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Abstract

Several papers relate different alternative approaches to classical concept lattices: such
as property-oriented and object-oriented concept lattices and the dual concept lattices.
Whereas the usual approach to the latter is via a negation operator, this paper presents
a fuzzy generalization of the dual concept lattice, the dual multi-adjoint concept lattice,
in which the philosophy of the multi-adjoint paradigm is applied and no negation on the
lattices is needed.
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1. Introduction

The field of formal concept analysis (FCA), introduced by Wille in a crisp context
some thirty years ago [36], has become an important and appealing research topic both
from the theoretical perspective [26, 35] and from the applicative one [29, 30, 33]. This
work is more focused on advances in the theory of fuzzy formal concept analysis than in
practical applications.

Concerning generalizations of the initial approaches, based on classical boolean logic,
many extensions have been developed [1–3, 7, 13, 17, 21, 31, 32]. In the framework of
fuzzy FCA, multi-adjoint concept lattices, were introduced [27] as a new general approach
to formal concept analysis, in which the philosophy of the multi-adjoint paradigm is ap-
plied (see [28] for more information). With the idea of providing a general framework
in which different fuzzy approaches could be conveniently accommodated, the authors
worked in a general non-commutative environment; and this naturally leads to the con-
sideration of adjoint triples as the main building blocks of a multi-adjoint concept lattice.

In relation to knowledge representation and knowledge discovery in relational infor-
mation systems, some extensions have related FCA to rough set theory, introducing
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different frameworks for formal concept analysis based on rough set theory instead of on
classical set theory [9, 34].

Recently, the philosophy of the multi-adjoint paradigm has been used to present a
fuzzy generalization of property-oriented concept lattices and of object-oriented concept
lattices [24, 25].

This work focuses on another interesting extended framework for formal concept
analysis: the dual formal concept lattice introduced in [9], which is built using the dual
sufficiency modal operator. This paper presents a generalization of the dual formal con-
cept lattice. The proposed approach is interesting in that, to the best of our knowledge,
the construction of dual concept lattices is made by assuming a negation operator on the
carrier set. The multi-adjoint paradigm is adapted to this new environment and provides
the construction of dual multi-adjoint concept lattices without the need of negations oper-
ators and, as usual in the multi-adjoint framework, the carriers can be arbitrary complete
lattices, different adjoint triples can be assumed, etc.

The proposed multi-adjoint environment provides a new point of view to obtain infor-
mation from databases with incomplete information (in the sense of lack of information)
and/or imprecise (in the sense of inaccurate) information, which will give more flexibility
than the existing procedures. In particular, it is shown that a construction of concept
lattices is possible in terms of interior operators, thus providing an approach to the con-
struction based on an alternative type of operators (in difference to previous approaches
in which at least one composition of the derivation operators leads to a closure). Appli-
cations and practical examples on this framework will be studied further.

This paper is structured as follows: a summary of formal concept analysis and deriva-
tion operators is introduced in Section 2. Later, Section 3 recalls the main computation
operators, the adjoint triples, and a general and flexible fuzzy concept lattice structure,
the multi-adjoint concept lattices; the “dual” of this structure that embeds the crisp defi-
nition given in [9] is presented in Section 4. Finally, the paper ends with some conclusions
and prospects for future work.

2. Recalling derivation operators in the crisp case

Formal concept analysis considers a set of attributes A, a set of objects B and a crisp
relation between them R : A × B → {0, 1}, where, for each a ∈ A and b ∈ B, we have
that R(a, b) = 1, if a and b are related, or R(a, b) = 0, otherwise. We will also write
aRb when R(a, b) = 1. The triple (A,B,R) is called a formal context and the classical
derivation operators4 4 : 2B → 2A, 4 : 2A → 2B , are defined for each X ⊆ B and
Y ⊆ A as follows:

X4 = {a ∈ A | for all b ∈ X, aRb} = {a ∈ A | if b ∈ X, then aRb} (1)

Y 4 = {b ∈ B | for all a ∈ Y, aRb} = {b ∈ B | if a ∈ Y, then aRb} (2)

These operators are so-called sufficiency operators [16], although in order to distinguish
on which carriers are defined, they are also called the extent and intent mappings, re-
spectively.

