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In this paper, we focus on the framework of Chu correspondences introduced by Mori for
classical formal concept analysis, and we propose a suitable extension of the framework in
a more general and flexible environment based on L-fuzzy sets, and define the notions of
L-Chu correspondence and of L-bond. After introducing the generalized framework, the sets
of L-Chu correspondences and of L-bonds are proved to have the structure of complete lattice
and, furthermore, there exists a natural anti-isomorphism between them.

1. Introduction

Formal concept analysis [11] has become an important and appealing research
topic both from a theoretical perspective [4, 17, 25, 28] and from the applied one.
Concept lattices provide a productive framework for a variety of problems that
arise in knowledge discovery in databases [5, 14, 24], but have found applications
in a lot of different fields: for instance, we can find papers ranging from ontology
merging [9, 23], to the Semantic Web by using the notion of concept similarity [10],
and from processing of medical records in the clinical domain [15] or structuring
phenotypes/genotypes in behavior genetics [7] to the development of recommender
systems [6].

Soon after the introduction of “classical” formal concept analysis, a number of
different approaches for its generalization were introduced and, nowadays, there are
works which extend the theory using ideas borrowed from fuzzy set theory [2, 20] or
fuzzy logic reasoning [1, 8] or from rough set theory [19, 26, 29] or some integrated
approaches such as fuzzy and rough [27], or rough and domain theory [18].

Taking into account that formal concept analysis relies heavily on the notion
of Galois connection, which is a particular instance of adjoint functors, it is not
surprising that several authors have employed the power of the tools of category
theory in order to deepen our understanding of concept lattices [12, 13, 16].

In this paper we focus on the categorical approach to formal concept analysis.
Our approach, broadly continues the research line which links the theory of Chu
spaces with concept lattices [30] but, particularly, is based on the notion of Chu
correspondences between formal contexts developed by Mori in [21, 22]. In Mori’s
papers, the construction of formal concepts associated to a crisp relation between
objects and attributes is shown to induce a functor from the category of Chu corre-
spondences to the category of sup-preserving maps between complete lattices. Our
contribution is the development of a suitable extension of the notions and results
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to the theory of Chu correspondences in an L-fuzzy framework; after introducing
the generalized framework, the sets of L-Chu correspondences and of L-bonds are
proved to have the structure of complete lattice and, furthermore, there exists a
natural anti-isomorphism between them.

2. Preliminary definitions

We will assume that the reader is familiar with standard notions of classical formal
concept analysis [11], such as context and formal concept lattice. For the benefit
of the reader not acquainted with the basics of the fuzzy extensions of the theory
of formal concept analysis, we provide the preliminary notions below.

2.1 L-fuzzy concept lattice

To begin with, the usual set of boolean values of classical logics (containing true
and false), is generalized to the algebraic notion of complete residuated lattice,
which allows to provide suitable extensions in a more abstract environment.

Definition 2.1 An algebra 〈L,∧,∨,⊗,→, 0, 1〉 is said to be a complete residu-
ated lattice if

(1) 〈L,∧,∨, 0, 1〉 is a complete bounded lattice with the least element 0 and the
greatest element 1,

(2) 〈L,⊗, 1〉 is a commutative monoid,
(3) ⊗ and → are adjoint, i.e. a ⊗ b ≤ c if and only if a ≤ b → c, for all

a, b, c ∈ L, where ≤ is the ordering in the lattice generated from ∧ and ∨.

Now, the natural extension of the notion of context is given below.

Definition 2.2 Let L be a complete residuated lattice, an L-fuzzy context is a
triple 〈B,A, r〉 consisting of a set of objects B, a set of attributes A and an L-
fuzzy binary relation r, i.e. a mapping r : B × A → L, which can be alternatively
understood as an L-fuzzy subset of B ×A

We now introduce the L-fuzzy extension provided by Bělohlávek [2, 3], where we
will use the notation Y X to refer to the set of mappings from X to Y .

