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Abstract

This paper focuses on a twofold relational generalization of the notion of

Galois connection. It is twofold because it is defined between sets endowed with

arbitrary transitive relations and, moreover, both components of the connection

are relations, not necessarily functions. A characterization theorem of the notion

of relational Galois connection is provided and, then, it is proved that a suitable

notion of closure can be obtained within this framework. Finally, we state

a necessary and sufficient condition that allows to build a relational Galois

connection starting from a single transitive digraph and a single binary relation.

1. Introduction

Galois connections together with the equivalent (under duality) residuated

mappings constitute a useful foundational tool in semantics within several re-

search fields related to data science. From an incidence relation between a set

of objects and a set of properties, a natural Galois connection provides dually

isomorphic orders on classes of objects and sets of shared properties. This fact

has been described from different points of view in the literature. It has been
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successfully developed in Formal Concept Analysis, Learning Theory, Concep-

tual Classification, Relational or Object Databases [11, 16, 15, 21, 23, 24, 25].

Although Galois connections have been introduced a long time ago, new publi-

cations regularly appear dealing with abstract generalizations of this important

mathematical construct. At the same time, new applications are being explored,

especially in the realm of Formal Concept Analysis and the foundations of Fuzzy

Set Theory (see, for instance, [2, 7, 12, 17, 3, 20]).

In this paper, we deal with a generalization of the notion of Galois connec-

tion, more specifically, we focus on its adaptation to a fully relational setting.

Our contributions in this direction were initiated with the results in [14], where

we aimed to characterize the existence of the residual (or right adjoint, or right

part of a Galois connection) of a given mapping between sets with a different

structure; it is worth mentioning that precisely this condition of having a dif-

ferent structure is what makes the problem to be outside the scope of Freyd’s

adjoint functor theorem [22, pg. 120].

Since then, we have obtained additional results in several frameworks. For

instance, in [14], given a mapping from a (pre-)ordered set (A,≤A) into an

unstructured set B, we characterized the problem of completing the structure

of B, i.e., defining a suitable (pre-)ordering relation ≤B on B, such that there

exists a second mapping for which the pair of mappings forms an isotone Galois

connection (or adjunction) between the (pre-)ordered sets (A,≤A) and (B,≤B).

Later, in [4], we extended these results to the fuzzy framework by considering the

corresponding problem between a fuzzy preposet (A, ρA) and an unstructured

B; this work was recently further extended in [5], by assuming that equality is

expressed by a fuzzy equivalence relation, thus considering a mapping between

a fuzzy preordered structure (A,≈A, ρA) and a fuzzy structure (B,≈B).

The above-mentioned papers [4, 5] satisfactorily extend (and solve) the prob-

lem to the fuzzy setting for what concerns the domain and the range of the Galois

connection, however, in both cases, the components of the Galois connection are

(crisp) functions. Hence, the next logical extension is to consider the possibility

that those components are actually fuzzy functions. Following this idea, in [6]
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we introduced the notion of relational fuzzy Galois connection between fuzzy

preposets, in which the components of the connection are not fuzzy functions

but fuzzy relations satisfying certain conditions.

In this paper, we continue our foundational study of relational versions of

the notion of Galois connection in the crisp case by providing a twofold gen-

eralization of Galois connection whose components are crisp relations between

sets equipped with a transitive relation (T-digraphs, for short). This framework

allows to maintain a great level of abstraction without compromising the ability

to reflect the properties of closure [13]. Much to our satisfaction, such properties

allow to obtain a necessary and sufficient condition to build a relational Galois

connection starting from a single T-digraph and a single binary relation.

The key construction to develop our approach to the relational version is the

powering, which allows to lift a relation R ⊆ A × B to a relation R′ between

the powersets 2A and 2B . It is worth mentioning that although the Smyth

powering works adequately in most cases of lifting a relation to the powersets,

we have found that it has to be enriched by an additional condition in order

to be able to directly lift the notion of closure operator to the relational case.

This has suggested to consider a new ordering on the powersets that has greatly

simplified some of the proofs.

In the literature, one can find some earlier approaches to ‘relational’ versions

of the notion of Galois connection, in one sense or another related to the problem

we are dealing with in the present paper. For instance, Essential Galois bonds

between contexts, introduced by Xia [27], are related to our work in the sense

that their components are relations; this notion was later renamed as relational

Galois connection in [10], where a unifying language was developed in order to

cope with similar attempts by Domenach and Leclerc [8] and Wille [26].

The structure of this paper is the following. In Section 2, we introduce the

necessary preliminaries from the theory of relations and standard Galois connec-

tions. Then, in Section 3, we discuss the convenience of using the Smyth pow-

ering in the definition of a relational Galois connection. In Section 4, we study

some alternative characterizations of our proposed notion of relational Galois
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connection; as we will base our construction of relational Galois connection on

the corresponding generalization of closure operators, in Section 5, we introduce

closure relations and study their main properties, showing an adequate balance

between generality and preservation of properties from the standard framework.

Next, in Section 6 we expound a characterization theorem for the existence of a

right adjoint for a given relation between T-digraphs as well as its explicit con-

struction. Furthermore, the proposed characterization is validated by providing

a complete construction in order to illustrate that the mechanism works, in that

the Galois connection which can be defined is strictly relational (not necessarily

functional) and the transitive digraph induced in the codomain is not trivial.

Finally, in Section 7, we draw some conclusions and present prospects for future

work.