4Ganter and Wille used originally the notation ′ for this operator, hence the name. Note that we
change the notation so that it fits that used in the generalizations.
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Given a context (A,B,R), a concept in (A,B,R) is defined to be a pair (X,Y ), where
X ⊆ B, Y ⊆ A, satisfying that X4 = Y and Y 4 = X. The element X of the concept
(X,Y ) is the extent and Y the intent.

The set of concepts in a context (A,B,R) is denoted as B(A,B,R) and it is a complete
lattice [15], with the inclusion ordering on the left argument or the opposite of the
inclusion ordering on the right argument, that is, given (X1, Y1), (X2, Y2) ∈ B(A,B,R),
we have that (X1, Y1) ≤ (X2, Y2) if X1 ⊆ X2 (or, equivalently, Y2 ⊆ Y1).

The most important feature of the mappings 4 : 2B → 2A and 4 : 2A → 2B , is that
they form a Galois connection.

Proposition 1. Given a formal context (A,B,R) and the mappings 4 : 2B → 2A and
4 : 2A → 2B, defined above, the pair ( 4, 4) is a Galois connection between P1 and P2,

that is:

1. 4 : 2B → 2A and 4 : 2A → 2B are order-reversing.

2. X ⊆ X44, for all X ⊆ B.

3. Y ⊆ Y 44, for all Y ⊆ A.

These definitions of extent and intent operators are the original ones provided by Gan-
ter and Wille, but other possibilities have been explored, still within a crisp framework,
in areas such as qualitative data analysis [14, 16], crisp rough set theory [37], fuzzy rough
set theory [8, 23]. Considering the sets A, B, and a crisp relation R : A × B → {0, 1},
the derivation operators π : 2B → 2A, N : 2B → 2A, ∇ : 2B → 2A are defined, for each
X ⊆ B, as:

Xπ = {a ∈ A | there exists b ∈ X, such that aRb}
XN = {a ∈ A | for all b ∈ B, if aRb, then b ∈ X}
X∇ = {a ∈ A | there exists b ∈ Xc, such that aRcb}

where Xc is the complement of X, and Rc is the complement relation of R. These
operators are called possibility, necessity and dual sufficiency operators, respectively.
Analogously, abusing of notation, we can define the mappings: π : 2A → 2B , N : 2A →
2B and ∇ : 2A → 2B .

The derivation operators introduced above can be paired in several ways to form
either new Galois connections or closure operators [9, 14–16, 36] so that different concept
lattices are obtained: the property-oriented concept lattice, object-oriented concept lattice
and dual formal concept lattice.

It is easy to see that the dual sufficiency operator satisfies X∇ = ((Xc)4)c, for each
X ⊆ B, therefore it can be expected that formal concept lattices arising from these
operators should be related. In the rest of the paper we will focus on this relation, but
in the more general framework of multi-adjoint concept analysis.

3. Adjoint triples and multi-adjoint concept lattices

This section recalls the necessary definitions from multi-adjoint concept analysis,
specifically, the multi-adjoint concept lattice as well as its main building blocks, the
adjoint triples [27]. These triples are a generalization of the well-known t-norm and its
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residuated implication satisfying the adjointness property [18, 19]. A triple is obtained
since we do not assume that the conjunctors verify the commutative property. This
directly provides two different ways of applying the adjointness property, depending on
which argument is fixed.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3,↙ : P3×
P2 → P1,↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint triple with respect
to P1, P2, P3 if:

1. & is order-preserving in both arguments.
2. ↙ and ↖ are order-preserving on the first argument and order-reversing on the

second argument.
3. Adjointness property: x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where
x ∈ P1, y ∈ P2 and z ∈ P3.

Note that, in fact, properties (1) and (2) hold as a consequence of the adjointness prop-
erty.

For example, the usual pairs formed by a t-norm and its residuated implication can
be seen as “degenerate” examples of adjoint triples. As a t-norm is commutative, we
have that ↙ = ↖ and (both) coincide with the residuated implication.

The approach based on adjoint triples is justified from the actual applications, in
fact, when one learns a conjunctor from data given from examples [10, 11, 38] it is quite
possible that the conjunctor so-obtained turns out to be non-commutative and, thus, two
adjoint implications arise.

The following definition presents the basic structure which allows the existence of
several adjoint triples for a given triplet of lattices.

Definition 2. A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for all i =
1, . . . , n, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .
Multi-adjoint frames are denoted (L1, L2, L,&1, . . . ,&n).

