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Abstract. A category L-ChuCors of L-Chu correspondences between
formal L-fuzzy contexts provides a categorical view on Formal Con-
text Analysis. In this paper some interesting and useful properties are
shown. The main target of this paper is to introduce a functor between
L-ChuCors and a category of supremum preserving mappings between
completely L-ordered sets.

1 Introduction

Formal concept analysis (FCA) introduced by Ganter and Wille [7] has be-
come an extremely useful theoretical and practical tool for formally describing
structural and hierarchical properties of data with “object-attribute” charac-
ter. Bělohlávek in [2, 3] provided an L-fuzzy extension of the main notions of
FCA, such as context and concept, by extending its underlying interpretation
on classical logic to the more general framework of L-fuzzy logic [9].

We aim at formally describing some structural properties of intercontextual
relationships [8,14] of L-fuzzy formal contexts by using category theory [1]. Our
approach, broadly continues the research line which links the theory of Chu
spaces with concept lattices [17] but, particularly, is based on the notion of Chu
correspondences between formal contexts developed by Mori in [15,16]. In Mori’s
papers, the construction of formal concepts associated to a crisp relation between
objects and attributes is shown to induce a functor from the category of Chu cor-
respondences to the category of sup-preserving maps between complete lattices.
The category L-ChuCors is formed by considering the class of L-fuzzy formal
contexts as objects and the L-fuzzy Chu correspondences as arrows between ob-
jects. The main result here is to introduce a functor between L-ChuCors and a
category of supremum preserving mappings between completely L-ordered sets.

In order to obtain a mostly self-contained document, the next section intro-
duces the basic definitions concerning the L-ordered sets, the L-fuzzy extension
of formal concept analysis, as well as those concerning L-Chu correspondences
and L-bonds, the main results on these topics are stated too. The core of the
paper starts at Section 3 with the introduction of the internal Hom functor
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C1 ( C2 between L-fuzzy contexts C1 and C2, then a Galois functor is defined
between the categories L-ChuCors and Slat; finally, the results of the two previ-
ous sections are merged in order to generate a new functor between L-ChuCors
and L-Slat.

2 Preliminaries

In this section we introduce the preliminary definitions concerning L-fuzzy formal
concept analysis, mainly following Bělohlávek’s approach [2], and the results
about L-Chu correspondences on which the present work is built [12, 13].

Definition 1. An algebra 〈L,∧,∨,⊗,→, 0, 1〉 is said to be a complete resid-
uated lattice if

1. 〈L,∧,∨, 0, 1〉 is a complete bounded lattice with the least element 0 and the
greatest element 1,

2. 〈L,⊗, 1〉 is a commutative monoid,
3. ⊗ and→ are adjoint, i.e. a⊗b ≤ c if and only if a ≤ b→ c, for all a, b, c ∈ L,

where ≤ is the ordering in the lattice.

Now, the natural extension of the notion of context is given below.

Definition 2. Let L be a complete residuated lattice, an L-fuzzy context is a
triple 〈B,A, r〉 consisting of a set of objects B, a set of attributes A and an L-
fuzzy binary relation r, i.e. a mapping r : B×A→ L, which can be alternatively
understood as an L-fuzzy subset of B ×A

We now introduce the L-fuzzy extension in [2], where we will use the notation
Y X to refer to the set of mappings from X to Y .

Definition 3. Consider an L-fuzzy context 〈B,A, r〉. A pair of mappings ↑ : LB →
LA and ↓ : LA → LB can be defined for every f ∈ LB and g ∈ LA as follows:

↑ f(a) =
∧
o∈B

(f(o)→ r(o, a)) ↓ g(o) =
∧
a∈A

(
g(a)→ r(o, a)

)
(1)

Lemma 1. Let L be a complete residuated lattice, let r ∈ LB×A be an L-fuzzy
relation between B and A. Then the pair of operators ↑ and ↓ form a Galois
connection between 〈LB ;⊆〉 and 〈LA;⊆〉, that is, ↑ : LB → LA and ↓ : LA → LB

are antitonic and, furthermore, for all f ∈ LB and g ∈ LA we have f ⊆ ↓↑ f
and g ⊆ ↑↓g.