It is worth mentioning that, although the results are stated for Galois con-

nections, they can easily be adapted to any different ‘version’ of the notion

of Galois connection, obtained by considering the dual ordering either in the

domain or codomain of the Galois connection.

2. Preliminaries

We will work within the usual framework of (crisp) relations. Namely, a

binary relation R between two sets A and B is a subset of the Cartesian product

A × B and it can also be seen as a multivalued function R from the set A

to the powerset 2B . For an element (a, b) ∈ R, it is said that a is related

to b, and is denoted aRb. Given a binary relation R ⊆ A × B, the afterset

aR of an element a ∈ A is defined as {b ∈ B | aRb}. A binary relation R

is said to be total if aR 6= ∅ for all a ∈ A; the domain of R is defined as

dom(R) = {a ∈ A | aR 6= ∅}, the range of R is defined as rng(R) =
⋃
a∈A a

R.

Given an arbitrary set A and a preorder ≤ (reflexive and transitive relation)

on A, among several possibilities1 to lift the preorder on A to the powerset 2A

1We will use the generic term powering to refer to any lifting of a relation to the corre-
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we recall the following

X � Y ⇐⇒ for all x ∈ X there exists y ∈ Y such that x ≤ y

X b Y ⇐⇒ for all y ∈ Y there exists x ∈ X such that x ≤ y.

Note that the two relations defined above are actually preorders, which can

be identified as those used in the construction of the Hoare and Smyth power-

domains [9].

Naturally, each of the powerings above induces a particular notion of isotony,

inflation, etc. For instance, given two preordered sets (A,≤) and (B,≤),2 a

binary relation R ⊆ A×B is said to be:

• b -isotone if a1 ≤ a2 implies aR1 b aR2 , for all a1, a2 ∈ dom(R);

• b -antitone if a1 ≤ a2 implies aR2 b aR1 , for all a1, a2 ∈ dom(R).

A binary relation R ⊆ A×A is said to be:

• b -inflationary if {a} b aR, for all a ∈ dom(R);

• b -deflationary if aR b {a}, for all a ∈ dom(R);

• b -idempotent if aR◦R b aR and aR b aR◦R, for all a ∈ dom(R).

We use the prefix to distinguish the powering used in the different definitions.

Note that the definitions above consider just elements in the domain of the

relation, in the same way as for partial functions. For the sake of convenience,

and without loss of generality, we will consider hereafter that all the relations

are total.

Let R be a binary relation between A and B and S be a binary relation

between B and C. The composition of R and S is defined as follows

R ◦ S = {(x, z) ∈ A× C | there exists b ∈ B such that xRb and bSz} .

sponding powersets.
2Note that, as usual, we use the same symbol to denote both binary relations which need

not be equal.
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Observe that for a ∈ A, the afterset aR◦S can be written as
⋃
b∈aR

bS .

In the classical setting, a Galois connection between two posets is a pair of

antitone mappings whose compositions are inflationary. A well-known charac-

terization of a Galois connection (f, g) between two posets is the so-called Galois

condition

a ≤ g(b) ⇐⇒ b ≤ f(a).

Once again, in our general framework there are several possible choices, which

we will distinguish through the use of a prefix. For instance, the �-Galois

condition is

{a} � bS ⇐⇒ {b} � aR.

In previous works, we have studied the extensions obtained in terms of the

powerings� and b and the relation of the corresponding Galois condition with

the properties of antitony and inflation. We continue this line of work by focus-

ing our attention on another convenient property of classical Galois connections,

namely that their compositions are isotone, inflationary and idempotent, i.e.,

they are closure operators. The following example shows that the definition

based on the Hoare powering � does not behave satisfactorily. As a result,

hereafter, we will work essentially with the Smyth powering b.

Example 1. Consider the set of natural numbers together with the discrete

ordering given by the identity relation (N,=), and consider the relation R given

by nR = {0, . . . , n + 1}. The relation R is trivially �-antitone, and R ◦ R is

obviously�-inflationary; however, it does not make sense to consider (R,R) as

an extended Galois connection, since R◦R is not a �-closure operator (it fails

to be �-idempotent) and, hence, the �-Galois condition does not hold either.

3. Relational Galois connections between T-digraphs

As stated in the introduction, our goal is to define a relational Galois con-

nection as a pair of relations between sets with the least possible structure. Our
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general framework will be that of sets endowed with a transitive relation: we

will refer to a couple A = (A, τ), with a transitive relation τ ⊆ A × A, as a

T-digraph.

Definition 1. A relational Galois connection between two T-digraphs A and B

is a pair of relations (R,S) where R ⊆ A × B and S ⊆ B × A such that the

following properties hold:

(i) R and S are b -antitone.

(ii) R ◦ S and S ◦ R are b -inflationary.

Note that we can consider the b-extension even if the underlying relation τ

is not a preorder. In this case, the lifted relation need not be a preorder but,

anyway, it inherits the transitivity.

Observe that (R,S) is a relational Galois connection between A and B if

and only if (S,R) is a relational Galois connection between B and A. Next, we

show an example in which both R and S are proper (non-functional) relations.

Example 2. Consider A = (A, τ) where A = {1, 2, 3} and τ is the transitive re-

lation {(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}. The pair of relations (R,S) given

by the tables below constitutes a relational Galois connection between A and A.

A 2
$$ ''

3
zz

gg

1

__ ??

x xR

1 {2, 3}

2 {2}

3 {3}

x xS

1 {2, 3}

2 {2}

3 {2, 3}

Given a relation R ⊆ A×B, the direct and subdirect images of A under the

relation R define two mappings between the powersets 2A and 2B .

