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This paper introduces sufficient and necessary conditions with respect to the fuzzy oper-
ators considered in a multi-adjoint frame under which the standard combinations of multi-
adjoint sufficiency, possibility and necessity operators form (antitone or isotone) Galois con-
nections. The underlying idea is to study the minimal algebraic requirements so that the
concept-forming operators (defined using the same syntactical form than the extension and
intension operators of multi-adjoint concept lattices) form a Galois connection. As a conse-
quence, given a relational database, we have much more possibilities to construct concept
lattices associated with it, so that we can choose the specific version which better suits the
situation.
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1. Introduction

Different generalizations of formal concept analysis have been presented in the
recent years, ranging from possibility-theoretic approaches to rough-set based ap-
proaches, and from interval valued contexts to similarity measures (Alcalde et al.
2011, Alqadah and Bhatnagar 2011, Chen and Yao 2008, Dubois and Prade 2011,
2012, Düntsch and Gediga 2003, Formica 2012, Yao 2004). Moreover, new types
of incidence relations are been taken into account (Guo et al. 2011) together with
alternative definitions of the concept-forming operators in order to obtain different
interpretations for them. These operators can be combined by pairs in order to form
(antitone or isotone) Galois connections, and, as a consequence, their compositions
can be interpreted topologically as either closure or opening operators.

In this paper we are concerned with fuzzy extensions of the previous approaches,
particularly, the multi-adjoint framework (Medina 2012, Medina and Ojeda-Aciego
2010, 2012, Medina et al. 2009) since, somehow, it embeds several other approaches
(Bělohlávek 1998, Burusco and Fuentes-González 1994, Georgescu and Popescu
2004, Lai and Zhang 2009, Pollandt 1997) which are based on residuated structures
in order to build the concept-forming operators.

Recently, algebraic requirements under which the composition of four different
versions of concept-forming operators (fuzzy sufficiency, possibility, necessity, and
dual sufficiency) are either closure or opening operators were introduced in (Djouadi
and Prade 2011).
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Multi-adjoint concept lattices (Medina et al. 2009) were presented as a suitable
generalization of several existing approaches to fuzzy concept analysis which use
pairs of antitone Galois connections to build the concepts. More recently, multi-
adjoint property-oriented and object-oriented concept lattices were introduced as
a generalization of fuzzy rough sets (Medina 2012); in these settings, the main
theoretical tool is that of isotone Galois connections.

Adjoint triples are the basic operators on which the multi-adjoint frameworks
cited above are founded. These triples can be seen as adequate generalizations of
the pair of classical conjunctor and implication connectives, as well as t-norms
and their residua and enable us to define the different forms of concept-forming
operators in an L-fuzzy environment.

Note, however, that there might be situations which suggest considering even
softer restrictions on the conjunctors and implications. For instance, consider a
relational database about which a subset of concepts is known, and our aim is to
find concept-forming operators which generate a concept lattice which includes the
whole subset of known concepts. Therefore, it would be desirable to have as much
more possibilities to build a concept lattice associated with a relational database.

In this paper, we follow the spirit of (Djouadi and Prade 2011) and filter out
some conditions imposed by adjoint triples which are not fundamental for the de-
velopment of multi-adjoint formal concept analysis, in the sense that the Galois
connections needed to build multi-adjoint concepts can be obtained by a smaller set
of requirements. This applies both to antitone Galois connections for multi-adjoint
concept lattices and isotone Galois connections for multi-adjoint object-oriented
and property-oriented concept lattices. We introduce sufficient and necessary con-
ditions under which the corresponding compositions of the concept-forming op-
erators are either closure or opening operators and obtain new interesting conse-
quences: in some sense, a set of minimal requirements to built the different versions
of multi-adjoint concept lattices are given.

2. Basic operators for multi-adjoint concept lattices

A common result concerning different generalizations of formal concept analysis
is that the pair of fuzzy extensions of the crisp concept-forming operators forms
a Galois connection (Ganter and Wille 1999). There are two dual versions of this
notion. The version we adopt in this section is the standard one in which the
involved maps are antitone (order-reversing); these will be properly called Galois
connections. The other version is that in which the maps are order-preserving,
the so-called isotone Galois connections which will be studied in the next section.
There are arguments for considering either version, although, at a theoretical level,
the difference is not significant since we can pass from one to another simply by
swapping a lattice by its dual.

In order to make this contribution self-contained, we recall now the formal defi-
nition of (antitone) Galois connection.