Definition 2.3 Consider an L-fuzzy context 〈B,A, r〉. A pair of mappings
↑ : LB → LA and ↓ : LA → LB can be defined for every f ∈ LB and g ∈ LA

as follows:

↑ f(a) =
∧
o∈B

(f(o)→ r(o, a)) ↓ g(o) =
∧
a∈A

(
g(a)→ r(o, a)

)
(1)

Lemma 2.4 (See [3]) Let L be a complete residuated lattice, let r ∈ LB×A be an
L-fuzzy relation between B and A. Then the pair of operators ↑ and ↓ form a Galois
connection between 〈LB;⊆〉 and 〈LA;⊆〉, that is, ↑ : LB → LA and ↓ : LA → LB

are antitonic and, furthermore, for all f ∈ LB and g ∈ LA we have f ⊆ ↓↑f and
g ⊆ ↑↓g.

It is important to recall that, given a Galois connection, there exists a natural
notion of closure which is provided below:

Definition 2.5 Consider an L-fuzzy context C = 〈B,A, r〉. An L-fuzzy set of
objects f ∈ LB (resp. an L-fuzzy set of attributes g ∈ LA) is said to be closed
in C iff f =↓↑ f (resp. g =↑↓ g).



August 10, 2009 10:10 International Journal of Computer Mathematics LChuCors-IJCM
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Lemma 2.6 (See [2]) Under the conditions of Lemma 2.4, the following equalities
hold for arbitrary f ∈ LB and g ∈ LA, ↑ f =↑↓↑ f and ↓ g =↓↑↓ g, that is, both
↓↑ f and ↑↓ g are closed in C.

Definition 2.7 An L-fuzzy concept is a pair 〈f, g〉 such that ↑f = g, ↓g = f .
The first component f is said to be the extent of the concept, whereas the second
component g is the intent of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context (B,A, r) will be
denoted as L-FCL(B,A, r).

An ordering between L-fuzzy concepts is defined as follows: 〈f1, g1〉 ≤ 〈f2, g2〉 if
and only if f1 ⊆ f2 if and only if g1 ⊇ g2.

Theorem 2.8 The poset (L-FCL(B,A, r),≤) is a complete lattice where∧
j∈J

〈fj , gj〉 =
〈 ∧

j∈J

fj , ↑
( ∧

j∈J

fj)
〉

∨
j∈J

〈fj , gj〉 =
〈
↓
( ∧

j∈J

gj),
∧
j∈J

gj

〉

2.2 Chu correspondences

We know recall the basic definitions and notations about crisp Chu correspondences
given in [22].

Definition 2.9 A multifunction from X to Y is a mapping f : X → 2Y . Note
that multifunctions are also called correspondences, or set-valued or multiple-valued
functions.

The transposed of a multifunction f : X → 2Y is another multifunction
tf : Y → 2X defined by tf(y) = {x | y ∈ f(x)}.

The set Mfn(X,Y ) of all the multifunctions from X to Y can be endowed with
a poset structure by defining the ordering f1 ≤ f2 as f1(x) ⊆ f2(x) for all x ∈ X.

Given a pair of classical (crisp) contexts, a Chu correspondence defines a sort of
mapping between them, as presented in the definition below:

Definition 2.10 Let Ci = 〈Bi, Ai, Ri〉 (i = 1, 2) be crisp formal contexts. A pair
f = (fl, fr) is called a correspondence from C1 to C2 if fl and fr, respectively,
are multifunctions from B1 to B2 and from A2 to A1.

A correspondence f from C1 to C2 is said to be a weak Chu correspondence
if the following equality holds for every o1 ∈ B1 and a2 ∈ A2∧

y∈fr(a2)

R1(o1, y) =
∧

x∈fl(o1)

R2(x, a2)

A weak Chu correspondence f from C1 to C2 is said to be strong or, simply, a
Chu correspondence if fl(o1) ⊆ B2 is closed in C2 and fr(a2) ⊆ A1 is closed in
C1 for every o1 ∈ B1 and a2 ∈ A2.

3. Extending the framework

3.1 L-fuzzy Chu correspondences

A convenient extension of the notion of multifunction in the framework of L-fuzzy
sets is provided below.
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Definition 3.1 An L-multifunction from X to Y is a mapping ϕ : X → LY .
The transposed of an L-multifunction ϕ : X → LY is an L-multifunction

tϕ : Y → XL defined by tϕ(y)(x) = ϕ(x)(y).
The set L-Mfn(X,Y ) of all the L-multifunctions from X to Y can be en-

dowed with a poset structure by defining the ordering ϕ1 ≤ ϕ2 as ϕ1(x)(y) ≤
ϕ2(x)(y) for all x ∈ X and y ∈ Y .