• Direct, Upper extension of R, denoted by R(·) : 2A → 2B , and defined as

follows:

R(X) =
⋃
x∈X

xR;
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• Subdirect, Lower extension of R, denoted by (·)R : 2A → 2B , and defined

as follows:

XR =
⋂
x∈X

xR.

Given (A, τ) and (B, τ), two relations R ⊆ A × B and S ⊆ B × A can be

extended to mappings between the corresponding powersets 2A and 2B . In this

framework, it is worth studying the possible relationship between the standard

notion of Galois connection and the notion of relational Galois connection intro-

duced above. We show that the standard notion neither implies nor is implied

by our notion of relational Galois connection.

The following example shows a relational Galois connection whose direct

extension to the powerset (with the Smyth powering) is not a classical Galois

connection.

Example 3. Let A and B be the T-digraphs shown below, and R ⊆ A×B and

S ⊆ B ×A the relations defined as follows:

A 2
$$$$
3dd
zz

4
zz

1

ZZ DD
B a

{{
b
{{

x xR

1 {a}

2 {a}

3 {a}

4 {b}

x xS

a {2, 3}

b {4}

It is straightforward to see that (R,S) is a relational Galois connection, but

its direct extension to the powersets is not a Galois connection. Observe that

{1, 4} b S({a}) = {2, 3}, however, {a} 6b R({1, 4}) = {a, b}.

The following two examples involve preordered structures as particular cases

of T-digraphs; in both cases, the depicted graphs induce the preorders via the

reflexive and transitive closure. The first example shows a relational Galois con-

nection whose subdirect extension to the powerset (with the Smyth powering)

is not a classical Galois connection.

Example 4. Let A be the preordered set induced by the graph below, and R ⊆

A×A be the relation defined as follows:
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A 4

2
))

<<

3ii

bb

1

bb <<

x xR

1 {4}

2 {2}

3 {3}

4 {1}

It is straightforward to check that (R,R) is a relational Galois connection be-

tween A and A, but its subdirect extension to the powersets is not a Galois

connection. Observe that {4} b {2, 3}R = {2}R ∩ {3}R = ∅, however, {2, 3} 6b

{4}S = {1}.

The second example shows a classical Galois connection between powersets,

whose restriction to singletons is not a relational Galois connection.

Example 5. Given the preordered set A = (A,≤), its Smyth extension and

the mapping f : 2A → 2A depicted below, the pair (f, f) is a Galois connection

between 2Ab = (2A,b) and itself.

A 2 3

1

OO

2Ab ∅

{3}

;;

{2}

OO

{2,3}

<<OO

{1}

OOOO

++
{1,2}

bb

jj

{1,3}

OO

((
Akk

OO <<

X f(X)

∅ A

{3} {1, 2}

{2} {2, 3}

{2, 3} {2}

{1} {3}

{1, 2} {3}

{1, 3} ∅

A ∅

The corresponding restriction of the above mapping between powersets to

singletons is the relation R on A given by

x xR

1 {3}

2 {2, 3}

3 {1, 2}
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The pair (R,R) is not a relational Galois connection because 2 6b 2R◦R.

4. Characterization of relational Galois connections

Having in mind the characterization of classical Galois connections between

posets, the definition of a relational Galois connection given above might be

equivalent to the corresponding Galois condition, namely:

{a} b bS ⇐⇒ {b} b aR, for all a ∈ A, and b ∈ B . (1)

However, the following example shows that Galois condition (1) does not imply

(R,S) being a relational Galois connection.

Example 6. Consider the T-digraph A and the relations R and S depicted

below.

A 2
$$ ''

3
zz

gg

1

__ ??

zz

x xR = xS

1 {3}

2 {1, 2}

3 {1, 3}

It is routine to prove that (R,S) verifies the Galois condition (1), but it does

not verify Definition 1, because, for instance, {2} 6bA {2}R◦S .

Let us introduce the following extension of a transitive relation τ to the

powersets:

X ∝ Y ⇐⇒ for all x ∈ X and for all y ∈ Y we have that x τ y .

We will later see in Section 5 that ∝ is indeed the powering to be used in order to

define the closure relation, i.e., the relational extension of the notion of closure

operator.

Remark 1. Note that ∝ neither needs to be reflexive nor transitive. Neverthe-

less, it satisfies the following weakened version of transitivity:

For any Y 6= ∅, if X ∝ Y and Y ∝ Z, then X ∝ Z . (2)

10



We will prove that the equivalence between our definition of a relational Ga-

lois connection and the Galois condition does not hold unless an extra condition

condition is assumed, as expressed in Proposition 1 below.

Definition 2. Let (A, τ) be a T-digraph and X ⊆ A. It is said that X is a

clique if X ∝ X.

Now, we can prove the following technical result.

Lemma 1. Let (A, τ) be a T-digraph and x ∈ X ⊆ A. If X is a clique then,

for all Y ⊆ A, the following statements hold:

(i) Y ∝ {x} implies Y ∝ X.

(ii) {x} ∝ Y implies X ∝ Y .

(iii) X b Y if and only if X ∝ Y .

Proof. We only prove (i), since the other items follow easily from this one. Since

X ∝ X, it holds that {x} ∝ X, which, together with Y ∝ {x} and (2), implies

Y ∝ X.

