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Abstract

In this paper we use techniques for monad
compositions in order to provide a basis for
categorical unification in the framework of
generalised terms. In particular, we provide
results for many-valued sets of terms, and
show that this composition of set functors
can be extended to a monad.

1 Introduction

Several heuristic approaches have been suggested
to extend many-valued logic programming. How-
ever, the lack of a foundational base, is an obsta-
cle for a wider acceptance of these models, and
further, formal approaches typically build upon
conventional terms. Restricting to finitely many
truth values, using the framework suggested in
[12], a many-valued predicate calculus was pro-
posed in [9].

This paper is motivated by the use of categori-
cal methods in many-valued logic programming.
In particular, we generalise terms using composi-
tions of monads.

We compose set functors with the term monad
and show how such compositions can be extended
to monads. Our motivation of using monads is
given by the situation in the classical case where
most general unifiers are coequalisers in the Kleisli
category associated with the term monad [13].
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For notations and results within category theory
and universal algebra, we refer to [1, 2, 10, 11].
For a more detailed treatment of set functors used
in this paper, also including many-valued sets, we
refer to [4, 5, 6]. For a survey of many-valued
logic, see e.g. [8].

2 Monads and Kleisli categories

A monad can be seen as the abstraction of the
concept of adjoint functors and in a sense an abs-
traction of universal algebra. It is interesting to
note that monads are useful not only in univer-
sal algebra, but it is also an important tool in
topology when handling regularity, iteratedness
and compactifications, and also in the study of
toposes and related topics.

Let C be a category. A monad (or triple, or alge-
braic theory) over C is written as Φ = (Φ, η, µ),
where Φ : C → C is a (covariant) functor, and
η : id → Φ and µ : Φ ◦ Φ → Φ are natural
transformations for which µ ◦ Φµ = µ ◦ µΦ and
µ ◦ Φη = µ ◦ ηΦ = idΦ hold. A monad defined in
this way is said to be in monoid form.

Note that, for a natural transformation ξ,
(ξΦ)X = ξΦX and (Φξ)X = ΦξX . It is useful to
write ηΦ and µΦ if we need to distinguish between
natural transformations in different monads.

A Kleisli category CΦ for a monad Φ over a cat-
egory C is defined as follows: Objects in CΦ are
the same as in C, and the morphisms are defined
as homCΦ(X,Y ) = homC(X,ΦY ), that is mor-
phisms f : X ⇁ Y in CΦ are simply morphisms
f : X → ΦY in C, with ηΦ

X : X → ΦX being the
identity morphism.



Composition of morphisms is defined as

(X
f
⇁ Y ) ◦ (Y

g
⇁ Z) = X

µΦ
Z◦Φg◦f−→ ΦZ.

The Kleisli category is equivalent to the full sub-
category of free Φ-algebras of the monad, and its
definition makes it clear that the arrows are sub-
stitutions. Indeed, the categorical unification al-
gorithm in [13] is based on the Kleisli category of
the term monad.

A monad (Φ, η, µ) written as (Φ, η, ◦), where ◦ is
the composition of morphisms in the correspond-
ing Kleisli category, is said to be a monad in clone
form. In fact, there is a one-to-one correspon-
dence between monads, respectively, in monoid
and clone forms [11].

3 Set functors

3.1 The power-set monad

Let L be a completely distributive lattice. For
L = {0, 1} we write L = 2. The covariant power-
set functor Lid is obtained by LidX = LX , i.e. the
set of mappings (or L-fuzzy sets) A : X → L, and
following [7], for a morphism f : X → Y in Set,
by defining

Lidf(A)(y) =
∨
x∈X

A(x) ∧ f−1({y})(x)

=
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =

{
1 if x = x′

0 otherwise

and µX : LidLidX → LidX by

µX(A)(x) =
∨

A∈LidX
A(x) ∧ A(A).

Proposition 3.1 ([11]) Lid = (Lid, η, µ) is a
monad.

Note that 2id is the usual covariant power-set
monad P = (P, η, µ), where PX is the set of sub-
sets of X, ηX(x) = {x} and µX(B) =

⋃
B.

The problem of extending a functor to a monad
is not a trivial one, and some strange situations
may well arise as shown below. Note that the id2

functor can be extended to a monad with ηX(x) =
(x, x) and µX((x1, x2), (x3, x4)) = (x1, x4). Sim-
ilarly, idn can be extended to a monad. In ad-
dition, the proper power-set functor P0, where
P0X = PX \ {∅}, as well as id2 ◦ P0 can, respec-
tively, be extended to a monad in a unique way.
However, P0 ◦ id2 cannot be made to a monad [4].

