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Abstract. Adjoint pairs or adjoint triples defined on lattices have proven
to be a useful tool when working in fuzzy formal concept analysis. This
paper shows that adjoint pairs and triples can play as well an important
role within the framework of multilattices, especially in order to form
the Galois connections needed to build concept multilattices.
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1 Introduction

The notion of adjoint pairs (or adjoint triples) has been fruitfully used in areas
such as extended logic programming or fuzzy formal concept analysis, as an im-
portant tool to deal with uncertainty, imprecise data or incomplete information
which provides different fuzzifications of the classical framework of these theo-
ries, by considering arbitrary complete residuated lattices as underlying set of
truth values.

In the literature we can find many approaches which fuzzify the classical
concept lattices given by Ganter and Wille [11] allowing some uncertainty in data
as we can see in the papers of Burusco and Fuentes-González [4] where fuzzy
concept lattices were first presented, and later further developed by Pollandt [20]
and Bělohlávek [1] or the work of Georgescu and Popescu [12] which allows non-
commutative operators. Bělohlávek [2] provided a further method to extend the
fuzzy concept lattice by using L-equalities. This approach was later extended in
an asymmetric way, although only for the case of classical equality (L = {0, 1})
by Krajči, who introduced the so-called generalized concept lattices in [15,14].

We can also cite another approach proposed by Medina et al in [19,18] which
introduces the multi-adjoint concept lattices, joining the multi-adjoint philoso-
phy with concept lattices. To do this the authors needed to generalize the adjoint
pairs into what they called adjoint triples [6].
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All these approaches have in common that the underlying set of values are
lattices; recently, in [21] the construction of concept lattice was given on the
more general structure called multilattice, where the restrictions imposed on a
(complete) lattice, namely, the “existence of least upper bounds and greatest
lower bounds” is relaxed to “existence of minimal upper bounds and maximal
lower bounds” is relaxed to the existence if minimal (maximal) elements of the
upper(lower) bounds of the subsets.

This is not merely another mathematical abstraction, but a way to reflect the
fact that, in real life, there are many things which cannot be compared, in the
sense that ones are better than others. And this also applies to the “best” upper
bounds of a set. This idea is what led us to consider multilattices as underlying
set of truth values in our work in formal concept analysis.

The theory of multilattices is not a new one since there was a first definition
used in [3,13]. This definition was improved later by Cordero et al in [5,16],
with the original aim of providing some advances to the theory of mechanized
deduction in temporal logics.

Multilattices, in the sense of the paragraph above, also arise in a natural man-
ner in the research area concerning fuzzy extensions of logic programming [17].
For instance, one of the hypotheses of the main termination result for sorted
multi-adjoint logic programs [7] has been weakened only when the underlying
set of truth-values is a multilattice [8].

Back to formal concept analysis, the authors introduced in [21] the fuzzy
concept multilattice, but the question on how to form the Galois connections to
build them was still open.

In this paper, we show that the usual concept forming operators when work-
ing on an adjoint triple, directly generate a Galois connection, regardless the
underlying framework being that of multilattices. Technically, the point is a
suitable generalization of the notion of left-continuity used by Krajči in [15,14]
to the framework multilattices. This generalization together with some bound-
ary conditions is proved to be equivalent, as in the lattice-based case, to the
existence of adjoint triples and ensures the existence of the Galois connections.

The plan of this paper is the following: in Section 2 we present the main
definitions and results to understand the paper. Section 3 presents the formal
concept multilattice together with their first properties, while in Section 4 we
give the properties needed for the forming concept operators to form Galois con-
nections; the paper ends with a worked example, some conclusions and prospects
for future work.

2 Preliminaries

In order to make this paper self-contained, this section introduces several well
known notions of lattice theory as a starting point to consider later their exten-
sions defined on multilattices; we will recall some parts of the Galois connection
theory, as well.