Remark 2. Note that there exists a tight relation between b and ∝, since for

all x ∈ A and all Y ⊆ A we have that

{x} b Y ⇐⇒ {x} ∝ Y .

In particular, the notions of b-inflation and ∝-inflation are equivalent and,

moreover, the corresponding versions of the Galois condition are also equivalent.

Relational Galois connections can be characterized as follows.

Proposition 1. (R,S) is a relational Galois connection between A and B iff

the following properties hold:

(i) {a} b bS iff {b} b aR for all a ∈ A and b ∈ B.

(ii) aR and bS are cliques for all a ∈ A and b ∈ B.
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Proof. Assume that (R,S) is a relational Galois connection. To prove prop-

erty (i), suppose {a} bA bS , i.e., a τ x, for all x ∈ bS . Since R is b-antitone,

we obtain xR bB aR. Thus, for all y ∈ aR there exists y′ ∈ xR such that

y′ τ y. Furthermore, as S ◦ R is b-inflationary, we have b τ y′ ∈ bS◦R. Hence,

by transitivity, b τ y, for all y ∈ aR, that is, {b} bB aR, proving one implication

of the Galois condition. The converse implication can be proved similarly.

Let us prove now that aR is a clique, that is, aR ∝ aR, for all a ∈ A. AsR◦S

is b-inflationary, it holds that {a} bA aR◦S , which means that {a} bA bS , for

all b ∈ aR. This is also equivalent, by property (i) already proven, to {b} bB aR,

for all b ∈ aR; hence aR ∝ aR. The proof of bS ∝ bS , for all b ∈ B, is similar.

Conversely, assume that properties (i) and (ii) hold. Let us prove first that

R ◦ S is b-inflationary. For all a ∈ A, given x ∈ aR◦S =
⋃
b∈aR

bS , there exists

b ∈ aR such that x ∈ bS . Since aR is a clique by hypothesis, we have that

{b} bB aR, which is equivalent to {a} bA bS . In particular, a τ x, which

proves that a bA aR◦S , for all a ∈ A. The proof that S ◦ R is b-inflationary is

similar.

Finally, instead of proving that R is b-antitone, we will prove that it is

∝ -antitone. Assume that a1 τ a2, by the previous paragraph and Remark 2, we

have that {a2} ∝ aR◦S2 . Therefore, we obtain that {a1} ∝ aR◦S2 . Now, given an

arbitrary b ∈ aR2 and a3 ∈ bS (so a3 ∈ aR◦S2 ), we have a1 τ a3, which implies

{a1} ∝ bS by Lemma 1. By our hypothesis, this is equivalent to {b} ∝ aR1 .

Therefore, aR2 ∝ aR1 .

The following result shows that our definition of b-based relational Galois

connection is equivalent to the corresponding ∝-version.

Proposition 2. (R,S) is a relational Galois connection between A and B iff

the following properties hold:

(i) R and S are ∝-antitone.

(ii) R ◦ S and S ◦ R are ∝-inflationary.
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Proof. Assume that (R,S) is a relational Galois connection, then clearly R ◦

S and S ◦ R are ∝-inflationary by Remark 2. As R is b-antitone and, by

Proposition 1, aR is a clique for all a ∈ A, Lemma 1(iii) states that R is ∝-

antitone as well (similarly for S).

The other implication is straightforward.

The crisp version of the definition of fuzzy adjunction presented in [6] sug-

gests the following property for a relational Galois connection:

a τ x ⇐⇒ b τ y, for all a ∈ A, b ∈ B, x ∈ bS and y ∈ aR . (3)

It is easy to check that (3) implies condition (1). However, the converse is

not true, as Example 6 shows because, for instance, 3 τ 3 and 3 ∈ 3S , while

3 \τ 1 and 1 ∈ 3R.

Nevertheless, we have the following result.

Proposition 3. If (R,S) is a relational Galois connection between A and B,

then property (3) holds.

Proof. Assume that (R,S) is a relational Galois connection, and consider a ∈ A,

b ∈ B, x ∈ bS and y ∈ aR, such that a τ x. By antitonicity, we have xR bA aR.

Then, for all y ∈ aR, there exists y′ ∈ xR such that y′ τ y; note that y′ ∈ bS◦R

and, by inflation, we have that b τ y′. By transitivity, we obtain that b τ y.

The other implication of (3) can be proved similarly.

The converse of Proposition 3 does not hold, as the following example shows.

Example 7. Consider the T-digraphs A, B, and the relations R and S given

as follows:
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A 2 3
zz

1

OO

$$

B a
$$

c
zz

b

OO

x xR

1 {a}

2 {b}

3 {c}

x xS

a {1}

b {1, 2}

c {3}

It is easy to check that (R,S) verifies property (3), but it is not a relational

Galois connection, because {1} ∈ 2R◦S , while 2 \τ 1, which contradicts {2} bA
2R◦S .

Once again, another characterization of a relational Galois connection can

be given in terms of property (3) if the additional clique condition is imposed.

Corollary 1. (R,S) is a relational Galois connection between A and B iff the

following properties hold:

(i) a τ x iff b τ y, for all a ∈ A, b ∈ B, x ∈ bS and y ∈ aR.

(ii) aR and bS are cliques for all a ∈ A and b ∈ B.

Proof. Consequence of Propositions 1 and 3.

It is interesting to note that the clique condition can be substituted by the

inflationary property of both compositions R ◦ S and S ◦ R. More specifically,

we have the following result.