Remark 3.1 Let Φ = (Φ, ηΦ, µΦ) and Ψ =
(Ψ, ηΨ, µΨ) be monads over Set. The composi-
tion Φ ◦Ψ cannot always be extended to a monad
as we see in the case of P0 ◦ id2.

3.2 The term monad

It is useful to adopt a more functorial presentation
of the set of terms, as opposed to using the con-
ventional inductive definition of terms, where we
bind ourselves to certain styles of proofs. Even if a
purely functorial presentation might seem compli-
cated, there are advantages when we define corre-
sponding monads, and, further, a functorial pre-
sentation simplifies efforts to prove results con-
cerning compositions of monads. Notations follow
[6], which were adopted also in [4].

For a set A, the constant set functor ASet is the
covariant set functor which assigns sets X to A,
and mappings f to the identity map idA. The
sum

∑
i∈I ϕi of covariant set functors ϕi assigns

to each set X the disjoint union
⋃
i∈I({i}×ϕiX),

and to each morphismX
f→ Y in Set the mapping

(i,m) 7→ (i, ϕif(m)), where (i,m) ∈ (
∑

i∈I ϕi)X.

Let k be a cardinal number and (Ωn)n≤k be a
family of sets. We will write Ωnid

n instead of
(Ωn)Set× idn. Note that

∑
n≤k Ωnid

nX is the set
of all triples (n, ω, (xi)i≤n) with n ≤ k, ω ∈ Ωn

and (xi)i≤n ∈ Xn.

A disjoint union Ω =
⋃
n≤k{n} × Ωn is an

operator domain, and an Ω-algebra is a pair
(X, (snω)(n,ω)∈Ω) where snω : Xn → X are n-ary
operations. The

∑
n≤k Ωnid

n-morphisms between
Ω-algebras are precisely the homomorphisms be-
tween the algebras.

The term functor can now be defined by transfi-



nite induction. In fact, let T 0
Ω = id and define

TαΩ = (
∑
n≤k

Ωnid
n) ◦

⋃
β<α

T βΩ

for each positive ordinal α. Finally, let

TΩ =
⋃
α<k̄

TαΩ

where k̄ is the least cardinal greater than k and
ℵ0. Clearly, (n, ω, (mi)i≤n) ∈ TαΩX, α 6= 0, im-
plies mi ∈ T βiΩ X, βi < α.

Note that (TΩX, (σnω)(n,ω)∈Ω) is an Ω-algebra,
if we define σnω((mi)i≤n) = (n, ω, (mi)i≤n) for
(n, ω) ∈ Ω and mi ∈ TΩX. Actually, this al-
gebra is a freely generated algebra in the cat-
egory of Ω-algebras, that is, for an Ω-algebra
B = (Y, (tnω)(n,ω)∈Ω), a morphism X

f→ Y in
Set can be extended by transfinite induction to a
Ω-homomorphism

(TΩX, (σnω)(n,ω)∈Ω)
f?−→ (Y, (tnω)(n,ω)∈Ω)

called the Ω-extension of f associated to B, by

f?|T 0
ΩX

= f for the base case, and

f?(n, ω, (mi)i≤n) = tnω((f?(mi))i≤n)

for each positive ordinal α satisfying α < k̄ and
(n, ω, (mi)i≤n) ∈ TαΩX.

A morphism X
f→ Y in Set can also be extended

to the corresponding Ω-homomorphism

(TΩX, (σnω)(n,ω)∈Ω)
TΩf−→ (TΩY, (τnω)(n,ω)∈Ω),

where TΩf is defined to be the Ω-extension of
X

f→ Y ↪→ TΩY associated to (TΩY, (τnω)(n,ω)∈Ω).

Remark 3.2 ([6]) TΩ is the least covariant set
functor which has id and (

∑
n≤k Ωnid

n) ◦ TΩ as
subfunctors.

We can now extend TΩ to a monad. De-
fine ηTΩ

X (x) = x. Further, let µTΩ
X = id?TΩX

be the Ω-extension of idTΩX with respect to
(TΩX, (σnω)(n,ω)∈Ω).

Proposition 3.2 ([11]) TΩ = (TΩ, η
TΩ , µTΩ) is

a monad.