Definition 2.1: Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 → P1

mappings, the pair (↑, ↓) forms an antitone Galois connection between P1 and P2

if and only if:

(1) ↑ and ↓ are order-reversing.
(2) x ≤1 x

↓↑ for all x ∈ P1, that is, ↓↑ is extensive (wrt P1)
(3) y ≤2 y

↑↓ for all y ∈ P2, that is, ↑↓ is extensive (wrt P2)

From now on, we will fix two complete lattices (L1,�1), (L2,�2), a poset (P,≤)
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and two families of mappings↙i : P ×L2 → L1,↖i : P ×L1 → L2, where i belongs
to an index set Λ.

In this environment we consider two sets A and B, which usually represent a set
of attributes and a set of objects, respectively; and a fuzzy relation between them,
R : A×B → P . Moreover, a mapping σ : A×B → Λ is assumed, which relates each
pair (a, b) to a pair of implications (↙σ(a,b),↖σ(a,b)), similar to the point of view
introduced in (Medina et al. 2009). The tuple (A,B,R, σ) will be called (formal)
context.

Given a context (A,B,R, σ), we define the operators ↑ : LB2 → LA1 , ↓ : LA1 → LB2 ,
as

g↑(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (1)

f↓(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (2)

for all a ∈ A and b ∈ B.
Note that we are slightly abusing notation in that (↑, ↓) depends on σ; further-

more, hereafter we will write ↙a,b, ↖a,b instead of ↙σ(a,b), ↖σ(a,b).
The aim of this section is to find a weaker framework under which the fuzzy

generalizations of the crisp concept-forming operators still form an antitone Galois
connection; specifically, we will introduce a sufficient and necessary condition in
terms of the mappings ↙i, ↖i considered with respect to L1, L2 and P , in order
to prove whether the operators ↑ : LB2 → LA1 , ↓ : LA1 → LB2 form an antitone Galois
connection.

In order to obtain that the pair (↑, ↓) is a Galois connection, we will firstly prove
that these operators are order-reversing (antitone). The next result shows that
this property is associated with the monotony of the operators z↙ : L2 → L1,
z↖ : L1 → L2, for z ∈ P , which are defined as z↙(y) = z ↙ y, z↖(x) = z ↖ x,
for all y ∈ L2, x ∈ L1.

Proposition 2.2: The mapping ↑ : LB2 → LA1 is antitone for all formal context
(A,B,R, σ) if and only if z↙i : L2 → L1 is antitone for all z ∈ P and i ∈ Λ.

Analogously, ↓ : LA1 → LB2 is antitone for all formal context (A,B,R, σ) if and
only if z↖i : L1 → L2 is antitone for all z ∈ P and i ∈ Λ.

Proof : On the one hand, given z ∈ P , i ∈ Λ, and y1, y2 ∈ L2, such that y1 �2 y2,
we consider B = {b}, A = {a}, R(a, b) = z, σ(a, b) = i and g1, g2 ∈ LB2 , defined as
g1(b) = y1, g2(b) = y2, and, as a consequence of the hypothesis, we obtain

z ↙i y2 = R(a, b)↙i g2(b)

(1)
= inf{R(a, b)↙a,b g2(b) | b ∈ B}

= g↑2(b)

(2)

�1 g
↑
1(b)

= inf{R(a, b)↙a,b g1(b) | b ∈ B}
(3)
= z ↙i y1

where (1) and (3) hold because B has only one element and (2) holds by hypothesis.
On the other hand, given g1, g2 ∈ LB2 , with g1 �2 g2. As z↙i is antitone for all

z ∈ P and i ∈ Λ, then (R(a, b)↙i )(g2(b)) �1 (R(a, b)↙i )(g1(b)), for all b ∈ B,
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a ∈ A, i ∈ Λ, and so

g↑2(a) = inf{R(a, b)↙a,b g2(b) | b ∈ B}

�1 inf{R(a, b)↙a,b g1(b) | b ∈ B}

= g↑1(a)

for all a ∈ A. Thus, g↑2 �2 g
↑
1.

The other monotonicity follows similarly. �

Remark 1 : As a result of the previous proposition, we will assume hereafter that
the arrows ↖i, ↙i are antitone in their second component for all i ∈ Λ.

The second result characterizes the extensity property of the composition ↑↓ in
terms of the mappings ↖i, ↙i.

Theorem 2.3 : The inequality g �2 g
↑↓ holds for all context (A,B,R, σ) and

g ∈ LB2 if and only if the following property is satisfied:
(F1) : y �2 z ↖i (z ↙i y), for all y ∈ L2, z ∈ P and i ∈ Λ.