In the following, we will concentrate in obtaining a suitable generalization of the
previous definitions to the framework L-fuzzy sets. To begin with, let us note that
a given L-fuzzy context r : B×A→ L can be extended to the set of L-fuzzy objects
and attributes as follows. We define a new mapping r̂ : LB ×LA → L such that for
f ∈ LB and g ∈ LA we have

r̂(f, g) =
∧
o∈B
a∈A

(f(o)⊗ g(a)→ r(o, a)).

Lemma 3.2 The previous definition is a suitable generalization of Bělohlávek’s
Galois connection introduced in Defn 2.3.

Proof Given a singleton {x} ⊆ B, consider its characteristic function χx ∈ LB

defined by χx(x) = 1 and χx(o) = 0 for all o ∈ B, o 6= x. Then

r̂(χx, g) =
∧
o∈B
a∈A

(χx(o)⊗ g(a)→ r(o, a))

=
∧
o∈B
o 6=x
a∈A

(χx(o)⊗ g(a)→ r(o, a)) ∧
∧
a∈A

(χx(x)⊗ g(a)→ r(o, a))

=
∧
o∈B
o 6=x
a∈A

(0⊗ g(a)→ r(o, a)) ∧
∧
a∈A

(1⊗ g(a)→ r(x, a))

=
∧
a∈A

(g(a)→ r(x, a))

Therefore, it coincides with Bělohlávek’s definition, in which the element x has
been substituted by the characteristic function χx.

A similar result can be obtained by fixing a singleton in the set of attributes. �

Definition 3.3 Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉, (i = 1, 2), then
the pair ϕ = (ϕl, ϕr) is called a correspondence from C1 to C2 if ϕl and ϕr

are L-multifunctions, respectively, from B1 to B2 and from A2 to A1 (that is,
ϕl : B1 → LB2 and ϕr : A2 → LA1).

The L-correspondence ϕ is said to be a weak L-Chu correspondence if the
equality r̂1(χo1 , ϕr(a2)) = r̂2(ϕl(o1), χa2) holds for all o1 ∈ B1 and a2 ∈ A2. By
unfolding the definition of r̂i this means that∧

a1∈A1

(ϕr(a2)(a1)→ r1(o1, a1)) =
∧

o2∈B2

(ϕl(o1)(o2)→ r2(o2, a2)) (2)

A weak Chu correspondence ϕ is an L-Chu correspondence if ϕl(o1) is closed
in C2 and ϕr(a2) is closed in C1 for all o1 ∈ B1 and a2 ∈ A2. We will denote the
set of all Chu correspondences from C1 to C2 by L-ChuCors(C1, C2).
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Now, we will show that this definition allows us to provide a suitable generaliza-
tion of Mori’s definition of weak Chu correspondence and Chu correspondence as
follows.

Lemma 3.4 Every weak 2-Chu correspondence is a (crisp) weak Chu correspon-
dence. Furthermore, 2-ChuCors(C1, C2) = ChuCors(C1, C2).

Proof Recall that in the classical case, hence we are working with crisp relations.
Then

∧
a1∈ϕr(a2)

r1(o1, a1) =
∧

a1∈ϕr(a2)

(1→ r1(o1, a1))

=
∧

a1∈ϕr(a2)

(ϕr(a2)(a1)→ r1(o1, a1))

=
∧

a1∈A1

(ϕr(a2)(a1)→ r1(o1, a1))

= r̂1(χo1 , ϕr(a2)) (by property (2) of weak L-Chu)

= r̂2(ϕl(o1), χa2) (. . . and by a similar chain of equalities)

=
∧

o2∈ϕl(o1)

r2(o2, a2)

Thus, any weak 2-Chu correspondence is actually a crisp weak Chu correspondence.
The property of being strong is preserved straightforwardly because of the con-

servativeness of the extension of the arrows ↑ and ↓. �

3.2 On bonds and L-bonds

The notion of bond was introduced in [11] as a means of characterizing complete
sublattices of a direct product for which the projection mappings are surjective.
However, our aim in this section is more related to the fact that bonds are mappings
between contexts and, following [22], there might be some relation with the notion
of Chu correspondence between contexts.

Firstly, we recall the classical definition of bond and, then, we extend it to the
L-fuzzy framework.