Definition 1. A complete lattice is a poset, (L,�), where every subset of L has
supremum and infimum.

The definition of semilattice arises when, instead of the existence of both
supremum and infimum for every subset, we only ask for the existence of one of
them (either supremum or infimum). A multilattice is an structure that gener-
alizes the notions of lattice and semilattice. Before introducing its definition, we
will recall some notions which we will use to in the definition of multilattices.

Definition 2. Let (P,≤) be a poset and K ⊆ P , we say that:

– K is an antichain if its elements are pairwise uncomparable, i.e., for every
x, y ∈ K we have that x � y and y � x.

– K is a chain if for pair x, y ∈ K we have either x ≤ y or y ≤ x.
– (P,≤) is called coherent if every chain has supremum and infimum.

Definition 3. A complete multilattice is a coherent poset without infinite an-
tichains, (M,≤), where for every subset, the set of its upper (lower) bounds has
minimal (maximal) elements.

Each minimal (maximal) element of the upper (lower) bounds of a subset is
called multisupremum (multinfimum). The set of all multisuprema (multinfima)
will be denoted by multisup (multinf).

Example 1. Figure 1 shows the Hasse diagram of the smaller multilattice which
is not a lattice. This multilattice is denoted as M6.

•
⊥
�
�
�
• b

@
@
@
•

a

• d@
@
@

•c

��
��

��HH
HHHH

•
>

�
�
�

Fig. 1. Multilattice (M6,≤)

We can check that, given the subset {a, b}, there is just one multiinfimum
(which coincides with the infimum), since multinf{a, b} = {⊥}, and the multi-
suprema are multisup{a, b} = {c, d}, hence, there is not a supremum but two
multisuprema {c, d}. Moreover, if we consider the subset {c, d} we have that
multinf{c, d} = {a, b}, then there is not an infimum but two multiinfima {a, b}
and multisup{a, b} = {>}.

The notion of Galois connection [9,10], which we recall here, will play a key
role hereafter.



Definition 4. Let ↓ : P → Q and ↑ : Q → P be two maps between the posets
(P,≤) and (Q,≤). The pair (↑, ↓) is called a Galois connection if:

– p1 ≤ p2 implies p2
↓ ≤ p1

↓ for every p1, p2 ∈ P ;
– q1 ≤ q2 implies q2

↑ ≤ q1
↑ for every q1, q2 ∈ Q;

– p ≤ p↑↓ and q ≤ q↓↑ for all p ∈ P and q ∈ Q.

An interesting property of a Galois connection (↑, ↓) is that ↓ = ↓↑↓ and
↑ = ↑↓↑ where the chain of arrows means their composition.

Once we have a Galois connection we can focus on the pairs of elements (p, q)
which are the image of each other by the application of the corresponding arrow.
These pairs are called concepts, as stated in the following definition.

Definition 5. A pair (p, q) is called a concept if p↓ = q and q↑ = p.

In the case that P and Q are lattices, the following result holds as well.

Theorem 1 ([9]). Let (L1,�1) and (L2,�2) be two complete lattices and (↑, ↓)
a Galois connection between them, then we have that the set C = {(x, y) | x ∈
L1, y ∈ L2 with x↓ = y, y↑ = x} is a complete lattice with the following ordering
(x1, y1) � (x2, y2) if and only if x1 �1 x2 (or equivalently y2 �2 y1), where the
supremum and the infimum are given below:
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The main aim in the next section will be to generalize the theorem above by
considering multilattices.

3 Fuzzy formal concept multilattices

The fuzzy formal concept multilattices were introduced in [21], in this section
we recall the main definitions and results. From now on, two sets A and B, and
two multilattices (M1,≤1) and (M2,≤2) will be fixed. Moreover, we will denote
by MA

1 and MB
2 the sets of all mappings from A to M1 and from B to M2

respectively.
The following proposition is a technical result which shows some extra dif-

ferences with respect to the standard theory of lattices.