Considering a multi-adjoint frame, a multi-adjoint context is a tuple consisting of
a set of objects, a set of attributes and a fuzzy relation among them; in addition, the
multi-adjoint approach also includes a function which assigns an adjoint triple to each
object (or attribute).

Definition 3. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is a tuple
(A,B,R, σ) such that A and B are non-empty sets (usually interpreted as attributes and
objects, respectively), R is a P -fuzzy relation R : A × B → P and σ : B → {1, . . . , n} is
a mapping which associates any element in B with some particular adjoint triple in the
frame.

Given a multi-adjoint frame and context, the mappings ↑ : LB2 −→ LA1 and ↓ : LA1 −→
LB2 are defined, for all g ∈ LB2 and f ∈ LA1 , as:

g↑(a) = inf1{R(a, b)↙σ(b) g(b) | b ∈ B} (3)

f↓(b) = inf2{R(a, b)↖σ(b) f(a) | a ∈ A} (4)
4



These definitions generalize the classical ones given in (1), (2), and can be seen as further
extensions of the fuzzy ones given in [4, 20]. Moreover, these two arrows generate a Galois
connection.

A multi-adjoint concept is a pair 〈g, f〉 such that g ∈ LB2 , f ∈ LA1 and satisfying that
g↑ = f and f↓ = g; with (↑, ↓) being the Galois connection defined above. The set of all
multi-adjoint concepts is called multi-adjoint concept lattice.

Definition 4. The multi-adjoint concept lattice associated to a multi-adjoint frame (L1, L2, P,&1, . . . ,&n)
and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equivalently
f2 �1 f1).

The pair (M,�) is indeed a complete lattice with supremum and infimum operators
defined as follows

inf{〈gi, fi〉 | i ∈ I} = 〈inf2{gi | i ∈ I}, (sup1{fi | i ∈ I})↓↑〉 (5)

sup{〈gi, fi〉 | i ∈ I} = 〈(sup2{gi | i ∈ I})↑↓, inf1{fi | i ∈ I}〉 (6)

4. Dual multi-adjoint concept lattice

We stated in Section 2, that the operator ∇ can be obtained from the 4 operator,
as X∇ = ((Xc)4)c, for all X ⊆ B. In this section, our aim is to introduce an adequate
fuzzy extension of the operators involved in the previous equality. As we will rely on
our previous definition of fuzzy sufficiency operator [27], our main task is to choose a
convenient fuzzy extension of the dual sufficiency operator. In [12] a fuzzy extension
of the dual sufficiency operator is introduced, but they make explicit use of a negation
operator (defined on an underlying residuated lattice). As negation is somehow connected
to the notion of duality, our aim here is to found the construction on this connection in
order to avoid as much syntactic sugar as possible.

First of all, we need to recall the definition and notation of dual ordering. Given a
set P and an ordering relation ≤ on P , the dual ordering of ≤ is the relation ≤∂ , defined
as x1 ≤∂ x2 if and only if x2 ≤ x1, for all x1, x2 ∈ P . Usually, we will write P instead
of the partially ordered set (P,≤), similarly we will write P ∂ instead of (P,≤∂), and we
will say that P ∂ is the dual of P .

Now, the notions of frame and context in this new environment must be defined.

Definition 5. A dual multi-adjoint frame, denoted (L1, L2, P,&1, . . . ,&n)∂ , is defined
in terms of two complete lattices (L1,�1) and (L2,�2), a poset (P,≤), and adjoint triples
(&i,↙i,↖i) with respect to L∂1 , L

∂
2 , P , for all i = 1, . . . , n. That is, a dual multi-adjoint

frame is a (standard) frame (L1, L2, P,�∂1 ,�∂2 ,≤,&1, . . . ,&n).
The notion of context is exactly that given in the previous section.

From now on, we will fix a dual multi-adjoint frame, (L1, L2, P,&1, . . . ,&n)∂ and
context, (A,B,R, σ), in order to introduce the mappings which will build the dual multi-

adjoint formal concept lattice, ↑∇ : LB2 → LA1 and ↓∇
: LA1 → LB2 .
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The mappings ↑∇ : LB2 → LA1 and ↓∇
: LA1 → LB2 are defined, given g : B → L2,

f : A→ L1, as

g↑∇(a) = sup1{R(a, b)↙σ(b) g(b) | b ∈ B}
f↓

∇
(b) = sup2{R(a, b)↖σ(b) f(a) | a ∈ A}

where sup1, sup2 are the supremum operators on L1 and L2, respectively.
It is worth to note that the previous definition is not just a change of infima by

suprema in (3) and (4), since in that framework the adjoint triple is considered with
regard to L1, L2 and P and in this case the triple is considered with regard to L∂1 , L

∂
2

and P . Hence, the implications in equalities (3) and (4) are not those used here.
The following result shows that the definitions just introduced provide an equality

very similar to that of the classical case.