Definition 4. Consider an L-fuzzy context C = 〈B,A, r〉. An L-fuzzy set of
objects f ∈ LB (resp. an L-fuzzy set of attributes g ∈ LA) is said to be closed
in C iff f =↓↑ f (resp. g =↑↓ g).

Lemma 2. Under the conditions of Lemma 1, the following equalities hold for
arbitrary f ∈ LB and g ∈ LA, ↑ f =↑↓↑ f and ↓ g =↓↑↓ g, that is, both ↓↑ f
and ↑↓ g are closed in C.
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Definition 5. An L-fuzzy concept is a pair 〈f, g〉 such that ↑f = g, ↓g = f .
The first component f is said to be the extent of the concept, whereas the second
component g is the intent of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context (B,A, r) will be
denoted as L-FCL(B,A, r).

An ordering between L-fuzzy concepts is defined as follows: 〈f1, g1〉 ≤ 〈f2, g2〉
if and only if f1 ⊆ f2 if and only if g1 ⊇ g2.

Theorem 1. The poset (L-FCL(B,A, r),≤) is a complete lattice where∧
j∈J
〈fj , gj〉 =

〈 ∧
j∈J

fj , ↑
( ∧
j∈J

fj)
〉

∨
j∈J
〈fj , gj〉 =

〈
↓
( ∧
j∈J

gj),
∧
j∈J

gj

〉

2.1 L-Chu correspondences and L-Bonds

We now recall the basic definitions and results about L-fuzzy Chu correspon-
dences given in [12].

Definition 6. An L-multifunction from X to Y is a mapping ϕ : X → LY .
The transposed of an L-multifunction ϕ : X → LY is an L-multifunction

tϕ : Y → LX defined by tϕ(y)(x) = ϕ(x)(y).
The set L-Mfn(X,Y ) of all the L-multifunctions from X to Y can be en-

dowed with a poset structure by defining the ordering ϕ1 ≤ ϕ2 as ϕ1(x)(y) ≤
ϕ2(x)(y) for all x ∈ X and y ∈ Y .

Definition 7. Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉, (i = 1, 2), then
the pair ϕ = (ϕL, ϕR) is called a correspondence from C1 to C2 if ϕL and ϕR
are L-multifunctions, respectively, from B1 to B2 and from A2 to A1 (that is,
ϕL : B1 → LB2 and ϕR : A2 → LA1).

The L-correspondence ϕ is said to be a weak L-Chu correspondence if the
equality r̂1(χo1 , ϕR(a2)) = r̂2(ϕL(o1), χa2) holds for all o1 ∈ B1 and a2 ∈ A2.
By unfolding the definition of r̂i this means that∧

a1∈A1

(ϕR(a2)(a1)→ r1(o1, a1)) =
∧

o2∈B2

(ϕL(o1)(o2)→ r2(o2, a2)) (2)

A weak Chu correspondence ϕ is an L-Chu correspondence if ϕL(o1) is
closed in C2 and ϕR(a2) is closed in C1 for all o1 ∈ B1 and a2 ∈ A2. We will
denote the set of all Chu correspondences from C1 to C2 by L-ChuCors(C1, C2).

Definition 8. An L-bond between two formal contexts C1 = 〈B1, A1, r1〉 and
C2 = 〈B2, A2, r2〉 is a multifunction β : B1 → LA2 satisfying the condition that
for all o1 ∈ B1 and a2 ∈ A2 both β(o1) and tβ(a2) are closed L-fuzzy sets of,
respectively, attributes in C2 and objects in C1. The set of all bonds from C1 to
C2 is denoted as L-Bonds(C1, C2).
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Definition 9. Let C1 = 〈B1, A1, r1〉 and C2 = 〈B2, A2, r2〉 be L-fuzzy contexts:

– Let β : C1 → C2 be an L-bond. We define a correspondence ϕβ : C1 → C2 by

ϕβL(o1) = ↓2 (β(o1)) ∈ LB2 for o1 ∈ B1

ϕβR(a2) = ↑1 (tβ(a2)) ∈ LA1 for a2 ∈ A2

– Conversely, consider an L-Chu correspondence ϕ from C1 to C2, and define
a multifunction βϕ : B1 → LA2 by

bϕ(o1) =↑2 (ϕL(o1))

Lemma 3. With the definitions given above

1. ϕβ is an L-Chu correspondence from C1 to C2.
2. βϕ is an L-bond from C1 to C2.