Definition 3.5 A bond from a context C1 = 〈B1, A1, R1〉 to a context C2 =
〈B2, A2, R2〉 is a relation Rb ⊆ B1 ×A2 for which the following holds:

• {a2 ∈ A2 : (o1, a2) ∈ Rb} is an intent of C2 for every o1 ∈ B1

• {o1 ∈ B1 : (o1, a2) ∈ Rb} is an extent of C1 for every a2 ∈ A2.

Now, we introduce our candidate for the L-fuzzy extension of the notion of bond.

Definition 3.6 An L-bond between two formal contexts C1 = 〈B1, A1, r1〉 and
C2 = 〈B2, A2, r2〉 is a multifunction b : B1 → LA2 satisfying the condition that for
all o1 ∈ B1 and a2 ∈ A2 both b(o1) and tb(a2) are closed L-fuzzy sets of, respectively,
attributes in C2 and objects in C1. The set of all bonds from C1 to C2 is denoted
as L-Bonds(C1, C2).
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4. Relating L-Chu correspondences and L-bonds

Every multifunction b : B1 → LA2 is a relation, thus an L-bond can be seen as a
relation between B1 and A2. This certainly suggests a possible relationship between
L-Chu correspondences and L-bonds.

Definition 4.1 Let C1 = 〈B1, A1, r1〉 and C2 = 〈B2, A2, r2〉 be L-fuzzy contexts:

• Let b : C1 → C2 be an L-bond. We can define a correspondence ϕb : C1 → C2 by

ϕbl(o1) = ↓2 (b(o1)) ∈ LB2 for o1 ∈ B1

ϕbr(a2) = ↑1 (tb(a2)) ∈ LA1 for a2 ∈ A2

• Conversely, consider an L-Chu correspondence ϕ from C1 to C2, and define a
multifunction bϕ : B1 → LA2 by

bϕ(o1) =↑2 (ϕl(o1))

Remark 1 Note that
(
↓1ϕr(a2)

)
(o1) =

(
↑2ϕl(o1))(a2) holds since ϕ is weak Chu.

As a result, we can write the transposed of the bond as tbϕ(a2) =↓1(ϕr(a2)).

The following proposition states that every L-bond defines an L-Chu correspon-
dence, and vice versa.

Proposition 4.2 With the definitions given above

(1) ϕb is an L-Chu correspondence from C1 to C2.
(2) bϕ is an L-bond from C1 to C2.

Proof Both proofs follow as a result of more or less straightforward chains of com-
putations. We will only include one of them.

(1) Let o1 ∈ B1 and a2 ∈ A2. Then

r̂2(ϕbl(o1), χa2) =
∧

o2∈B2

(ϕbl(o1)(o2)→ r2(o2, a2))

=
∧

o2∈B2

(↓2 (b(o1))(o2)→ r2(o2, a2))

= ↑2 (↓2 (b(o1)))(a2)

= b(o1)(a2) = tb(a2)(o1)

= ↓1 (↑1 (tb(a2)))(o1)

=
∧

a1∈A1

(↑1 (tb(a2))(a1)→ r1(o1, a1))

=
∧

a1∈A1

(ϕbr(a2)(a1)→ r1(o1, a1)) = r̂1(χo1 , ϕbr(a2))

�

The previous proposition suggests a close relationship between the notions of L-
Chu correspondence and L-bond between two formal contexts. We continue with
the introduction of several technical lemmas which will be used later.

The first one states that the two mappings between L-bonds and L-Chu corre-
spondences are closely related.
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Lemma 4.3 Let C1 = 〈B1, A1, r1〉 and C1 = 〈B2, A2, r2〉 are two L-fuzzy con-
texts. For all L-Chu correspondences ϕ ∈ L-ChuCors(C1, C2) and for all b ∈ L-
Bonds(C1, C2) holds

(1) bϕb
= b

(2) ϕbϕ
= ϕ.

Proof Let o1 ∈ B1 be an arbitrary object of C1 and a2 ∈ A2 an arbitrary attribute
of C2

(1) bϕb
(o1) =↑2(ϕbl(o1)) =↑2(↓2(b(o1))) = b(o1)

(2) a) ϕbϕl(o1) =↓2(bϕ(o1)) =↓2(↑2(ϕl(o1))) = ϕl(o1)
b) ϕbϕr(a2) =↑1(tbϕ(a2)) =↑1(↓1(ϕr(a2))) = ϕr(a2)

�

Lemma 4.4 Let 〈B,A, r〉 be an L-fuzzy context and (↑, ↓) the mappings defined
in (1). Let fi ∈ LB and gi ∈ LA for all i ∈ I. Then

↓ (
∨
i∈I

gi) =
∧
i∈I

↓ (gi) and ↑ (
∨
i∈I

fi) =
∧
i∈I

↑ (fi)

Proof Let o ∈ B be an arbitrary object.