4 Composition of monads

In the following we will show how the composition
Lid ◦ TΩ can be extended to a monad. We will
here write 2 and L instead of 2id and Lid, and T
instead of TΩ. Our constructions will make use
of the mapping σLX : TLX → LTX defined as
follows (note that we will also write σ instead of
σL for brevity):

For the base case σX |T 0LX = idLX . Further, for
l = (n, ω, (li)i≤n) ∈ TαLX, α > 0, li ∈ T βiLX,
βi < α, let

σX(l)((n′, ω′, (mi)i≤n)) =

=


∧
i≤n

σX(li)(mi) if n = n′ and ω = ω′

0 otherwise

Note that in the case of α > 0, for L = 2 we have

σX(l) = {(n, ω, (mi)i≤n) | mi ∈ σX(li)}.

Note also that, for l ∈ TLX and m ∈ TX we have
σX(l)(m) = 0, if l ∈ TαLX and m 6∈ TαX, or if
l 6∈ TαLX and m ∈ TαX.

Lemma 4.1 σ : T ◦L→ L◦T is a natural trans-
formation.

Proof: For any l ∈ TLX, and any X
f→ Y in

Set, we need to show that LTf ◦ σX(l) = σY ◦
TLf(l). For l ∈ T 0LX, this is immediate. For
α > 0, we may write l = (n, ω, (li)i≤n), where
li ∈ T βiLX, βi < α, for all i ≤ n. Let now
m = (n, ω, (mi)i≤n) ∈ TY . Then,

LTf(σX(l))(m) =

=
∨

Tf((n,ω,(mi)i≤n))=m

∧
i≤n

σX(li)(mi).

Further, by induction, we get

σY (TLf(l))(m) =
∧
i≤n

σY (TLf(li))(mi)

=
∧
i≤n

LTf(σX(li))(mi)

=
∧
i≤n

∨
Tf(mi)=mi

σX(li)(mi).



By complete distributivity of L, we then obtain
naturality of σ.

We will use this natural transformation σ in or-
der to define the natural transformations ηLT and
µLT , which provide LT with the structure of a
monad.

Definition 4.1 The natural transformations
ηLT : id → LT and µLT : LTLT → LT are
defined as follows

ηLT = ηLT ◦ ηT µLTX = LµTX ◦ µLTTX ◦ LσTX

Note that ηLTX (x) = ηLTX(x), and in the case of
L = 2 then η2T

X (x) = {x}. Further for R ∈
LTαLTX, α > 0, and m ∈ TX, note that

µLTX (R)(m) =
∨

r∈TLTX
R(r) ∧ σTX(r)(m).

and also note that in the case L = 2, for R =
{(nj , ωj , (rij)i≤nj ) | j ∈ J} ∈ 2Tα2TX, α > 0, we
have

µ2T
X (R) =

= {(nj , ωj , (mij)i≤nj ) | j ∈ J,mij ∈ σTX(rij)}

The following technical lemma gives some condi-
tions which guarantee the monad structure for the
composition LT .

Lemma 4.2 The following properties hold:

(i) σTX ◦ TηLTX = ηLTTX ◦ ηTTX ,

(ii) LµTX ◦ σTX ◦ TµLTX = µLTX ◦LµTLTX ◦ σTLTX ,

(iii) σX ◦ ηTLX = LηTX .

Note that (i) and (ii) in the case of L = 2 become

(i’) σTX(Tη2T
X (m)) = {m}, for all m ∈ TX,

(ii’) 2µTX ◦ σTX ◦ Tµ2T
X (d) =

⋃
R∈σT2TX(d)

σTX(R).

Proof: (i) This holds trivially for α = 0. In
case of α > 0, for m = (n, ω, (mi)i≤n) ∈ TX and
m′ = (n, ω, (m′i)i≤n) ∈ TX, by induction, we get

σTX(TηLTX (m))(m′) =

= σTX((n, ω, (TηLTX (mi))i≤n))(m′)

=
∧
i≤n

σTX(TηLTX (mi))(m′i)

=
∧
i≤n

ηLTX(mi)(m′i).

Since m = m′ if and only if mi = m′i for all i ≤ n,
we immediately get

ηLTX(m)(m′) =
∧
i≤n

ηLTX(mi)(m′i).