Proof : Firstly, given y ∈ L2, z ∈ P , assume that the inequality g �2 g
↑↓ holds,

for all context (A,B,R, σ) and g ∈ LB2 . Hence, we can consider B = {b}, A = {a},
R(a, b) = z and g ∈ LB2 , defined as g(b) = y. Therefore,

y = g(b)

�2 g
↑↓(b)

= inf{R(a′, b)↖a′,b g
↑(a′) | a′ ∈ A}

= R(a, b)↖a,b g
↑(a)

= R(a, b)↖a,b inf{R(a, b′)↙a,b′ g(b′) | b′ ∈ B}

= R(a, b)↖a,b

(
R(a, b)↙a,b g(b)

)
= z ↖a,b (z ↙a,b y)

Thus, Condition (F1) holds.
Conversely, assume property (F1), and consider an arbitrary formal context

(A,B,R, σ) and g ∈ LB2 . Hence, by (F1), the inequality g(b) �2 R(a, b) ↖a,b(
R(a, b) ↙a,b g(b)

)
is satisfied, for all b ∈ B, a ∈ A, because g(b) ∈ L2 and

R(a, b) ∈ P . Consequently, we obtain:

g(b) �2 R(a, b)↖a,b

(
R(a, b)↙a,b g(b)

)
�2 R(a, b)↖a,b inf{R(a, b′)↙a,b′ g(b′) | b′ ∈ B}

= R(a, b)↖a,b g
↑(a)

for all b ∈ B, a ∈ A. Therefore, by the properties of infimum, we have:

g(b) �2 inf{R(a′, b)↖a′,b g
↑(a′) | a′ ∈ A} = g↑↓(b)

for all b ∈ B. Thus, g �2 g
↑↓. �

It is not difficult to check that the other composition can be characterized in a
similar way.



November 22, 2012 12:33 International Journal of General Systems ijgs-dmo-charac[defi]

On basic conditions to generate multi-adjoint concept lattices via Galois connections 5

Theorem 2.4 : The inequality f �1 f
↓↑ holds for all context (A,B,R, σ) and

f ∈ LA1 if and only if the following property is verified:
(F2) : x �1 z ↙i (z ↖i x), for all x ∈ L1, z ∈ P and i ∈ Λ.

Note that Theorems 2.3 and 2.4 together with Proposition 2.2 entail the following
result.

Corollary 2.5: The pair (↑, ↓) is an antitone Galois connection for all formal
context (A,B,R, σ) if and only if Properties (F1) and (F2) are verified, and z↖i,
z↙i are antitone for all z ∈ P and i ∈ Λ.

If we consider just one pair of identical mappings, then we see that our approach
generalizes that of (Djouadi and Prade 2011, Theorem 2), recalled in the following
corollary.

Corollary 2.6: Considering (L,�) = (L1,�1) = (L2,�2) and a (degenerate)
pair of identical arrows (↙,↙), then the compositions ↑↓, ↓↑ are closure operators
if ↙ is antitone on its right argument and the following holds:

(R1) : y � z ↙ (z ↙ y), for all y ∈ L, z ∈ P .

As a consequence of Proposition 2.2, Theorems 2.3 and 2.4, we obtain the fol-
lowing characterization concerning pairs that form Galois connections.

Theorem 2.7 : The pair (↑, ↓) is an antitone Galois connection, for all formal
context (A,B,R, σ), if and only if the pair (z↙i, z↖i) is an antitone Galois con-
nection, for all z ∈ P and i ∈ Λ.

Proof : Assume (↑, ↓) is an antitone Galois connection. By Proposition 2.2 we have
that z↙i, z↖i are antitone, therefore we have just to prove

• y �2
z↖i(z↙i(y))

• x �1 z↙i(z↖i(x))

and these statements hold as a consequence of Theorems 2.3 and 2.4, since they
are exactly (F1) and (F2), respectively.

The converse follows similarly. �

As a result of the previous theorem, we can transform a problem between
↑ : LB2 → LA1 , ↓ : LA1 → LB2 , whose definitions are complex, to a problem related to
the more basic operators (z↙i, z↖i).

It is worth to notice that the previous result does not imply a biunivocal corre-
spondence between antitone Galois connections and pairs of implications associated
with an adjoint triple, albeit we keep on using the implication symbols as a relic
from our inspirational examples. We introduce below two operators φ and ψ which
allow to define an antitone Galois connection (↑, ↓); however, (φ, ψ) is not a pair
of residuated implications of an adjoint triple, particularly, because they are not
fuzzy implications. For instance, it might be interesting to consider an operator
ψ : P × L1 → L2, antitone in both arguments, and satisfying that the smaller
the arguments in P , the less decrease the function ψ(z, ) : L1 → L2. This kind
of operators can be useful, for instance, to avoid possible noise or errors in the
approximation of attributes with little relation to an object.