Lemma 4. Let C1, C2 be L-fuzzy formal contexts. L-Bonds(C1, C2) is a com-
plete lattice. Let bi ∈ L-Bonds(C1, C2) for all i ∈ I, then

1. (
∧
i∈I bi)(o) =

∧
i∈I(bi(o))

2. (
∨
i∈I bi)(o) =↑2↓2 (

∨
i∈I(bi(o))) =↑2 (

∧
i∈I ↓2 (bi(o)))

for all o ∈ B1.

Lemma 5. Let C1, C2 be L-fuzzy formal contexts. L-ChuCorrs(C1, C2) is a
complete lattice. Let ϕLi ∈ L-ChuCorrs(C1, C2) for all i ∈ I, then

1. (
∧
i∈I ϕLi)(o) =

∧
i∈I(ϕLi(o))

2. (
∨
i∈I ϕLi)(o) =↑2↓2 (

∨
i∈I(ϕLi(o)))

for all o ∈ B1.

Theorem 2. The lattice L-ChuCors(C1, C2) and the opposite lattice of L-bonds
L-Bonds(C1, C2)

∗
are isomorphic, and the mapping which assigns to each Chu

correspondence ϕ the bond bϕ provides such isomorphism.

Finally, let us recall the following relationship between the right and left sides
of L-fuzzy Chu correspondences has been presented in [13].

Definition 10. Consider a mapping $ : X → LY . Lets define new mappings
$∗ : LX → LY and $∗ : LY → LX for all f ∈ LX and g ∈ LY put

1. $∗(f)(y) =
∨
x∈X(f(x)⊗$(x)(y))

2. $∗(g)(x) =
∧
y∈Y $(x)(y)→ g(y)

Lemma 6. Let Ci = 〈Bi, Ai, ri〉 for i = 1, 2 be L-fuzzy contexts. Let ϕ =
(ϕL, ϕR) ∈ L-ChuCors(C1, C2). Then for all f ∈ LB1 and g ∈ LA2 holds

↑2 (ϕL∗(f)) = ϕ∗R(↑1 (f)) and ↓1 (ϕR∗(g)) = ϕ∗L(↓2 (g))
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Lemma 7. Let Ci = 〈Bi, Ai, ri〉 for i = 1, 2 be L-fuzzy contexts. If ϕ = (ϕL, ϕR) ∈
L-ChuCors(C1, C2), then for all o1 ∈ B1 and a2 ∈ A2 holds

ϕL(o1) =↓2 (ϕ∗R(↑1 (χo1))) and ϕR(a2) =↑1 (ϕ∗L(↓2 (χa2)))

Lemma 8. Let Ci = 〈Bi, Ai, ri〉 be an L-context and ϕ ∈ L-ChuCors(C1, C2).
Then

1. ↑2 (ϕL∗(↓1↑1 (
∨
i∈I fi)))(a2) =↑2 (

∨
i∈I ϕL∗(fi))(a2)

2. ↓1 (ϕR∗(↑2↓2 (
∨
i∈I gi)))(o1) =↓1 (

∨
i∈I ϕR∗(gi))(o1)

2.2 The category L-ChuCors

Now a category of L-Chu correspondences between L-fuzzy formal contexts will
be showed.

– objects L-fuzzy formal contexts
– arrows L-Chu correspondences
– identity arrow ι : C → C of L-context C = 〈B,A, r〉
• ιl(o) =↓↑ (χo), for all o ∈ B
• ιr(a) =↑↓ (χa), for all a ∈ A

– composition ϕ2 ◦ ϕ1 : C1 → C3 of arrows ϕ1 : C1 → C2, ϕ2 : C2 → C3

(Ci = 〈Bi, Ai, ri〉, i ∈ {1, 2})
• (ϕ2 ◦ ϕ1)L : B1 → LB3 and (ϕ2 ◦ ϕ1)R : A3 → LA1

• (ϕ2 ◦ ϕ1)L(o1) =↓3↑3 (ϕ2L∗(ϕ1L(o1)))
where

ϕ2L∗(ϕ1L(o1))(o3) =
∨

o2∈B2

ϕ1L(o1)(o2)⊗ ϕ2L(o2)(o3)