↓
(∨

i∈I

(gi)
)
(o) =

∧
a∈A

(∨
i∈I

gi(a)→ r(o, a)
)

=
∧
a∈A

∧
i∈I

(
gi(a)→ r(o, a)

)
=
∧
i∈I

( ∧
a∈A

(gi(a)→ r(o, a))
)

=
∧
i∈I

(
↓ (gi)(o)

)

The second equality is proved similarly. �

Lemma 4.5 Let C1, C2 be L-fuzzy formal contexts, and let bi ∈ L-Bonds(C1, C2)
for all i ∈ I, and consider the following operations

• (
∧

i∈I bi)(o) =
∧

i∈I(bi(o)) for all o ∈ B1.
• (
∨

i∈I bi)(o) =↑2↓2 (
∨

i∈I(bi(o))) =↑2 (
∧

i∈I ↓2 (bi(o))) for all o ∈ B1.

The previous operations provide L-Bonds(C1, C2) with a complete lattice structure.

Proof

(1) Let o1 ∈ B1 be an arbitrary object and, firstly, let us prove that
∧

i∈I bi(o1)
is closed.

Note that
∧

i∈I(bi(o1)) ⊆ bi(o1) for all i ∈ I and that, by monotonicity of
the arrows and closedness of bi(o1), we have

↑2↓2 (
∧
i∈I

(bi(o1))) ⊆ ↑2↓2 (bi(o1)) = bi(o1) for all i ∈ I
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The closedness of
∧

i∈I bi(o1) is proved by showing the two inclusions:

↑2↓2 (
∧
i∈I

(bi(o1))) ⊆
∧
i∈I

bi(o1) follows from properties of infimum

↑2↓2 (
∧
i∈I

(bi(o1))) ⊇
∧
i∈I

bi(o1) follows from properties of closure operator.

The closedness of the transposed follows from the fact that t(
∧

i∈I bi) =∧
i∈I

tbi. Now, the same procedure can be applied in order to show that
↓1↑1 (

∧
i∈I(tbi(a2))) =

∧
i∈I

tbi(a2) for arbitrary a2 ∈ A2.
(2) Similar. The main point is that, as

∨
i∈I(bi(o1)) needs not be closed in LA2 ,

its closure has to be considered.

�

Lemma 4.6 Let C1, C2 be L-fuzzy formal contexts. L-ChuCors(C1, C2) is a com-
plete lattice in which, for ϕli ∈ L-ChuCors(C1, C2) for all i ∈ I, the infimum and
the supremum are defined as follows:

(1) (
∧

i∈I ϕli)(o) =
∧

i∈I(ϕli(o)) for all o ∈ B1.
(2) (

∨
i∈I ϕli)(o) =↑2↓2 (

∨
i∈I(ϕli(o))) for all o ∈ B1.

Proof We will only prove that the constructions given in the statement really are
L-Chu correspondences.

(1) The property of weak Chu correspondence is proved below:

r̂1(χo1 ,
∧
i∈I

ϕri
(a2)) = r̂1

(
χo1 ,

∧
i∈I

↑1 (tbi(a2))
)

= r̂1(χo1 , ↑1 (
∨
i∈I

tbi(a2)))

=
∧

a1∈A1

(↑1 (
∨
i∈I

tbi(a2))(a1)→ r1(o1, a1))

=↓1↑1 (
∨
i∈I

tbi(a2))(o1) =
∨
i∈I

tbi(a2)(o1)

=
∨
i∈I

bi(o1)(a2) =↑2↓2 (
∨
i∈I

bi(o1)(a2))

=↑2
∧
i∈I

(↓2 (bi(o1)(a2)))

=
∧

o2∈B2

(
∧
i∈I

↓2 (bi(o1))(o2)→ r2(o2, a2))

= r̂2(
∧
i∈I

↓2 (bi(o1)), χa2) = r̂2(
∧
i∈I

ϕl(o1), χa2)

Finally, as the intersection of closed sets is closed, the we have defined
indeed a strong L-Chu correspondence.