Example 2.8 Let us assume (L1,�1) = (L2,�2) = (P,≤) = ([0, 1],≤), where ≤ is
the usual ordering in the unit interval, and the pair (φ, ψ), where φ : [0, 1]× [0, 1]→
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[0, 1], ψ : [0, 1]× [0, 1]→ [0, 1] are defined as follows

φ(z, y) =



1 if z ≤ 1− y√
1− y
z

if 1− y < z <
1
2

1− y
z

if 1− y < z, z ≥ 1
2

ψ(z, x) =


1− x2z if z <

1
2

1− xz if z ≥ 1
2

We will prove that, given z ∈ [0, 1], the pair of mappings φz : [0, 1] → [0, 1],
ψz : [0, 1] → [0, 1] defined as φz(y) = φ(z, y), ψz(x) = ψ(z, x), for all x, y ∈ [0, 1],
form an antitone Galois connection.

To begin with, clearly φ and ψ are antitone in both arguments (hence they are
not fuzzy implications) and, therefore, φz and ψz are antitone.

A straightforward computation suffices to prove that x ≤ φz(ψz(x)) and y ≤
ψz(φz(y)), for all x, y ∈ [0, 1]. Consequently, given z ∈ [0, 1], the pair (φz, ψz) is
an antitone Galois connection and so, by Theorem 2.7, the mappings ↑φ : [0, 1]B →
[0, 1]A, ↓

ψ

: [0, 1]A → [0, 1]B, defined as

g↑φ(a) = inf{φ(R(a, b), g(b)) | b ∈ B}

f↓
ψ

(b) = inf{ψ(R(a, b), f(a)) | a ∈ A}

for all a ∈ A and b ∈ B, form an antitone Galois connection.

Remark 2 : As a consequence of the example above, we have that the framework
considered in this paper is more general than the one given in (Medina et al. 2009),
in which we considered adjoint triples (&i,↙i,↖i) and in the current setting we
only need pairs (↙i,↖i), such that (z↙i, z↖i) are antitone Galois connections,
for all z ∈ P .

The following example reinforces the previous situation by showing two fuzzy
implications as those used in fuzzy formal concept analysis which form an antitone
Galois connection but, however, do not arise from an adjoint triple.

Example 2.9 Consider the pair (↙,↖) where ↙ : [0, 1]× [0, 1]→ [0, 1], and
↖ : [0, 1]× [0, 1]→ [0, 1] are defined by

z ↖ x =


1− x(1− z) if z ≤ 1

2

1− x2(1− z) if z >
1
2
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z ↙ y =



1− y
1− z

if z ≤ 1
2
, z < y√

1− y
1− z

if z >
1
2
, z < y

1 if z ≥ y

Note that these operators are similar to the ones given in Example 2.8, in which
we have replaced z by 1 − z and obtained, as a consequence, the monotonicity
needed to obtain a fuzzy implication.

In this case, the pair (z↙, z↖) is an antitone Galois connection, for all z ∈ [0, 1],
and it can be shown that there does not exist any conjunctor & such that (&,↙,↖)
is an adjoint triple.

The previous examples show that we are working in a more general framework
than (Medina et al. 2009), but still we can define the set of all formal concepts
〈g, f〉, that is, the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

with the ordering defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equivalently
f2 �1 f1), can be proven to be a complete lattice (the proof is similar to the one
given in (Medina et al. 2009)).

Since we only have considered a more general framework and the definitions are
analogous, we keep the same names and still call the previous construction to be
the multi-adjoint concept lattice associated with a given formal context.

3. Multi-adjoint concept lattices from isotone Galois connections

Inspired by the properties considered in (Djouadi and Prade 2011), this section
introduces sufficient and necessary conditions on the considered fuzzy conjuntor
and implication, in order to provide that the combinations of possibility and ne-
cessity operators will be isotone Galois connections. As a consequence, two kinds
of concept lattices arise, which generalize the multi-adjoint object-oriented and
property-oriented concept lattices given in (Medina 2012).

Definition 3.1: Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 → P1

mappings, the pair (↑, ↓) forms an isotone Galois connection between P1 and P2 if
and only if:

(1) ↑ and ↓ are order-preserving.
(2) x↓↑ ≤1 x, for all x ∈ P1.
(3) y ≤2 y

↑↓, for all y ∈ P2.