Proposition 4. (R,S) is a relational Galois connection between A and B iff

the following properties hold:

(i) a τ x iff b τ y, for all a ∈ A, b ∈ B, x ∈ bS and y ∈ aR.

(ii) R ◦ S and S ◦ R are b -inflationary.

Proof. The definition of a relational Galois connection includes property (ii);

and Proposition 3 allows to obtain property (i).

Conversely, assume that properties (i) and (ii) hold. We will use Proposi-

tion 1 to prove that (R,S) is a relational Galois connection. To begin with, it
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is straightforward that property (i) implies the Galois condition; consequently,

we just have to prove that both aR and bS are cliques for all a ∈ A and b ∈ B.

Due to property (ii) it holds that a bA aR◦S , hence for all b ∈ aR and for

all x ∈ bS , we have that a τ x. Now, by property (i), this is equivalent to b τ y

for all y ∈ aR. Hence, aR is a clique. The proof that bS is a clique for all b ∈ B

is similar.

5. On closure relations

It is important to recall that the construction of the classical right adjoint

can be stated in terms of closure operators [13, 14]. As this has some advantages,

in this section, we elaborate on a relational approach to the notion of closure

operator and its link with the relational Galois connections, showing an adequate

equilibrium between generality and preservation of properties from the standard

framework.

Definition 3. Let (A, τ) be a T-digraph and R ⊆ A × A. The relation R is

said to be a closure relation if the following properties hold:

(i) R is ∝-inflationary.

(ii) R is ∝-isotone.

(iii) aR◦R ∝ aR for all a ∈ A.

Note that from the above definition we get that aR ∝ aR◦R for all a ∈ A,

as a consequence of R being ∝-inflationary and ∝-isotone. As a result, we

would have both aR ∝ aR◦R and aR◦R ∝ aR, i.e., R is ∝-idempotent. Hence,

condition (3) in Definition 3 can be replaced by R being ∝-idempotent.

The notion of closure relation could have been introduced as well by using

the relation b but, in this case, we should require explicitly aR to be a clique,

for all a ∈ A. In Definition 3, this condition trivially follows from R being

∝-idempotent.

Proposition 5. Let A be a T-digraph and R ⊆ A × A. The relation R is a

closure relation if and only if it satisfies the following properties:
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(i) R is b-inflationary.

(ii) R is b-isotone.

(iii) aR◦R b aR, for all a ∈ A.

(iv) aR is a clique, for all a ∈ A.

Proof. Suppose that R is a closure relation. Since ∝ is stronger than b, R is

trivially b-inflationary, b-isotone and aR◦R b aR. Moreover, aR is a clique

because R is ∝-idempotent.

Conversely, assume that R satisfies properties (i)–(iv). Firstly, R is trivially

∝-inflationary; moreover, since aR is a clique for all a ∈ A, by Lemma 1(iii),

it holds that R is b-isotone if and only if R is ∝-isotone. Let us now prove

that aR◦R is a clique: given x1, x2 ∈ aR◦R, there exist a1, a2 ∈ aR such that

xi ∈ aRi , for i ∈ {1, 2}. As aR is a clique, it holds that a1 τ a2 which implies

aR1 ∝ aR2 ; hence, x1 τ x2. Similarly, aR◦R being a clique, it is straightforward

that property (iii) is equivalent to aR◦R ∝ aR and thus, we conclude that R is

a closure relation.

The previous proposition shows that ∝ is precisely the powering that allows

to lift the notion of closure operator to the relational framework. The following

example shows that R being b-inflationary, b-isotone and b-idempotent does

not guarantee that R is a closure relation.

Example 8. Consider A = [0, 1] with the usual linear order, and R ⊆ A × A

defined by 0R = ]0, 1] and xR = [x, 1], for all x ∈ ]0, 1]. It is easy to check that

R is b-inflationary, b-isotone and b-idempotent. However, R is not a closure

relation because, for instance, 0R is not a clique.

We can now prove the following technical result, which reflects the usual

behaviour of Galois connections in the standard framework.

Lemma 2. Let (R,S) be a relational Galois connection, then aR ≈ aR◦S◦R

and bS ≈ bS◦R◦S for all a ∈ A and b ∈ B.
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Proof. Let us prove that aR ∝ aR◦S◦R and aR◦S◦R ∝ aR for all a ∈ A.

Given y ∈ aR, since S ◦ R is ∝-inflationary, we have {y} ∝ yS◦R and this,

together with aR ∝ {y} , implies aR ∝ yS◦R for all y ∈ aR. Now, by definition

of aR◦S◦R, this means that aR ∝ aR◦S◦R. Conversely, given y1 ∈ aR and

y2 ∈ aR◦S◦R, it holds that y2 ∈ xR2 , for some x2 ∈ aR◦S . Now, since R ◦ S

is ∝-inflationary, we have that a τ x2, which implies, since R is antitone, that

xR2 ∝ aR and, hence, y2 τ y1, which yields aR◦S◦R ∝ aR.

Theorem 1. Let (R,S) be a relational Galois connection between two T-digraphs

(A, τ) and (B, τ). Then, R ◦ S and S ◦ R are closure relations.

Proof. We prove that R◦S is a closure relation by using the definition, namely,

by showing that it is ∝-inflationary, ∝-isotone and ∝-idempotent. The proofs

are similar for the other composition.

i. R ◦ S is ∝-inflationary by Proposition 2.

ii. R ◦ S is ∝-isotone, i.e., if a1 τ a2, then aR◦S1 ∝ aR◦S2 , for all a1, a2 ∈ A.

