([0, 1],≤, ∗P ,←P , n),
and the following residuated program

r1 : 〈p← q ∗ t ∗ ¬t ; 0.7〉 r2 : 〈p← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t← s ∗ u ∗ ¬v ; 0.9〉

Assume the product t-norm (t(x, y) = x · y) as the t-norm associated to the
operator OP. Then, the program OP({r1, r4}, {0.5, 0.9}) is shown below:

r1 : 〈p← q ∗ t ∗ ¬t ; 0.35〉 r2 : 〈p← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t← s ∗ u ∗ v ; 0.81〉

Notice that the weights of rules r1 and r4 are reduced by a factor 0.5 and 0.9
respectively. �

The instability measure will be defined in terms of the amount of discarded
information needed to get stability, and this will be computed by means of an
information measure, as those introduced in Section 3, and the formula∑

i∈I

(
m(>)−m(ϕi)

)
The sum above, in some sense, measures the amount of information discarded

from the program; the lesser the values of ϕi the more information discarded,
and greater the sum. Notice as well that OP does not reduce the weights of the
program if and only if ϕi are > for all i, and the previous sum reduces to 0.

Example 6. Continuing with Example 5, if we consider in [0, 1] the information
measure induced by the Euclidean norm, then the amount of discarded informa-
tion by the use of OP({r1, r4}, {0.5, 0.9}) would be (1− 0.5) + (1− 0.9) = 0.6. �

Now, we can define the following instability measure, given a general resid-
uated logic program P and a set of rules {〈ri, ϑi〉}i ⊆ P (w.r.t. the respective
residuated logic program) as:

InstabP({〈ri, ϑi〉}i}) = inf{
∑
i∈I

m(>)−m(ϕi) : OP({〈ri, ϑi〉}i, {ϕ}i) is stable }

It is important to note that this operator needs not be defined for any set of
rules (the sum could be infinite). This is not a big problem, as that would indicate
that it is not possible to recover stability by not even discarding completely all
the rules in the set.

Example 7. On the residuated lattice with negation ([0, 1],≤,∧P ,←P , n0.4), let
us consider the following unstable logic program:3

r1 : 〈p← s ∧ ¬q ; 0.8〉
r2 : 〈q ← ¬r ∧ ¬u ; 0.8〉
r3 : 〈r ← ¬p ; 0.5〉
r4 : 〈s← ; 0.8〉
r5 : 〈t← ¬p ∧ ¬s ; 0.5〉
r6 : 〈v ← u ∧ ¬r ; 0.7〉

3 To increase readability, the subscripts P have been removed.

It is not difficult to check that this program does not have stable models. We
will use the product t-norm and the Euclidean norm in the formulas above to
measure the instability of the rules of the program. For the case of r1, one can
see that if its weight would be a value α ≤ 0.5, then the program would have a
stable model; specifically, M ≡ {(p, 0.8 ·α); (q, 0); (r, 0.5); (s, 0.8); (t, 0.4); (v, 0)}.

On the other hand, it is possible to set the weight of r1 to 0.5 using the factor
ϕ = 0.625. Therefore, the least amount of information to be discarded from r1
has to be 1 − 0.625 = 0.375. In other words, InstabP({r1}) = 0.375. Similarly,
we can obtain the instability measures for the rest of rules:

x r1 r2 r3 r4 r5 r6
InstabP({x}) 0.375 0.5 0.2 0.375 ? ?

The symbol ? for rules r5 and r6 denotes that it is impossible to get a stable
program by reducing the weights of these rules. Notice that these results state
that, in recovering stability by modifying just one rule, we need to discard much
more information from r2 than in r3. �

A couple of straightforward results about the instability measure InstabP are
presented below. The first one establishes a relationship between stable programs
and zero measure.

Proposition 1. Let P be a normal residuated logic program:

– If P is stable then InstabP(P) = 0
– If InstabP(P) = 0 then for all ε > 0 there exists a set {ϕi} ⊆ L such that
OP({〈ri;ϑi〉}i, {ϕ}i) is stable and

∑
i∈I
(
m(>)−m(ϕi)

)
< ε.

The following proposition states the antitonicity of the measure InstabP:

Proposition 2. Let P be a normal residuated logic program and let {〈ri;ϑi〉} ⊆
{〈ri;ϑi〉} be two sets of rules of P. Then:

InstabP({〈ri;ϑi〉}) ≥ InstabP({〈ri;ϑi〉})

Computing InstabP({〈ri;ϑi〉})

The aim of this section is to show that computing the value of InstabP({〈ri;ϑi〉})
is equivalent to computing the set of stable models of a specific logic program.
To facilitate the presentation, let us assume that [0, 1] is the set of truth values
and the set of rules {〈ri;ϑi〉} is a singleton.