For linking the results concerning isotone connections with those related to an-
titone connections it is worth to recall the definition of dual order. Given a set P
and an order relation, ≤, on P , the dual order of ≤ is the relation ≤∂ , defined as
x1 ≤∂ x2 if and only if x2 ≤ x1, for all x1, x2 ∈ P . Usually, we will write P instead
of the partially ordered set (P,≤), P ∂ instead of (P,≤∂), and we will say that P ∂

is the dual of P .
It is well known that the definition of isotone Galois connection follows from the

original one simply writing P ∂2 instead of P2. Hence, an isotone Galois connection
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(↑, ↓) on P1 and P2 is an antitone Galois connection on P1 and P ∂2 , and vice versa,
and we can translate the properties from antitone Galois connections to isotone
Galois connections and vice versa.

Recently, this idea has been used in (Medina 2012) in order to relate several kinds
of concept lattices. A similar transformation will be applied in the next sections
in order to use the properties proved for the previous antitone Galois connection
(↑, ↓) in the framework of object-oriented and property-oriented concept lattices.

3.1 Multi-adjoint property-oriented concept lattices

From now on, we will fix two complete lattices (L2,�2), (L3,�3), a poset (P,≤)
and two mappings &: P × L2 → L3, ↖ : L3 × P → L2.

Given a context (A,B,R, σ), we define two mappings ↑π : LB2 → LA3 , ↓
N

: LA3 →
LB2 as

g↑π(a) = sup{R(a, b) &a,b g(b) | b ∈ B} (3)

f↓
N

(b) = inf{f(a)↖a,b R(a, b) | a ∈ A} (4)

for each g ∈ LB2 , f ∈ LA3 and a ∈ A, b ∈ B. Clearly, these definitions are general-
izations of the classical possibility and necessity operators.

This section establishes similar results to Section 2 but now, with respect to the
operators ↑π , ↓N and the underlying fuzzy conjunctors &i and implications↖i, with
i in the index set Λ.

Firstly, we will focus on the monotonicity-related properties of these operators.
Specifically, we will consider the operators x&: L2 → L3, ↖x : L3 → L2, where
x ∈ P and which are defined as x&(y) = x& y, ↖x (z) = z ↖ x, for all y ∈ L2,
z ∈ L3.

Lemma 3.2: If the lattice L∂3 is considered instead of L3, then the operators ↑π

and ↓N satisfy Equations (1) and (2), with respect to &, ↖op, respectively, where
↖op : P × L3 → L2 is defined as x↖op z = z ↖ x, for all x ∈ P and z ∈ L3.

Proof : Considering L∂3 instead of L3, we have that

g↑π(a) = inf3,∂{R(a, b) &a,b g(b) | b ∈ B}

for all g ∈ LB2 and where inf3,∂ is the infimum in (L∂3). Hence, the operator ↑π , which
is associated with &, is a mapping defined as in Equation (1). 1 Moreover, it is clear
that ↓

N

, which is associated with ↖op, is a mapping defined as in Equation(2). �

Therefore, the results given in the previous section can be transformed into this
new approach. First of all, results similar to those stated in Proposition 2.2 can be
obtained in this framework as follows:

Proposition 3.3: The mapping ↑π : LB2 → LA3 is isotone for all formal context
(A,B,R, σ) if and only if x&: L2 → L3 is isotone for all x ∈ P .

Analogously, ↓
N

: LA3 → LB2 is isotone for all formal context (A,B,R, σ) if and
only if ↖x : L3 → L2 is isotone for all x ∈ P .

Proof : Considering L∂3 instead of L3, the first statement is equivalent to: The
mapping ↑π : LB2 → (L∂3)A is antitone for all formal context (A,B,R, σ) if and only

1By abuse of notation, note that some of the required subscripts of & and ↖ will be omitted wherever
possible.
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if x&: L2 → (L∂3) is antitone.
Now, by Lemma 3.2, ↑π : LB2 → (L∂3)A is an operator similar to the one given

by Equation (1), but now associated with a mapping x&. Thus, Proposition 2.2
can be applied and the result is obtained simply by undoing the change, that is,
considering L3 instead of L∂3 .

The other claim follows analogously.
�

Remark 1 : As a result of the previous proposition, we will assume hereafter in
this section that the conjunctors &i are isotone in the right argument and the
arrows ↖i are isotone in the left argument, for all i ∈ Λ.

A characterization of the closure property of the composition ↑π↓N : LB2 → LB2 is
given by using Lemma 3.2 and Theorem 2.3, which turns out to be a generalization
of (Djouadi and Prade 2011, Theorem 4).