Proposition 1 ([21]). Let (M1,≤1) and (M2,≤2) be two complete multilat-
tices, A and B two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 . If

{(gi, fi)}i∈I is a set of concepts we have that

multinf{fi
↓ | i ∈ I} ⊆ (multisup{fi | i ∈ I})↓ (1)



multinf{gi
↑ | i ∈ I} ⊆ (multisup{gi | i ∈ I})↑ (2)

where (multisup{fi | i ∈ I})↓ = {f↓mult | fmult ∈ multisup{fi | i ∈ I}} and
(multisup{gi | i ∈ I})↑ is given similarly.

We cannot get always the equality in this theorem as we can see If we consider
the multilattice of Figure 1 and the following Galois connection, ↑ = ↓ : M6 →
M6 defined by:

⊥↑ = > ; a↑ = b↑ = c↑ = c ; d↑ = ⊥ ; >↑ = ⊥

It is routine to prove that the pair (↑, ↓) is a Galois connection. On one hand,
we obtain that

multinf{a↑, b↑} = multinf{c} = c

however, on the other hand:

(multisup{a, b})↑ = ({c, d})↑ = {c↑, d↑} = {c,⊥}

which proves that we cannot always get the equality.
As a consequence of the previous proposition, one obtains that, given the set

of all concepts C = {(g, f) | f ∈MA
1 , g ∈MB

2 , g↑ = f, f↓ = g}, and the ordering
defined as (g1, f1) ≤ (g2, f2) if and only if g1 ≤1 g2 (if and only if f2 ≤2 f1),
then this set is a complete multilattice which is a result similar to Theorem 1,
but now with respect to multilattices.

Theorem 2 ([21]). If (M1,≤1) and (M2,≤2) be two complete multilattices, A
and B two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 , then we have

that (C,≤) is a complete multilattice where for every set of concepts {(gi, fi)}i∈I :

multinf{(gi, fi)} = (multinf{gi}, (multinf{gi})↑) (3)
multisup{(gi, fi)} = ((multinf{fi})↓, multinf{fi}) (4)

Hence, with multilattices we obtain a concept multilattice, although if one
of the multilattices is, indeed, a lattice, then we obtain a concept lattice.

Proposition 2 ([21]). Considering the framework of the previous theorem, if
(M1,≤1) or (M2,≤2) is a lattice, then (C,≤) is a lattice.

Therefore, given a Galois connection on multilattices, the set of concepts
associated with this connection forms a complete multilattice. The next step is to
use this result in order to obtain information from a specific relational database,
considering the flexibility of multilattices, in a similar way as in formal concept
analysis. This will be the aim of the following section.



4 Concept-forming operators on multilattices

This section studies some conditions which guarantee that the concept-forming
operators on multilattices, defined using the same syntactical form than the
extension and intension operators of fuzzy concept lattices, form a Galois con-
nection.

The property that we need to require is a generalization of the left-continuity
given by Krajči in [15].

Definition 6. Let (M1,�1), (M2,�2) be two multilattices and (P3,≤) a poset,
and &: M1 ×M2 → P3 a mapping between them, we say that & is:

1. left-continuous in the first argument if for every non-empty subset K1 ⊆M1

and elements m2 ∈ M2 and p ∈ P such that k & m2 ≤ p for every k ∈ K1,
then for every m1 ∈ multisup{K1}, we have that m1 & m2 ≤ p.

2. left-continuous in the second argument if for every non-empty subset K2 ⊆
M2 and elements m1 ∈ M1 and p ∈ P such that m1 & k ≤ p for every
k ∈ K2, then for every m2 ∈ multisup{K2} we have that m1 & m2 ≤ p.

3. left-continuous if it is left-continuous in both arguments.