Assume that a1 τ a2 and consider x1 ∈ aR◦S1 and x2 ∈ aR◦S2 . This means

that x1 ∈ bS1 and x2 ∈ bS2 , for some b1 ∈ aR1 and b2 ∈ aR2 . As R is antitone,

we obtain aR2 ∝ aR1 , hence b2 τ b1. Similarly, as S is antitone, we obtain

bS1 ∝ bS2 and x1 τ x2.

iii. Now, given two elements x1 ∈ aR◦S and x2 ∈ aR◦S◦R◦S , there exist

b1 ∈ aR and b2 ∈ aR◦S◦R such that xi ∈ bSi for i ∈ {1, 2}. By Lemma 2,

we have b1τb2 and b2τb1 which, since S is antitone, leads to bS2 ∝ bS1 and

bS1 ∝ bS2 . This shows that R ◦ S is idempotent.

To conclude this section, we introduce the corresponding notion of closure

system in our framework. First of all, given a T-digraph (A, τ) and X ⊆ A, we

denote

m(X) = {a ∈ X | a ∝ X} .

It is not difficult to check that m(X) is a clique for all X ⊆ A.
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Definition 4. Let (A, τ) be a T-digraph. A subset C ⊆ A is said to be a

relational closure system in A if m(aτ ∩ C) is non-empty, for all a ∈ A.

In order to study the properties of relational closure systems and how they

relate to closure relations in the framework of T-digraphs, we introduce the

following auxiliary notions.

Definition 5. Let A = (A, τ) be a T-digraph

• Given C ⊆ A, the reflexive kernel of C is defined as C◦ = {x ∈ C | x τ x}.

• The symmetric kernel relation on A is the relation ≈ on 2A defined as

follows3 for X,Y ⊆ A:

X ≈ Y if X ∝ Y and Y ∝ X .

Note that X ≈ Y is equivalent to x τ y and y τ x, for all x ∈ X and y ∈ Y .

The following theorem states that the notions of relational closure system

and closure relation keep being interdefinable in the framework of T-digraphs.

Theorem 2. Let (A, τ) be a T-digraph, C ⊆ A and R ⊆ A×A.

(i) If C is a relational closure system, then RC ⊆ A × A defined by aRC =

m(aτ ∩ C) is a closure relation.

(ii) If R is a closure relation, then CR =
{
x ∈ A | xR ≈ {x}

}
is a relational

closure system. Moreover, it holds that R ⊆ RCR .

(iii) If C is a relational closure system, then CRC
=
⋃
z∈C

{
x ∈ A | {x} ≈ {z}

}
.

Furthermore, it holds that C◦ ⊆ CRC
⊆ A◦.

(iv) If R is a closure relation, then aRCR = {x ∈ A | {x} ≈ aR}, for all a ∈ A.

In particular, aRCR ≈ aR, for all a ∈ A.

Proof.

3Note that ≈ depends ultimately on the relation τ .
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(i) It is obvious that RC is inflationary, since aRC ⊆ aτ . Now, in order to

prove that RC is isotone, take a1 τ a2 and xi ∈ m(aτi ∩ C) for i ∈ {1, 2}.

We have that a1 τ a2 τ x2, which implies a1 τ x2 by transitivity. Then,

x2 ∈ aτ1 ∩ C and therefore x1 τ x2, i.e., aR1 ∝ aR2 .

Let us show that RC is idempotent: for all y ∈ aRC◦RC there exists

x ∈ aRC such that y ∈ xRC . Since, by definition, aRC and xRC are

cliques, we have that x ∈ xRC , whence {x} ≈ {y}; Lemma 1 implies that

y ∝ aRC , proving that aRC◦RC ∝ aRC for all a ∈ A.

(ii) We will prove that ∅ 6= m(aτ ∩ CR) by showing that R ⊆ RCR . More

specifically, we will show that ∅ 6= aR ⊆ m(aτ ∩ CR).

Since R is inflationary, we have that aR ⊆ aτ . For any element y ∈ aR,

since R is idempotent, we have yR ≈ aR and, in particular, yR ≈ {y},

whence y ∈ CR. Consider now z ∈ aτ∩CR and let us prove that aR ∝ {z};

from a τ z, we obtain aR ∝ zR, and from z ∈ CR we deduce that aR ∝ {z}

by Remark 1.

(iii) Given x ∈ CRC
, by definition, {x} ≈ m(xτ ∩ C) = xRC ⊆ C. Then there

exists an element z ∈ C such that {x} ≈ {z}.

On the other hand, consider x ∈ A such that there exists z ∈ C with

{x} ≈ {z}. Since x τ z, we have that z ∈ xτ ∩C; now, for all y ∈ xτ ∩C,

we have z τ x and x τ y, therefore z τ y and z ∈ m(xτ ∩ C). Now, as

m(xτ ∩ C) is a clique, again by using Lemma 1, we get x ∈ CRC
.

The proof of the chain of inclusions is straightforward.

(iv) By items (i) and (ii) above, we have that RCR is a closure relation and

aR ⊆ aRCR . Then, by Proposition 5, we have that aRCR is a clique and,

therefore, for all x ∈ aRCR , we have that {x} ≈ aR.