Theorem 3.4 : The inequality g �2 g
↑π↓N holds for all context (A,B,R, σ) and

g ∈ LB2 if and only if the following property holds.
(P1) : y �2 (x&i y)↖i x, for all x ∈ P , y ∈ L2, i ∈ Λ.

Similarly, a characterization of the interior property of the composition ↓N↑π

can be obtained, by using Theorem 2.4 and Lemma 3.2. This result is similar to
(Djouadi and Prade 2011, Theorem 5), but considering ↑π : LB2 → LA3 , ↓

N

: LA3 →
LB2 instead.

Theorem 3.5 : The inequality f↓
N↑π �1 f holds for all context (A,B,R, σ) and

f ∈ LA1 if and only if the following property holds:
(P2) : x&i(z ↖i x) �3 z, for all x ∈ P , z ∈ L3, i ∈ Λ.

Proposition 3.3, and Theorems 3.4 and 3.5, provide a similar set of consequences
to those introduced in the previous section, but now in the framework of property-
oriented concept lattices.

Corollary 3.6:

(1) The composition ↑π↓N : LB2 → LB2 is a fuzzy closure operator for all context
(A,B,R, σ) if and only if Property (P1) is satisfied.

(2) The composition ↓N↑π : LA1 → LA1 is a fuzzy interior operator for all context
(A,B,R, σ) if and only if Property (P2) is satisfied.

Corollary 3.7: The pair (↑π , ↓
N

) is an isotone Galois connection for all formal
context (A,B,R, σ) if and only if Properties (P1) and (P2) hold, and the operators
x& and ↖x are isotone operators for all x ∈ P .

As the pair (x&,↖x) is an isotone Galois connection, for all x ∈ P if and only
if the mappings & and ↖ verify (P1) and (P2) and are isotone, we obtain the
following characterisation:

Proposition 3.8: The pair (↑π , ↓
N

) is an isotone Galois connection for all context
(A,B,R, σ) if and only if the pair (x&,↖x) is an isotone Galois connection for all
x ∈ P .

Therefore, the properties of the pair (↑π , ↓
N

) only depend on & and ↖. As a
consequence, if we consider two mappings &: P ×L2 → L3 and ↖ : L3 × P → L2,
such that (x&,↖x) is an isotone Galois connection, for all x ∈ P , then the mappings
↑π : LB2 → LA1 , ↓

N

: LA2 → LB1 lead us to build a lattice which generalize the concept
lattice introduced in (Medina 2012). Specifically, the set

MπN = {〈g, f〉 | g ∈ LB, f ∈ LA, with g↑π = f, f↓
N

= g}
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is a complete lattice, called multi-adjoint property-oriented concept lattice, where
the pairs of mappings 〈g, f〉 ∈ MπN are called multi-adjoint property-oriented
formal concepts.

Note that the names considered here for the concept lattice and for the concepts
are equal to the ones given in (Medina 2012), this is because, in spirit, they are
equal. The main difference is that the considered operators can be more general,
since the pair (&,↖) need not arise from an adjoint triple.

In the example below we introduce a pair (x&,↖x) which is an isotone Ga-
lois connection, although there not exists ↙ such that (&,↙,↖) is an adjoint
triple. Moreover, we will obtain, by Proposition 3.8, that ↑π and ↓N , defined as in
Equations (3) and (4), form an isotone Galois connection and a property-oriented
concept lattice can be considered.

Example 3.9 Let us consider (L1,�1) = (L2,�2) = (P,≤) = ([0, 1],≤), where ≤
is the usual ordering in the unit interval, and the mapping &: [0, 1]× [0, 1]→ [0, 1],
defined, for all x, y ∈ [0, 1], as

x& y =


xy2 if x <

1
2

xy if
1
2
≤ x

Clearly, & is isotone in both arguments.
Now, we consider the mappings ↙ : [0, 1]× [0, 1]→ [0, 1] and ↖ : [0, 1]× [0, 1]→

[0, 1], defined, for all x, y, z ∈ [0, 1], as

z ↙ y = sup{x | x& y ≤ z}

z ↖ x = sup{y | x& y ≤ z}

As & is continuous in its second argument, clearly ↖ is a residuated implication
wrt &.

Concerning ↙, the conjunctor is not continuous in x = 1/2 and this entails
that the adjoint property fails. Specifically, we will use the known fact (Medina
et al. 2004) that given a conjunctor, isotone in both arguments, we have that the
considered supremum in the definition of the previous mappings is a maximum if
and only if the mappings are residuated implications associated with &.