The previous property can be weakened by not assuming that each multisuprema
must satisfy the inequality, but at least some of them. Formally, & is

1’. soft left-continuous in the first argument if for every non-empty subset K1 ⊆
M1 and elements m2 ∈M2 and p ∈ P such that k & m2 ≤ p for every k ∈ K1,
then there exists m1 ∈ multisup{K1} satisfying m1 & m2 ≤ p.

2’. soft left-continuous in the second argument if for every non-empty subset
K2 ⊆M2 and elements m1 ∈M1 and p ∈ P such that m1 & k ≤ p for every
k ∈ K2, then there exists m2 ∈ multisup{K2} satisfying m1 & m2 ≤ p.

3’. soft left-continuous if it is soft left-continuous in both arguments.

Alternatively, given elements m2 ∈M2 and p ∈ P , if we denote by X1 the subset
of M1 of elements m1 satisfying m1 & m2 ≤ p, then

– & is left-continuous in the first argument if multisup{K1} ⊆ X1 for all
non-empty subset K1 ⊆ X1.

– & is soft left-continuous in the first argument if multisup{K1} ∩X1 6= ∅
for all non-empty subset K1 ⊆ X1.

Similarly for (soft) left-continuity in the second argument.
It is obvious that left-continuity implies soft left-continuity; moreover, both

definitions collapse in the left-continuity used by Krajči when working with lat-
tices.

Example 2. Given the multilattice given in Fig. 2 , we can consider the conjunc-
tor &: M6∗ ×M6∗ →M6∗, defined as

x & y =


x if y = >
y if x = >
⊥ if x ∈ {⊥, b} or y ∈ {⊥, b}
a otherwise
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Fig. 2. Multilattice (M6∗,�)

for all x, y ∈M6∗.
This conjunctor is commutative. Moreover, & is soft left-continuous although

it is not left-continuous.
For instance, if we consider K = {a, b}, y = > and z = c, we obtain that

a &> = a � c, b &> = b � c

but d ∈ multisup{K} and d &> = d 6� c. Therefore, & is not left-continuous.
However, & is soft left-continuous. It is easy to check that, given y, z ∈M6∗,

for any non-empty subset K ⊆M6∗, such that k & y � z, for every k ∈ K, then
there exists k∗ ∈ multisup{K} satisfying that k∗& y � z.

Since & is commutative, we also obtain that it is left-continuous in the second
argument.

Now, following [19], left-continuity will be related to the notion of adjoint
triples [6], which are formed by three mappings: a non-commutative conjunctor
and two residuated implications that satisfy the well-known adjoint property.

Definition 7. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:4

x ≤1 z ↙ y iff x & y ≤3 z iff y ≤2 z ↖ x

where x ∈ P1, y ∈ P2 and z ∈ P3.

These operators are an straightforward generalization of a t-norm and its
residuated implication. In particular, the Gödel, product and  Lukasiewicz t-
norms together with their residuated implications form adjoint triples.

When working in the framework of lattices, in [19] it was proven that if the
left-continuous operator satisfies that it is increasing in both arguments and the

4 Note that the antecedent will be evaluated on the right side, while the consequent
will be evaluated on the left side, as in logic programming framework.



following boundary conditions ⊥1 & y = ⊥3 and x &⊥2 = ⊥3 hold, then it is
an adjoint triple, and vice versa, the conjunctor in every adjoint triple is always
left-continuous and satisfies the previous properties.

In the following results we aim at proving a similar relation between the soft
left-continuity and the adjoint triples defined on multilattices.

Proposition 3. Let (M1,�1), (M2,�2) and (M3,�3) be three multilattices and
&: M1 ×M2 → M3 a soft left-continuous operator satisfying ⊥1 & y = ⊥3 and
then for every y ∈ M2 and z ∈ M3 the set X = {x ∈ M1 | x & y �3 z} has a
maximum element.

Similarly, assuming the boundary condition x &⊥2 = ⊥3, we have that for
every x ∈M1 and z ∈M3 the set Y = {y ∈M2 | x & y �3 z} has a maximum.