Proposition 2. The mappings ↑∇ : LB2 → LA1 and ↓∇
: LA1 → LB2 satisfy that g↑∇ =

((g∂)↑)∂ , f↓
∇

= ((f∂)↓)∂ , for all g ∈ LB2 , f ∈ LA1 , where g∂ : B → L∂2 and f∂ : A→ L∂1 ,
respectively, map elements exactly as g and f (but their codomain is the opposite lattice);
and the mappings ↑ and ↓ are defined by Equations (3) and (4).

Proof. By applying the definition of ↑ : (L∂2 )B → (L∂1 )A, ↓ : (L∂1 )A → (L∂2 )B as in
Equations (3) and (4), we get

(g∂)↑(a) = inf∂1{R(a, b)↙σ(b) g∂(b) | b ∈ B}
(f∂)↓(b) = inf∂2{R(a, b)↖σ(b) f

∂(a) | a ∈ A}

where we recall that (&i,↙i,↖i) are adjoint triples on L∂1 , L∂2 and P , and inf∂1 , inf∂2 are
the infimum operators on L∂1 and L∂2 , respectively.

Finally, a new dualization step transforms the infima on L∂i into suprema on Li.

The next result shows some properties of the mappings ↑∇ , ↓∇
.

Proposition 3. 1. ↑∇ : LB2 → LA1 and ↓∇
: LA1 → LB2 are order-reversing.

2. ↑∇↓∇
: LB2 → LB2 , ↓∇↑∇ : LA1 → LA1 are interior operators.

3. g↑∇↓∇↑∇ = g↑∇ , f↓
∇↑∇↓∇

= f↓
∇

, for all g ∈ LB2 , f ∈ LA1 .

Proof. Consider g1, g2 ∈ LB2 such that g1 �2 g2, then g∂2 �∂2 g∂1 . Applying ↑, we obtain

(g∂1 )↑ �∂2 (g∂2 )↑, which is equivalent to ((g∂2 )↑)∂ �2 ((g∂1 )↑)∂ , that is g↑∇
2 �2 g

↑∇
1 . Thus,

↑∇ is order-reversing. The proof for ↓∇ follows similarly.

Now, we will prove that ↑∇↓∇
is an interior operator, the other composition can be

proved analogously.

Given g ∈ LB2 , as ↑↓ is a closure operator, we have that g∂ �∂2 (g∂)
↑↓

, that is equivalent

to ((g∂)
↑↓

)∂ �2 g, therefore

g↑∇↓∇
= (((g↑∇)∂)↓)∂ = (((((g∂)

↑
)∂)∂)↓)∂ = ((g∂)

↑↓
)∂ �2 g

Property (3) follows directly from Property (2).

6



As a consequence of the previous result, the pair (↑∇ , ↓
∇

) is not a Galois connection

but satisfies that ↑∇↓∇
and ↓∇↑∇ are interior operators, and this is enough to form a

concept lattice.

Definition 6. 1. A dual concept is a pair 〈g, f〉 such that g ∈ LB2 , f ∈ LA1 and the

equations g↑∇ = f and f↓
∇

= g hold.

2. Given a dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n)∂ and a context (A,B,R, σ),
a dual multi-adjoint concept lattice is the pair (M∇,≤∇), where

M∇ = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑∇ = f, f↓
∇

= g}

is the set of dual concepts, and ≤∇ is the order defined 〈g1, f1〉 ≤∇ 〈g2, f2〉 if and
only if g1 �2 g2 (or, equivalently, f2 �1 f1).

As (↑∇ , ↓
∇

) is not a Galois connection, the proof that (M∇,≤∇) is indeed a complete
lattice does not follow the usual approach. In order to prove this fact, we will consider
an auxiliary multi-adjoint concept lattice.

The dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n)∂ provides adjoint triples (&i,↙i

,↖i) defined on L∂1 , L∂2 and P . Therefore, we can consider a standard multi-adjoint
concept with respect to the Galois connection (↑, ↓) as a pair 〈g∂ , f∂〉, where g∂ ∈ (L∂2 )B

and f∂ ∈ (L∂1 )A, and verifying (g∂)↑ = f∂ and (f∂)↓ = g∂ . Hence, the following set

M′ = {〈g∂ , f∂〉 | if 〈g∂ , f∂〉 is a multi-adjoint concept}

endowed with the ordering relation, (g∂1 , f
∂
1 ) ≤ (g∂2 , f

∂
2 ) if and only if g∂1 �∂2 g∂2 (or,

equivalently, f∂2 �∂1 f∂1 ) is a complete lattice.
The following proposition relates the concept lattice above to dual multi-adjoint con-

cept lattices, justifying why the name of “dual multi-adjoint concept lattice” has been
considered for this new construction.

Proposition 4. Let (L1, L2, P,&1, . . . ,&n)∂ be a dual multi-adjoint frame, (A,B,R, σ)
a context and (M′,≤), (M∇,≤∇) as defined above. Then, 〈g, f〉 ∈ (M∇,≤∇), if and
only if 〈g∂ , f∂〉 ∈ (M′,≤). Moreover, given 〈g1, f1〉, 〈g2, f2〉 ∈ (M∇,≤∇) we obtain that
〈g1, f1〉 ≤∇ 〈g2, f2〉 if and only if 〈g∂2 , f∂2 〉 ≤ 〈g∂1 , f∂1 〉.

Proof. Given 〈g, f〉 ∈ (M∇,≤∇), then f = g↑∇ = ((g∂)↑)∂ , and, by duality, we have
f∂ = (((g∂)↑)∂)∂ = (g∂)↑. Consequently, 〈g∂ , f∂〉 ∈ (M′,≤).

Now, we assume that 〈g∂ , f∂〉 ∈ (M′,≤), then f∂ = (g∂)↑, and, by duality, we have
f = (f∂)∂ = ((g∂)↑)∂ = g↑∇ . Therefore, 〈g, f〉 ∈ (M∇,≤∇).

Finally, given 〈g1, f1〉, 〈g2, f2〉 ∈ (M∇,≤∇), the following chain of equivalences are
obtained:

〈g1, f1〉 ≤∇ 〈g2, f2〉 iff g1 �2 g2 iff g∂2 �∂2 g∂1 iff 〈g∂2 , f∂2 〉 ≤ 〈g∂1 , f∂1 〉

which finishes the proof.

As a consequence of this result, we obtain that (M∇,≤∇) is, indeed, a complete
lattice.
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Theorem 1. Given a dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n)∂ and a context
(A,B,R, σ), the dual multi-adjoint formal concept lattice (M∇,≤∇) is a complete lattice,
where the infimum and supremum operators are defined as

inf{〈gi, fi〉 | i ∈ I} = 〈(inf2{gi | i ∈ I})↑∇↓∇
, sup1{fi | i ∈ I}〉

sup{〈gi, fi〉 | i ∈ I} = 〈sup2{gi | i ∈ I}, (inf1{fi | i ∈ I})↓
∇↑∇〉

Proof. Considering the multi-adjoint concept lattice (M′,≤), defined above and used
in Proposition 4, Equations (5) and (6) are written in this framework as:

inf{〈g∂i , f∂i 〉 | i ∈ I} = 〈inf∂2{g∂i | i ∈ I}, (sup∂1{f∂i | i ∈ I})↓↑〉 (7)

sup{〈g∂i , f∂i 〉 | i ∈ I} = 〈(sup∂2{g∂i | i ∈ I})↑↓, inf∂1{f∂i | i ∈ I}〉 (8)

where sup∂j and inf∂j are the supremum and infimum on L∂j , respectively, with j ∈ {1, 2}.
Therefore, by Proposition 4, Expressions (7) and (8) are equivalent to:

sup{〈gi, fi〉 | i ∈ I} = 〈sup2{gi | i ∈ I}, (inf1{fi | i ∈ I})↓
∇↑∇〉

inf{〈gi, fi〉 | i ∈ I} = 〈(inf2{gi | i ∈ I})↑∇↓∇
, sup1{fi | i ∈ I}〉

for each family of dual concepts 〈gi, fi〉 ∈ (M∇,≤∇), with i in an index set I, which
leads us to assure that the pair (M∇,≤∇) is a complete lattice.