In this case, it is easy to show a situation in which the maximum of X = {x |
x& y ≤ z} for fixed y, z ∈ [0, 1] fails to exist.

If 2z < y ≤
√

2z, then for all x < 1
2 , x& y = xy2 < 1

22z = z and z < y
2 = 1

2y =
1
2 & y. Hence,

supX = sup{x | x& y ≤ z} = sup{x ∈ [0, 1/2)} =
1
2

however, 1
2 & y � z, that is 1

2 6∈ X and the supremum is not a maximum.
Consequently, (&,↙,↖) is not an adjoint triple, although (x&,↖x) is an isotone

Galois connection, for all x ∈ [0, 1].

It is worth to note that operators as those introduced above are not just patho-
logical operators, but could be useful to make a distinction between the values
provided by the relation and those given by the fuzzy subset of object, which is
interesting for applications. For instance, the conjunctor defined in the example
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only weights similarly the values entered by the relation and the fuzzy subset when
the value of the relation is greater or equal than the threshold 1/2.

3.2 Multi-adjoint object-oriented concept lattices

Considering the possibility and necessity operators on different domains ↑N : LB3 →
LA1 , ↓

π

: LA1 → LB3 , new operators and a new concept lattices arise.
Although this approach is similar to the previous one, we believe it useful to

make explicit all the new results in order to provide a complete presentation of
this framework.

In this section, we will fix a poset (P,≤), two complete lattices (L1,�1), (L3,�3),
and two mappings &: L1 × P → L3, ↙ : L3 × P → L1.

Hence, given a context (A,B,R, σ), two mappings ↑N : LB3 → LA1 , ↓π : LA1 → LB3
can be defined as

g↑N (a) = inf{g(b)↙a,b R(a, b) | b ∈ B} (5)

f↓
π

(b) = sup{f(a) &a,bR(a, b) | a ∈ A} (6)

for each g ∈ LB3 , f ∈ LA1 and a ∈ A, b ∈ B.
In order to relate this framework to the one given in Section 2, the operators

&op : P × L1 → L3, ↙op : P × L3 → L1, will be considered, which are defined as
y&op x = x& y and y ↙op z = z ↙ y, for all x ∈ L1, y ∈ P , z ∈ L3.

Lemma 3.10: If the lattice L∂3 is considered instead of L3, the operators ↑π and
↓N satisfy Equations (1) and (2), with respect to ↙op, &op, respectively.

Proof : Considering L∂3 and &op instead of L3 and &, we have that

f↓
π

(b) = inf3,∂{R(a, b) &op
a,b f(a) | a ∈ A}

for all f ∈ LA1 . Hence, the operator ↓
π

, associated with &op, is a mapping defined
as in Equation (2). Moreover, it is clear that ↓

N

, considered to be associated with
↙op, is a mapping defined as in Equation (1). �

In the rest of this section, we follow the structure and spirit of the previous ones,
and introduce the corresponding characterizations related to fuzzy closure, fuzzy
interior, and isotone Galois connection within this framework; the proofs will be
omitted.

The first proposition is related to the monotonicity of ↓
π

and ↑N . Specifically, we
consider the operators &y : L1 → L3, ↙y : L3 → L1, for each y ∈ P , which are
defined as &y(x) = x& y, ↙y (z) = z ↙y, for all x ∈ L1, z ∈ L3.

Proposition 3.11: The mapping ↑N : LB3 → LA1 is isotone for all formal context
(A,B,R, σ) if and only if ↙y : L3 → L1 is isotone for all y ∈ P .

Similarly, ↓
π

: LA1 → LB3 is isotone for all formal context (A,B,R, σ) if and only
if &y : L1 → L3 is isotone for all y ∈ P .

Remark 2 : As a result of the previous proposition, we will assume hereafter
in this section that the arrows ↙i and conjunctors &i are isotone in their first
component for all i ∈ Λ.

The closure and interior properties of the compositions are characterized in the
following results. With respect to ↓

π↑N : LA1 → LA1 we have
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Theorem 3.12 : The equality f �1 f
↓π↑N holds for all context (A,B,R, σ) and

f ∈ LA1 if and only if the following property is satisfied:
(O1) : x �1 (x&i y)↙i y, for all x ∈ L1, y ∈ P , i ∈ Λ.

The composition ↑N↓π , related to the interior property is studied below:

Theorem 3.13 : The equality g↑N↓
π �3 g holds for all context (A,B,R, σ) and

g ∈ LB3 if and only if the following property is satisfied:
(O2) : (z ↙i y) &i y �3 z, for all y ∈ P , z ∈ L3, i ∈ Λ.