(ii) Again this holds trivially for α = 0. In case
of α > 0, let m = (n, ω, (mi)i≤n) ∈ TX and
d = (n, ω, (di)i≤n) ∈ TLTLTX. By induction
and complete distributivity of L we then have

σTX(TµLTX (d))(m) =
∧
i≤n

σTX(TµLTX (di))(mi) =

=
∧
i≤n

µLTX (σTLTX(di))(mi)

=
∧
i≤n

∨
r∈TLTX

σTLTX(di)(r) ∧ σTX(r)(mi)

=
∨

(n,ω,(ri))∈TLTX

∧
i≤n

σTLTX(di)(ri) ∧ σTX(ri)(mi)

=
∨

r∈TLTX
σTLTX(d)(r) ∧ σTX(r)(m)

= µLTX (σTLTX(d))(m).

(iii) By definition, as σX |T 0LX = idLX .

Proposition 4.1 (Lid ◦TΩ, η
Lid◦TΩ , µLid◦TΩ), de-

noted Lid •TΩ, is a monad.

Proof: We have

µLTX ◦ LTηLTX =

= LµTX ◦ µLTTX ◦ LσTX ◦ LTηLTX
= LµTX ◦ µLTTX ◦ LηLTTX ◦ LηTTX
= LµTX ◦ LηTTX = idLTX

and

µLTX ◦ ηLTLTX =

= LµTX ◦ µLTTX ◦ LσTX ◦ ηLTLTX ◦ ηTLTX
= LµTX ◦ µLTTX ◦ ηLLTTX ◦ σTX ◦ ηTLTX
= LµTX ◦ σTX ◦ ηTLTX
= LµTX ◦ LηTTX = LidTX = idLTX



Further we have the associativity of µLT

µLTX ◦ LTµLTX =
= LµTX ◦ µLTTX ◦ LσTX ◦ LTµLTX
= µLTX ◦ LLµTX ◦ LσTX ◦ LTµLTX
= µLTX ◦ LµLTX ◦ LLµTLTX ◦ LσTLTX
= µLTX ◦ LLµTX ◦ LµLTTX◦

◦ LLσTX ◦ LLµTLTX ◦ LσTLTX
= LµTX ◦ µLTTX ◦ LµLTTX◦

◦ LLσTX ◦ LLµTLTX ◦ LσTLTX
= LµTX ◦ µLTTX ◦ µLLTTX◦

◦ LLσTX ◦ LLµTLTX ◦ LσTLTX
= LµTX ◦ µLTTX ◦ LσTX◦

◦ µLTLTX ◦ LLµTLTX ◦ LσTLTX
= LµTX ◦ µLTTX ◦ LσTX◦

◦ LµTLTX ◦ µLTTLTX ◦ LσTLTX
= µLTX ◦ LµTLTX ◦ µLTTLTX ◦ LσTLTX
= µLTX ◦ µLTLTX

Note that in the proof of the proposition above,
the actual definition of the functors L and T has
not been used, only universal properties and those
stated in Lemma 4.2. We have actually proved the
following theorem

Theorem 4.1 Let Φ = (Φ, ηΦ, µΦ) and Ψ =
(Ψ, ηΨ, µΨ) be monads and let σ : Ψ◦Φ→ Φ◦Ψ be
a natural transformation such that the following
properties hold:

(i) σΨX ◦ΨηΦΨ
X = ηΦ

ΨΨX ◦ ηΨ
ΨX ,

(ii) ΦµΨ
X ◦σΨX ◦ΨµΦΨ

X = µΦΨ
X ◦ΦµΨ

ΦΨX ◦σΨΦΨX .

(iii) σX ◦ ηΨ
ΦX = ΦηΨ

X

Then Φ•Ψ = (Φ◦Ψ, ηΦΨ◦ηΨ,ΦµΨ◦µΦΨΨ◦ΦσΨ)
is a monad.

5 Conclusions and further work

We have seen how set functors can be composed to
providing monads. It is important to study more
examples, i.e. including various types of double
power-set monads. Further, it is interesting to in-
vestigate techniques for constructing new monads
from given ones.

Within the scope of many-valued logic program-
ming, it is important to further investigate the
possibilities of using categorical approaches to
unification, with variable substitutions for gen-
eralised terms being morphisms in SetΦ•TΩ

, i.e.

variable substitutions are morphisms X
f−→ ΦTY

in Set. It is expected that this approach provides
an appropriate formal framework for useful devel-
opments of generalised term based many-valued
logic programming.
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