Proof. X is a non-empty set since it is easy to see that at least ⊥1 ∈ M1. By
construction of X we have that for every x ∈ X we have that x & y �3 z, by
definition of soft left-continuity we have that there is x1 ∈ multisup{X} such
that x1 & y ≤ z, so x1 ∈ X. Therefore, multisup{X} = {x1} and x1 is the
maximum of X.

The proof for Y is similar. ut

The following result provides the equivalence between adjoint triples and soft
left-continuous conjunctors.

Theorem 3. Let (M1,�1), (M2,�2) and (M3,�3) be three multilattices and
&: M1 ×M2 →M3 an operator which is increasing in both arguments, then the
following conditions are equivalent:

1. & is soft left-continuous and ⊥1 & y = ⊥3 and x &⊥2 = ⊥3.
2. There exist ↙ : M3 ×M2 → M1, ↖ : M3 ×M1 → M2 such that (&,↙,↖)

is an adjoint triple.

Proof. (1) implies (2). We have to define a suitable pair of implications, and
check the adjoint properties.

For every y ∈ M2 and z ∈ M3, we have that the set Xy,z = {x ∈ M1 |
x & y �3 z} has a maximum by Proposition 3. So we can define.

z ↙ y = max{Xy,z} = max{x ∈M1 | x & y � z}

Assume x ∈ M1, y ∈ M2 and z ∈ M3 are elements satisfying x & y �3 z,
then x belongs to the set Xy,z, so x �1 max{Xy,z} = z ↙ y.

Conversely, let x ∈ M1, y ∈ M2 and z ∈ M3 elements satisfying x �1 z ↙ y
and consider the set Xy,z. This set has maximum, by Proposition 3, which is
z ↙ y so we have that (z ↙ y) & y �3 z, but x �1 z ↙ y and & is increasing in
the first argument so

x & y �3 (z ↙ y) & y �3 z

If we define, for every x ∈M1 and z ∈M3, z ↖ x = max{y ∈M2 | x & y � z}
we can prove, in a similar way, that ↖ satisfies all the conditions required.

So we obtain that (&,↙,↖) is an adjoint triple.



(2) implies (1).
Let us consider y ∈ M2 and z ∈ M3 and the non-empty subset Xy,z = {x ∈

M1 | x & y �3 z}. Given x ∈ Xy,z, then x & y �3 z and, applying the adjoint
property, x �1 z ↙ y holds, for every x ∈ Xy,z. Therefore, z ↙ y belongs to the
upper bounds of Xy,z.

Hence, as M1 is a multilattice, there is x1 ∈ multisup{Xy,z}, such that x1 �1

z ↙ y and, applying the adjoint property again, we have that there exists x1 ∈
multisup{Xy,z} such that x1 & y �3 z.

Finally, we prove the boundary conditions. Since ⊥1 �1 ⊥3 ↙ y, for all
y ∈ M2, then, applying the adjoint property, we obtain ⊥1 & y �3 ⊥3, which
leads us to ⊥1 & y = ⊥3. The other equality follows similarly.

Thus, & is soft left-continuous in the first argument. The proof for soft left-
continuous in the second argument can be proven analogously.

Therefore we have that & is soft left-continuous. ut

Now that we have proven this equivalence we will go on in our purpose of
defining the forming concept operators. Hence, we consider an adjoint triple
(&,↙,↖) with respect to three multilattices (M1,�1), (M2,�2), (M3,�3),
and a context, that is, a tuple (A, B,R), where A and B are non-empty sets
(usually interpreted as attributes and objects, respectively) and R is a M3-fuzzy
relation R : A×B →M3.

The following result shows that the usual syntactic structure of the forming
concept operators works on multilattices.