As previously, but now with respect to Proposition 3.11 and Theorems 3.12
and 3.13, the following consequences can be obtained.

Corollary 3.14:

(1) The composition ↓π↑N : LA1 → LA1 is a fuzzy closure operator for all context
(A,B,R, σ) if and only if Property (O1) holds.

(2) The composition ↑N↓π : LB2 → LB2 is a fuzzy interior operator for all context
(A,B,R, σ) if and only if Property (O2) holds.

Corollary 3.15: The pair (↑N , ↓
π

) is an isotone Galois connection for all context
(A,B,R, σ) if and only if↙y and &y are isotone for all y ∈ P and Properties (O1)
and (O2) hold.

As a consequence, the properties of the pair (↑N , ↓
π

) only depend on the mappings
↙ and &.

Proposition 3.16: The pair (↑N , ↓
π

) is an isotone Galois connection for all con-
text (A,B,R, σ) if and only if the pair (↙y,&y) is an isotone Galois connection
for all y ∈ P .

Again, in this case it is possible to show the existence of reasonable pairs of
mappings ↙, & which are not components of an adjoint triple but, however, are
such that the pair (↙y,&y) is an isotone Galois connection and, hence, an object-
oriented concept lattice can be considered based on this kind of mappings.

4. Conclusions

We have introduced characterizations of the different Galois connections which arise
in the analysis of formal concepts, in such a way that the algebraic requirements
are directly translated on the fuzzy conjunctors and implications considered in the
underlying multi-adjoint context.

As a result, it turned out that the approach given in (Medina 2012, Medina
et al. 2009) can be applied in more general situations, i.e. the conjunctors and
implications in the multi-adjoint formal context need not form adjoint triples, but
satisfy weaker conditions instead, as it has been shown in several examples.
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Burusco, A. and Fuentes-González, R., 1994. The study of L-fuzzy concept lattice.
Mathware & Soft Computing, 3, 209–218.

Chen, Y. and Yao, Y., 2008. A multiview approach for intelligent data analysis
based on data operators. Information Sciences, 178 (1), 1–20.

Djouadi, Y. and Prade, H., 2011. Possibility-theoretic extension of derivation op-
erators in formal concept analysis over fuzzy lattices. Fuzzy Optimization and
Decision Making, 4, 287–309 10.1007/s10700-011-9106-5.

Dubois, D. and Prade, H., 2011. On possibility theory, formal concept analysis and
granulation: Survey. Applied and Computational Mathematics, 10 (1), 10–19.

Dubois, D. and Prade, H., 2012. Possibility theory and formal concept analysis:
Characterizing independent sub-contexts. Fuzzy Sets and Systems, 196, 4–16.

Düntsch, I. and Gediga, G., 2003. Approximation Operators in Qualitative Data
Analysis. 214–230.

Formica, A., 2012. Semantic Web search based on rough sets and fuzzy formal
concept analysis. Knowledge-Based Systems, 26, 40–47.

Ganter, B. and Wille, R., 1999. Formal Concept Analysis: Mathematical Founda-
tion. Springer Verlag.

Georgescu, G. and Popescu, A., 2004. Non-dual fuzzy connections. Arch. Math.
Log., 43 (8), 1009–1039.

Guo, L., Huang, F., Li, Q. and Zhang, G., 2011. Power contexts and their concept
lattices. Discrete Mathematics, 311 (18-19), 2049–2063.

Lai, H. and Zhang, D., 2009. Concept lattices of fuzzy contexts: Formal concept
analysis vs. rough set theory. International Journal of Approximate Reasoning,
50 (5), 695–707.

Medina, J., 2012. Multi-adjoint property-oriented and object-oriented concept lat-
tices. Information Sciences, 190, 95–106.

Medina, J. and Ojeda-Aciego, M., 2010. Multi-adjoint t-concept lattices. Informa-
tion Sciences, 180 (5), 712–725.

Medina, J. and Ojeda-Aciego, M., 2012. On Multi-Adjoint Concept Lattices Based
on Heterogeneous Conjunctors. Fuzzy Sets and Systems, 208, 95–110.

Medina, J., Ojeda-Aciego, M. and Ruiz-Calviño, J., 2009. Formal concept analysis
via multi-adjoint concept lattices. Fuzzy Sets and Systems, 160 (2), 130–144.

Medina, J., Ojeda-Aciego, M., Valverde, A. and Vojtáš, P., 2004. Towards Biresid-
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