The following proposition proves the consistency of our approach in relation to the
classical crisp case. Specifically, considering L1 = L2 = P = {0, 1}, we obtain g↑∇ = g∇

and f↓
∇

= f∇, for all g and f crisp subsets of X and A, respectively. The formal
statement and proof are given below:

Proposition 5. Given L1 = L2 = P = {0, 1}, a dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n)∂

and a context (A,B,R, σ), we have that g↑∇ = g∇ and f↓
∇

= f∇, for all crisp subsets g
and f of X and A, respectively.

Proof. As L1 = L2 = P = {0, 1}, only one adjoint triple can be considered, which
corresponds to the classical conjunction and implication (hence no need to specify the σ
mapping), and only one implication (denoted ↙) is assumed since the classical conjunc-
tion is commutative. The difference is that now, they are considered to be defined on
{0, 1}∂ , specifically, &: {0, 1}∂ × {0, 1}∂ → {0, 1} and ↙ : {0, 1} × {0, 1}∂ → {0, 1}∂ .

Given a subset g of X, that is, g : X → {0, 1}, the equality g↑∇ = g∇ will be proved.
The other equality follows similarly.

We will prove that, for all a ∈ A, g↑∇(a) = 1 if and only if g∇(a) = 1, which finishes
the proof.

Given a ∈ A, g↑∇(a) = sup1{R(a, b)↙ g∂(b) | b ∈ B} = 1, if and only if inf∂1{R(a, b)↙
g∂(b) | b ∈ B} = 0. Hence, from the definition of the classical implication ↙, the value
0 can only be obtained from (0 ↙ 1), that is, if g∂(b) = 1 and R(a, b) = 0, which is
equivalent to the existence of b ∈ X which is not an element of g, e.g. g(b) = 0, and that
a and b are not related, therefore, g∇(a) = 1. As the procedure explained is a chain of
equivalences, then the equality holds.
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A worked out example

In the following, we show how the new “dual” concepts are generated in this dual
framework.

To begin with, let us fix the dual multi-adjoint frame and context of the exam-
ple. We will assume that (L1,�1), (L2,�2) and P are the regular 5-partition [0, 1]4 =
{0, 0.25, 0.50, 0.75, 1} with the usual ordering. Let us consider the adjoint triple (&,↙,↖
), where &: [0, 1]∂4×[0, 1]∂4 → [0, 1]4,↙ : [0, 1]4×[0, 1]∂4 → [0, 1]∂4 and↖ : [0, 1]4×[0, 1]∂4 →
[0, 1]∂4 are defined as

& 1 0.75 0.50 0.25 0
1 0 0 0 0 0

0.75 0 0 0 0 0.25
0.50 0 0 0 0 0.25
0.25 0 0 0.25 0.50 0.75

0 0 0.25 0.50 0.75 1

↙ 1 0.75 0.50 0.25 0
0 0 0.25 0.50 0.50 1

0.25 0 0 0.25 0.50 0.50
0.50 0 0 0 0.25 0.50
0.75 0 0 0 0 0.25

1 0 0 0 0 0

↖ 1 0.75 0.50 0.25 0
0 0 0.25 0.25 0.75 1

0.25 1 1 1 0.50 0.25
0.50 0 0 0 0.25 0.50
0.75 0 0 0 0 0.25

1 0 0 0 0 0

which might be obtained from examples [11].
We have that (&,↙,↖) is an adjoint triple; notice that the operator & is not com-

mutative because
0.25 & 0.50 = 0.25 6= 0 = 0.50 & 0.25

and its two adjoint implications do not coincide.
Recall that the adjoint triple is defined with respect to [0, 1]∂4 , [0, 1]∂4 , [0, 1]4. As a

result, if & is considered on the partitioned interval with the usual ordering, we have that

&: [0, 1]4×[0, 1]4 → [0, 1]4 is decreasing in both arguments. Thus, although not explicitly,
with this approach we are assuming that conjunctors have “negation” operators in both
arguments, in a not restrictive way, in order to build a new concept lattice.