Theorem 4. Given three multilattices (M1,�1), (M2,�2) and (M3,�3), an ad-
joint triple between them (&,↙,↖), and g ∈ MB

2 and f ∈ MA
1 , we have that

there exist

inf{R(a, b)↙ g(b) | b ∈ B} and inf{R(a, b)↖ f(a) | a ∈ A}

Proof. As we are working on multilattices we have guaranteed the existence of
the sets of multinfima of these subsets, the idea is to prove that those sets are
actually singletons, leading to the existence of infimum.

Given x1 and x2 ∈ multinf{R(a, b) ↙ g(b) | b ∈ B}, we have that x1 �1

R(a, b)↙ g(b) and x2 �1 R(a, b)↙ g(b), for every b ∈ B. Since (&,↙,↖) is an
adjoint triple, we obtain that x1 & g(b) �3 R(a, b) and x2 & g(b) �3 R(a, b), for
every b ∈ B.

By Theorem 3, we can use that & is soft left-continuous, then there exists
x ∈ multisup{x1, x2}, such that x & g(b) �3 R(a, b). Hence, as (&,↙,↖) is an
adjoint triple, we have that x �1 R(a, b) ↙ g(b), for every b ∈ B. Hence, x is a
lower bound of the set {R(a, b)↙ g(b) | b ∈ B}; as x1 and x2 are maximal lower
bounds, we obtain that x = x1 = x2. Thus, all multinfima collapse in one and,
so, there is an infimum.

The proof for the other set is similar. ut



As a consequence of the previous result, we can define the following mappings
↑ : MB

2 →MA
1 and ↓ : MA

1 →MB
2 as follows:

g↑(a) = inf{R(a, b)↙ g(b) | b ∈ B} (5)
f↓(b) = inf{R(a, b)↖ f(a) | a ∈ A} (6)

Applying the previous theorem on the just defined mappings we get the
following:

Corollary 1. Given three multilattices (M1,�1), (M2,�2) and (M3,�3), an
adjoint triple between them (&,↙,↖), and g ∈MB

2 and f ∈MA
1 , we have that

there exist the infimum of the sets

{R(a, b)↖ g↑(a) | b ∈ B}
{R(a, b)↙ f↓(b) | a ∈ A}

Now, we know that the usual pair of derivation operators is well-defined even
in the framework of multilattices, and can state and prove the main result in
this work:

Theorem 5. The pair (↑, ↓) is a Galois connection between MA
1 and MB

2 .

Proof. The mapping ↑ is decreasing: consider g1 �2 g2 since ↖ is decreasing in
the second argument we would have, for all b ∈ B,

R(a, b)↙ g2(b) �1 R(a, b)↙ g1(b)

By Theorem 4, both subsets {R(a, b) ↙ gi(b) | b ∈ B} have infimum (the
definition of g↑). Therefore, we obtain g↑2 �1 g↑1 .

Similarly, we obtain that ↓ is decreasing.
Now we will prove that g �2 g↑↓ for every g ∈MB

2 . Given a ∈ A and b ∈ B,
by definition of g↑(a), we have that, g↑(a) �1 R(a, b)↙ g(b). Now, by the adjoint
property, we obtain that this is equivalent to g(b) �2 R(a, b)↖ g↑(a), for every
a ∈ A. Therefore, by Corollary 1, the inequality is obtained:

g(b) �2 inf{R(a, b)↖ g↑(a)} = g↑↓(b)

The proof for f ≤1 f↓↑, for every f ∈MA
1 , is similar to the previous one. ut

5 A worked example

Imagine that we are going to travel to a city and we have to decide which
hotel is the best for us. In this example, in order not to complicate the calcu-
lation we will take into account seven different hotels, as objects, and two at-
tributes, which will be price and location. Hence, we have as set of objects B =
{H1, H2, H3, H4, H5, H6, H7} and as set of attributes A = {price, location},
both evaluated in M6∗ and the M6∗-fuzzy relation, R : A×B →M6∗, between
them, defined in Table 1:



Table 1. Relation R

R price location

H1 d ⊥
H2 c a
H3 > b
H4 a d
H5 b e
H6 a b
H7 d c

Evaluating the hotels in a multilattice comes from the idea that the hotels
are ordered thinking of the number of stars they have. We can state, for example
that any four-star hotel is better than any three-star hotel, but if both hotels
are four-star ones we cannot distinguish between them at the beginning.