Conversely, assuming that {y} ≈ aR, since R is isotone, we get yR ≈

aR◦R. Now, as R is idempotent, we have that aR◦R ≈ aR, hence yR ≈

{y}, which means that y ∈ CR. On the other hand, as R is inflationary,

we have that aR ⊆ aτ , which implies, by using the hypothesis, that y ∈ aτ .

Finally, let us prove that y ∈ m(aτ ∩ CR). Consider z ∈ aτ ∩ CR, which

implies that aR ∝ zR and zR ∝ {z}. This, together with the fact that

19



{y} ≈ aR, implies, by transitivity, that y τ z, as desired.

The following corollaries show some interesting properties concerning the

iteration of closure systems and closure relations.

Corollary 2. Let (A, τ) be a T-digraph, C ⊆ A be a relational closure system

and R ⊆ A×A be a closure relation.

(i) RCR = R if and only if {x} ≈ aR implies x ∈ aR for all x, a ∈ A.

(ii) CRC
= C◦ if and only if for all x ∈ A and z ∈ C, {x} ≈ {z} implies

x ∈ C.

Proof. Straightforward.

Corollary 3. Let (A, τ) be a T-digraph.

(i) Let R1,R2 ⊆ A×A be two closure relations, then

CR1
= CR2

iff R1 ⊆ RCR2
iff R2 ⊆ RCR1

.

(ii) Let C1, C2 ⊆ A be two relational closure systems, then RC1 = RC2 iff

C◦1 = C◦2 .

(iv) Let R ⊆ A×A be a closure relation, then CRCR
= CR.

(iii) Let C ⊆ A be a relational closure system, then RC = RCRC
iff CRC

⊆ C.

Proof.

(i) Note that aR1 ⊆ aRCR2 = {x ∈ A | {x} ∝ aR2} for all a ∈ A is equivalent

to aR1 ≈ aR2 for all a ∈ A. From the definition of CRi and transitivity, it

is straightforward that aR1 ≈ aR2 for all a ∈ A if and only if CR1
= CR2

.

(ii) RC1
⊆ RC2

implies C◦1 ⊆ C◦2 because, for all x ∈ C◦1 , we have x τ x, hence

it holds that x ∈ m(xτ ∩ C1) ⊆ m(xτ ∩ C2) and, therefore, x ∈ C◦2 .

Assume that C◦1 = C◦2 and let us prove that aRC1 ⊆ aRC2 for all a ∈ A.

If x ∈ m(aτ ∩ C1), then we have that a τ x τ x and x ∈ C◦1 . Therefore,
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by hypothesis, x ∈ C◦2 ⊆ C2. In addition, for all z ∈ aτ ∩ C2 and all

y ∈ m(aτ ∩ C2), we have that y τ z. Now, since y ∈ C◦2 = C◦1 , we have

that x τ y τ z. Therefore, x ∈ m(aτ ∩ C2) = aRC2 .

(iii) Following item (i), we have CRCR
= CR if and only if RCR ⊆ RCR , which

trivially holds.

(iv) It is straightforward from Theorem 2(iii) and item (ii) above.

The following examples show that neither CRC
⊆ C nor C ⊆ CRC

hold in

general for a given relational closure system C ⊆ A.

Example 9. Consider A = {1, 2} and the relation

τ 2
zz

1

OO

For the relational closure system C = {1, 2}, we have that RC = {(1, 2), (2, 2)}

and C 6⊆ CRC
= {2}.

Example 10. Consider A = {1, 2, 3, 4} and the relation

τ 2
$$ ''

3
zz

gg 4
zz

1

__ ??

The subset C = {3, 4} is a relational closure system, and it is routine to prove

that CRC
= {2, 3, 4} and CRC

6⊆ C.

6. Closure-based construction of relational Galois connections be-

tween T-digraphs

In this section, we introduce a necessary and sufficient condition to build

a relational Galois connection given a T-digraph and a binary relation. The

construction is given in terms of relational closure systems, following the line

of [13].
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Theorem 3. Let A = (A, τ) be a T-digraph and R ⊆ A×B be a relation. Then

there exists a transitive relation τ ′ on B, and a relation S ⊆ B × A such that

(R,S) is a relational Galois connection between (A, τ) and (B, τ ′) if and only if

there exists a relational closure system C ⊆ A such that the following condition

holds:

if aR1 ∩ aR2 6= ∅ then aτ1 ∩ C = aτ2 ∩ C. (4)

Proof. Assume that there exists a transitive relation τ ′ on B, and a relation

S ⊆ B×A such that (R,S) is a relational Galois connection between (A, τ) and

(B, τ ′). From Theorems 1 and 2(ii), we have that CR◦S =
{
x ∈ A | xR◦S ≈

{x}
}
⊆ A is a relational closure system.

Let us now prove that condition (4) holds. Consider a1, a2 ∈ A such that

aR1 ∩aR2 6= ∅ and x ∈ aτ1∩ CR◦S . Then, a1 τ x, which implies xR ∝ aR1 . For any

element b ∈ aR1 ∩ aR2 , it holds that xR ∝ {b}. By Proposition 1, we have that

aR2 is a clique and, by applying Lemma 1, we obtain xR ∝ aR2 . Therefore, for

all y ∈ xR, we have {y} ∝ aR2 , which is equivalent to {a2} ∝ yS . Since y ∈ xR,

on the one hand, by definition, yS ⊆ xR◦S ; on the other hand, x ∈ CR◦S

implies xR◦S ∝ {x}, hence, yS ∝ {x} which implies a2 τ x. This proves that

x ∈ aτ2 ∩ CR◦S .