Hence, the dual multi-adjoint frame considered will be ([0, 1]4, [0, 1]4, [0, 1]4,&)∂ and
the context (A,B,R, σ) will be given by the sets A = {a1, a2} and B = {b1, b2, b3}, the
constant mapping σ and the fuzzy relation R, defined in Table 1.

Table 1: Fuzzy relation between objects and attributes

R b1 b2 b3
a1 0.75 0.50 0
a2 0.25 0.25 1

Now, we will compute a dual concept from an arbitrary fuzzy subset of B. Given the
fuzzy subset of objects g : B → [0, 1]4, defined as g(b1) = 0, g(b2) = 0.5 and g(b3) = 1,

the greatest concept that “embeds” g is (g↑∇↓∇
, g↑∇), is obtained below. Firstly,

g↑∇(a1) = sup1{R(a1, bj)↙σ(b) g∂(bj) | bj ∈ B}
= sup1{0.75↙ 0, 0.50↙ 0.50, 0↙ 1} = sup1{0.25, 0, 0} = 0.25

g↑∇(a2) = sup1{0.25↙ 0, 0.25↙ 0.50, 1↙ 1} = sup1{0.50, 0.25, 0} = 0.50
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This mapping is used to compute g↑∇↓∇
:

g↑∇↓∇
(b1) = sup1{R(ai, b1)↖σ(b) g

↑(ai) | ai ∈ A}
= sup1{0.75↖ 0.25, 0.25↖ 0.50} = sup1{0, 0} = 0

g↑∇↓∇
(b2) = sup1{0.50↖ 0.25, 0.25↖ 0.50} = sup1{1/4, 0} = 0.25

g↑∇↓∇
(b3) = sup1{0↖ 0.25, 1↖ 0.25} = sup1{0.75, 0} = 0.75

We can check that g↑∇↓∇ �∇ g since ↑∇↓∇
is an interior operator (the opposite

character of ↑↓, which is a closure operator).
Using the provided relation in this paper, an adaptation of the algorithms given in

the fuzzy formal concept analysis framework, such as the ones given in [5, 6, 22], can be
applied to obtain the dual multi-adjoint concept lattice.

Notice that this concept lattice cannot be obtained via an easy transformation of
operators in order to make them increasing in [0, 1]4 and to apply the multi-adjoint
formal concept analysis theory to obtain the dual multi-adjoint concept lattice. The
most natural approach to attain & increasing would be to consider &: [0, 1]4 × [0, 1]4 →
[0, 1]∂4 , as it would be increasing in both arguments, but it would not be an adjoint
conjunctor since, for instance, we have 0 & 0.25 = 0.75 but, by the adjoint property, the
result should be the minimum element of the underlying lattice, namely, 1. Another
possibility to make & increasing could be to consider &′ : [0, 1]4× [0, 1]4 → [0, 1]4, defined
as x&′ y = (1− x) &(1− y), but this requires the actual existence of an unary negation
operator, which we try to avoid.

Our approach constructs directly concept lattices by using a novel approach in terms
of “decreasing conjunctors”. This approach is expected to have practical applications
similarly to (multi-adjoint) property-oriented concept lattices and object-oriented con-
cept lattices [24, 25], which are other variants of multi-adjoint formal concept analysis.

5. Conclusions and future work

We have generalized the classical dual concept lattices to a multi-adjoint environment
in which we can use different adjoint triples defined on non-linear sets and no negation
is needed.

The approach is interesting in that, up to now, the introduction of dual concept
lattices has always been introduced in terms of an explicit negation operator on the
underlying carrier. From the theoretical point of view, our approach is based on two
derivation operators whose both compositions lead to an interior operator, in contrast
to previous approaches in which at least one of these compositions should be a closure
operator.

In addition, our proposal enables a new point of view to obtain information from
databases with incomplete and/or imprecise information, which provide more flexibility
to existing procedures. Indeed, some times it could be more efficient to compute the dual
concept than the standard one. In the future, applications and practical examples of the
approach introduced in this paper will be extensively studied.
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[5] R. Bělohlávek, B. De Baets, J. Outrata, V. Vychodil, Lindig’s algorithm for concept lattices over
graded attributes, Lecture Notes in Computer Science 4617 (2007) 156–167.

[6] R. Bělohlávek, B. De Baets, J. Outrata, V. Vychodil, Computing the lattice of all fixpoints of a
fuzzy closure operator, IEEE Transactions on Fuzzy Systems 18 (3) (2010) 546–557.
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