In the case of the location, we can say some locations are better than others
but we cannot compare locations that are, for example, one kilometer far from
downtown but in different directions.

Concerning prices, something similar occurs in that we cannot distinguish
between prices which are alike.

If we look at the relation in Table 1, the values R(H5, price) = b and
R(H6, price) = a mean that the hotels H5 and H6 have similar prices but
we cannot decide which is best taking into account just this attribute. This is an
example of the underlying usefulness of using multilattices for their evaluation.

We are trying to choose a hotel to stay in according to our preferences
in prizes and location. For instance, if our preferences are: g0(price) = a and
g0(location) = d, then we can consider the Galois connection (↑, ↓) and the mul-
tilattice concept (C,�) associated with the multilattice, the adjoint triple and
the context, and compute the concept that better interprets our preferences.

Let us consider, on the multilattice M6∗, the conjunctor &, given in Ex-
ample 2. Since & is soft left-continuous and ⊥& y = ⊥ and x &⊥ = ⊥, for
all x, y ∈ M6∗, then, by Theorem 3, there exist ↙ : M6∗ × M6∗ → M6∗,
↖ : M6∗ × M6∗ → M6∗ such that (&,↙,↖) is an adjoint triple. Moreover,
as & is commutative, ↙=↖. It is routine calculation that this mapping is ex-
actly:

z ↙ y = z ↖ y =


> if y ≤ z

z if y = >
b if y /∈ {⊥, b,>} and z ∈ {⊥, b}
e otherwise

Furthermore, given a context, by Theorem 5, the maps ↑ : (M6∗)B → (M6∗)A,
↓ : (M6∗)A → (M6∗)B , defined as in Equations (5) and (6) form a Galois con-
nection, and so, by Theorem 2, the pair (C,�) is a complete multilattice, where
C = {(g, f) | f ∈ (M6∗)A, g ∈ (M6∗)B , g↑ = f, f↓ = g} is the set of concepts.



Now, given the adjoint triple above (&,↙,↖), we will use the context in
Table 1 to get practical information when we are trying to choose a hotel for our
holidays.

Applying the definitions of the concept forming operators, we obtain for H1:

g↑0(H1) = inf{d↙ a,⊥ ↙ d} = inf{>, b} = b

And for the others:

g↑0(H2) = e , g↑0(H3) = b , g↑0(H4) = > , g↑0(H5) = b , g↑0(H6) = b , g↑0(H7) = e

On the other hand, we have that

g↑↓0 (price) = inf{d↖ b, c↖ e,> ↖ b , a↖ >, b↖ b, a↖ b, a↖ e}
= inf{>,>, a,>, e, e} = a

In a similar way we obtain that g↑↓0 (location) = d. Thus, according to our pref-
erence established by g0, we have that our best choice is H4, although H2 and
H7 are really good ones too.

6 Conclusions and future work

We have proved that the structure of adjoint triple allows for constructing Galois
connections on multilattices following strictly the same syntactic definitions as
those in the framework of lattices. The key observation has been the notion
of soft left-continuity which, under certain conditions, has been shown to be
equivalent to that of adjoint triple.

As future work, on the one hand, it is worth to consider other possible con-
structions of Galois connections stemming from the use of multilattices, i.e.
when not working on a structure given by an adjoint triple, or without soft
left-continuity; on the other hand, we will focus on obtaining a representation
theorem for fuzzy concept multilattices.
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14. S. Krajči. The basic theorem on generalized concept lattice. In V. Snásel and
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