Conversely, assume now that there exists a relational closure system C ⊆ A

that satisfies condition (4). In order to construct the relations S ⊆ B × A and

τ ′ on B, we fix an arbitrary element a0 ∈ A; by the axiom of choice, there exists

a mapping ξ : B → A such that the following condition holds:

If b /∈ rng(R) then ξ(b) = a0, otherwise b ∈ ξ(b)R . (5)

The relation S ⊆ B ×A is defined as follows:

bS = m(ξ(b)τ ∩ C) = ξ(b)RC . (6)

The definition of S does not depend on the choice of the mapping ξ, because if

b ∈ aR1 ∩ aR2 , then condition (4) guarantees that aτ1 ∩ C = aτ2 ∩ C. Note that S

is total because C is a relational closure system.
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We now define the relation τ ′ as follows:

b1τ
′b2 iff bS2 ∝ bS1 . (7)

Let us prove that τ ′ is transitive: if b1τ
′b2 and b2τ

′b3 it holds that bS2 ∝ bS1 and

bS3 ∝ bS2 . By Remark 1, we obtain bS3 ∝ bS1 .

To show that (R,S) is a relational Galois connection, we will check the

conditions of Proposition 1. By definition of S, see (6) above, trivially bS is a

clique for all b ∈ B. In addition, taking into account the definition of τ ′ and the

fact that bS is a clique, we have that aR is a clique for all a ∈ A.

Now, we just have to prove the Galois condition. Assume that {a} ∝ bS , and

let us prove {b} ∝ aR which, by (7), is equivalent to aRC ∝ bS . From a ∝ bS ,

we have that a τ x for all x ∈ bS , and by isotonicity of RC (Theorem 2) we

have aRC ∝ xRC . Now, since x ∈ xRC , we have aRC ∝ bS . Conversely, suppose

b ∝ aR, i.e., for any y ∈ aR, it holds that yS = m(aτ ∩ C) ∝ bS . Observe that

for any z ∈ m(aτ ∩ C), we have a τ z and z ∝ bS . By transitivity, {a} ∝ bS .

In the rest of the section, we conclude the validation of the characteriza-

tion by showing a situation in which the relation obtained is not necessarily

functional, and the transitive digraph induced in the codomain is not trivial.

Consider the sets A = {a, b, c, d, e} and B = {1, 2, 3}, and T-digraph (A, τ)

and the relation R ⊆ A×B where τ and R are defined below:

(A, τ) e
zz

d

??

$$ ''
c

OO

zz
gg

b

OO @@

a

__

zz

OO

x xR

a {1, 2}

b {2}

c {1}

d {1, 2}

e {3}

It is straightforward to check that C = {c, d, e} is a relational closure system
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(namely m(zτ ∩C) 6= ∅ for all z ∈ A). It is also clear that if zR1 ∩ zR2 6= ∅ then

zτ1 ∩ C = zτ2 ∩ C.

For the construction of S we choose ξ(1) = ξ(2) = a and ξ(3) = e, and we

obtain 1S = 2S = {c, d} and 3S = {e}.

Finally, the construction of τ ′ is done by the equivalence xτ ′y ⇐⇒ yS ∝ xS ,

and we obtain 1τ
′

= 2τ
′

= {1, 2} and 3τ
′

= {1, 2, 3}.

(B, τ ′) 1
$$ ''

2
zz

gg

3
$$

OO @@

x xS

1 {c, d}

2 {c, d}

3 {e}

Certainly, as a result we obtain that (R,S) is a relational Galois connection

between the original T-digraph (A, τ) and the construted T-digraph (B, τ ′).

7. Conclusions and future extensions

There are a number of possible options to extend the notion of a Galois

connection to a relational setting, and choosing the most adequate one requires

a trade-off between generality and preservation of properties from the standard

framework. In this work, our first contribution has been the definition of the

notion of relational Galois connection between transitive digraphs. We have

shown the convenience of using the Smyth powering in the definition of a rela-

tional Galois connection since in this case both compositions generate closure

relations. Secondly, some alternative characterizations have been obtained in

terms of the relation ∝ which turns out to be the adequate one to straight-

forwardly lift the notion of closure operator to the relational case. The main

contribution of this paper is the characterization theorem of the existence of a

right adjoint for a given relation between T-digraphs, together with a explicit

construction of this right adjoint. A validating example has been included in

order to illustrate the construction.
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As stated in the introduction, this paper is a two-fold extension of [4, 5, 6],

because we characterize the existence of the residual (or right adjoint, or right

part of a Galois connection) of a given (crisp) relation between a T -digraph

and an unstructured set. Moreover, it is also an extension of the approaches

developed in [27, 10, 8, 26] where some attempts were made in order to deal

with relations instead of functions.

The results in this paper can be further extended, firstly, by considering fuzzy

T-digraphs, and maintaining the (crisp) relation; and also by considering fuzzy

T-digraphs, and a fuzzy relation. These generalizations will pave the way to new

approaches to Formal Concept Analysis based on the new alternative definitions

of relational Galois connection. Last but not least, this approach could also

contribute to further advances in the study of generalized Chu correspondences,

in order to use the approach given in [18] to analyze more structures related to

quantum logics, such as those in [1, 19].
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[12] F. Garćıa-Pardo, I. Cabrera, P. Cordero, and M. Ojeda-Aciego. On Ga-

lois connections and soft computing. Lect. Notes in Computer Science,

7903:224–235, 2013.
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