(2) In this second case, the strong property arises directly from the definition,
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and we only have to focus on the weak property of L-Chu correspondence:

r̂1(χo1 , ↑1↓1
(∨

i∈I

ϕri
(a2)

)
) =

∧
a1∈A1

(
↑1↓1

(∨
i∈I

ϕri
(a2)

)
(a1)→ r1(o1, a1)

)
=↓1↑1↓1

(∨
i∈I

ϕri
(a2)

)
(o1)

=↓1↑1
(∧

i∈I

↓1
(
ϕri

(a2)
))

(o1)

=↓1↑1
(∧

i∈I

tbϕri
(a2)

)
(o1)

=
∧
i∈I

tbϕri
(a2)(o1) =

∧
i∈I

bϕli
(o1)(a2)

=↑2↓2
(∧

i∈I

bϕli
(o1)

)
(a2)

=↑2↓2
(∧

i∈I

↑2
(
ϕli(o1)

))
(a2)

=↑2↓2↑2
(∧

i∈I

ϕli(o1)
)
(a2)

=
∧

o2∈B2

(
↓2↑2

(∨
i∈I

ϕli(o1)
)
(o2)→ r2(o2, a2)

)
= r̂2(↓2↑2

(∨
i∈I

ϕli(o1)
)
, χa2)

�

The mapping which assigns the bond bϕ to each Chu correspondence ϕ (see
Defn 4.1) is a strong link between L-Chu correspondences and L-bonds. We will
prove below that it is actually an order-reversing lattice isomorphism between
L-ChuCors(C1, C2) and L-Bonds(C1, C2).

Theorem 4.7 The lattice L-ChuCors(C1, C2) and the opposite lattice of L-bonds
L-Bonds(C1, C2)∗ are isomorphic.

Proof As stated above, the isomorphism is defined by the mapping which assigns
the bond bϕ to each Chu correspondence ϕ. The details of the prove that it is a
lattice isomorphism are the following:

(1) The mapping is a bijection as a consequence of Lemma 4.3.
(2) Let us consider two arbitrary Chu correspondences (ϕl1, ϕr1) and (ϕl2, ϕr2),

such that ϕl1(o1) ≤ ϕl2(o1) and ϕr1(a2) ≤ ϕr2(a2) for all o1 ∈ B1 and
a2 ∈ A2.

Because of antitonicity of ↑2 and ↓1, the ordering in L-Bond(C1, C2) is
reversed, and we obtain

bϕl1(o1) =↑2 (ϕl1(o1)) ≥ ↑2 (ϕl2(o1)) = bϕl2(o1) and
tbϕr1(a2) =↓1 (ϕr1(a2)) ≥ ↓1 (ϕr2(a2)) = tbϕr2(a2).

(3) Finally, we show how the mapping behaves with respect to suprema and
infima. Firstly, we see that the image of a supremum is the infimum of the
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images.

bW
i∈I ϕi

(o1) =↑2 ((
∨
i∈I

ϕli)(o1)) =↑2 (↓2↑2 (
∨
i∈I

(ϕli(o1))))

=↑2↓2 (
∧
i∈I

(↑2 (ϕli(o1)))) =↑2↓2 (
∧

(bϕli
(o1))) =

∧
i∈I

bϕi
(o1)

Secondly, we see that the image of an infimum is the supremum of the
images.

bV
i∈I ϕi

(o1) =↑2 ((
∧
i∈I

ϕli)(o1)) =↑2 (
∧
i∈I

(ϕli(o1)))

=↑2 (
∧
i∈I

↓2↑2 (ϕli(o1))) =↑2↓2 (
∨
i∈I

↑2 (ϕli(o1)))

=↑2↓2 (
∨
i∈I

(bϕi
(o1))) = (

∨
i∈I

bϕi
)(o1)

�

5. Conclusion

We have introduced a generalized approach of Chu correspondences in the context
of L-fuzzy sets. The notions of L-Chu correspondence and L-bond have been defined
and the sets of L-Chu correspondences and L-bonds have been shown to have
the structure of complete lattice. Finally, given two contexts C1 and C2, we have
proved that there exists a lattice anti-isomorphism between L-ChuCors(C1, C2)
and L-Bonds(C1, C2).
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