To compute the measure of instability InstabP we have to obtain what val-
ues λ ∈ [0, 1] satisfy that OP(〈ri;ϑi〉, λ) is stable; we recall that OP(〈ri;ϑi〉, λ)
coincides with P except in the rule 〈ri;ϑi〉, which is changed by 〈ri; t(ϑi, λ)〉.
How can we introduce the parameter λ in P through propositional symbols? Let
α and β be two propositional symbols not occurring in P. Consider the following
set of rules:

〈α← ¬β ; 1〉 (1)

〈β ← ¬α ; 1〉 (2)

where the negation is the standard one n(x) = 1−x. The set of stable models of
this pair of rules is the set {Mλ ≡ (α, λ); (β, 1 − λ)}λ∈[0,1]. Notice that for any
λ ∈ [0, 1] there exists a stable model such that Mλ(α) = λ. We consider now a
new residuated logic program P? by modifying ri as follows4

r?i : 〈pi ← B ∗ t(ϑ, α) ; 1〉

and including the rules (1) and (2). Then the following proposition holds:

Proposition 3. Let P be a residuated logic program. M is a stable model of P?
if and only if M |ΠP is a stable model of OP(〈ri;ϑi〉,M(α)).

The above proposition shows that there is a univocal correspondence among
the stable model of P? and the parameters λi such that OP(〈ri;ϑi〉, λ) is stable.
Therefore we can compute InstabP({〈ri;ϑi〉}) by using the stable models of P?:

Corollary 1. Let P be a residuated logic program. Then:

InstabP(〈ri;ϑi〉) = inf{m(>)−m(M(α)) : M is a stable model of P?}

5 Conclusions

We have continued our study of fuzzy answer set semantics for residuated logic
programs by focusing on the measure of instability of normal residuated pro-
grams. Some measures have been provided and initial results have been obtained,
in terms of the amount of information that has to be discarded in order to recover
stability.

As future work, we will study the dual situation in which stability can be
recovered by adding information (as in the framework of consistency restoring
rules). In addition, we will extend this methodology to provide explanations for
inconsistencies in the data by determining minimal representations of conflicts.
In practice, this can be used to identify unreliable data or to indicate missing
reactions.

References

1. M. Balduccini and M. Gelfond. Logic programs with consistency-restoring rules.
In Intl Symp on Logical Formalization of Commonsense Reasoning, AAAI 2003,
pages 9–18, 2003.

4 Technically, the resulting rule is not residuated, but the semantics can be easily
adapted to cope with this change.

2. M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. Detecting inconsistencies
in large biological networks with answer set programming. In ICLP, volume 5366
of Lecture Notes in Computer Science, pages 130–144, 2008.

3. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of ICLP-88, pages 1070–1080, 1988.

4. J. Grant and A. Hunter. Measuring inconsistency in knowledgebases. J. Intell.
Inf. Syst., 27(2):159–184, 2006.

5. A. Hunter and S. Konieczny. Approaches to measuring inconsistent information.
In Inconsistency Tolerance, volume 3300 of Lecture Notes in Computer Science,
pages 191–236, 2005.

6. A. Hunter and S. Konieczny. Measuring inconsistency through minimal incon-
sistent sets. In Proc of Principles of Knowledge Representation and Reasoning
(KR’08), pages 358–366. AAAI Press, 2008.

7. J. Janssen, M. De Cock, and D. Vermeir. Fuzzy argumentation frameworks. In
Proc. of IPMU’08, pages 513–520, 2008.

8. E. Lozinskii. Information and evidence in logic systems. Journal of Experimental
and Theoretical Artificial Intelligence, 6:163—193, 1994.

9. N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics for residu-
ated logic programs. In Proc of WI-IAT’08. Workshop on Fuzzy Logic in the Web,
pages 260–264, 2008.

10. N. Madrid and M. Ojeda-Aciego. On coherence and consistence in fuzzy answer
set semantics for residuated logic programs. Lect. Notes in Computer Science,
5571:60–67, 2009.

11. N. Madrid and M. Ojeda-Aciego. On the measure of incoherence in extended
residuated logic programs. In IEEE Intl Conf on Fuzzy Systems (FUZZ-IEEE’09),
pages 598–603, 2009.

12. J. C. Nieves, U. Cortés, and M. Osorio. Possibilistic-based argumentation: An an-
swer set programming approach. Mexican International Conference on Computer
Science, pages 249–260, 2008.

13. T. C. Son and C. Sakama. Negotiation using logic programming with consistency
restoring rules. In IJCAI’09: Proc 21st Intl Joint Conf on Artificial intelligence,
pages 930–935. Morgan Kaufmann Publishers Inc., 2009.