• (ϕ2 ◦ ϕ1)R(a3) =↑1↓1 (ϕ1R∗(ϕ2R(a3)))
where

ϕ1R∗(ϕ2R(a3))(a1) =
∨

a2∈A2

ϕ2R(a3)(a2)⊗ ϕ1R(a2)(a1)

– associativity of composition ϕ3 ◦ (ϕ2 ◦ ϕ1) = (ϕ3 ◦ ϕ2) ◦ ϕ1 for all
ϕ1, ϕ2, ϕ3 ∈ L-ChuCors such that ϕi : Ci → Ci+1 for i ∈ {1, 2, 3}, where
C1, C2, C3, C4 are L-fuzzy contexts.

2.3 L-ordered sets of L-concepts and L-Chu correspondences

The definitions and results concerning L-ordered sets of L-concepts is taken
from [4, 5]. Note that following the usual convention, ordered-like relations are
written in infix form, that is, R(x, y) will be written as xRy.

Definition 11. A binary L-relation ≈ on X is called an L-equality if it satis-
fies

5



1. (x ≈ x) = 1, (reflexivity),
2. (x ≈ y) = (y ≈ x), (symmetry),
3. (x ≈ y)⊗ (y ≈ z) ≤ (x ≈ z), (transitivity),
4. (x ≈ y) = 1 implies x = y

Definition 12. An L-ordering (or fuzzy ordering) on a set X endowed with
an L-equality relation ≈ is a binary L-relation � which is compatible w.r.t. ≈
and satisfies

1. x � x = 1, (reflexivity),
2. (x � y) ∧ (y � x) ≤ x ≈ y, (antisymmetry),
3. (x � y)⊗ (y � z) ≤ x � z, (transitivity).

If � is an L-order on a set X with an L-equality ≈, we call the pair 〈〈X,≈〉,�〉
an L-ordered set.

Definition 13. An L-set f ∈ LX is said to be an L-singleton in 〈X,≈〉 if it
is compatible w.r.t. ≈ (i.e. f(x) ⊗ (x ≈ y) ≤ f(y), for all x, y ∈ X) and the
following holds:

1. there exists x ∈ X with f(x) = 1
2. f(x)⊗ f(y) ≤ (x ≈ y), for all x, y ∈ X.

Definition 14. For an L-ordered set 〈〈X,≈〉 �〉 and f ∈ LX we define the
L-sets inf(f) and sup(f) in X by

– inf(f)(x) = (L(f))(x) ∧ (UL(f))(x)
– sup(f)(x) = (U(f))(x) ∧ (LU(f))(x)

where

– L(f)(x) =
∧
y∈X(f(y)→ (x � y))

– U(f)(x) =
∧
y∈X(f(y)→ (y � x))

inf(f) and sup(f) are called infimum or supremum, respectively.

Definition 15. An L-ordered set 〈〈X,≈〉 �〉 is said to be completely L-ordered
if for any f ∈ LX both sup(f) and inf(f) are ≈-singletons.

Lemma 9. For an L-ordered set 〈〈X,≈〉,�〉 and f ∈ LX we have that inf(f)
is an ≈-singleton if and only if there is some x ∈ X such that (inf(f))(x) = 1.
The same is true for suprema.

Now, given a formal context C, we will consider a completely L-ordered set
based on the on the set of formal concepts L-FCL(C).

Definition 16. Let us define an L-equality ≈1 and L-ordering �1 on the set of
formal concepts L-FCL(C) of context C:

• 〈f1, g1〉 �1 〈f2, g2〉 =
∧
o∈B(f1(o)→ f2(o))

• 〈f1, g1〉 ≈1 〈f2, g2〉 =
∧
o∈B(f1(o)↔ f2(o))
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Definition 17. Let C = 〈B,A, r〉 be an L-fuzzy formal context and γ be an L-
set from LL-FCL(C). We define L-sets of objects and attributes

⋃
B γ and

⋃
A γ,

respectively, as follows:

• (
⋃
B γ)(o) =

∨
〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ f(o)), for o ∈ B

• (
⋃
A γ)(a) =

∨
〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ g(a)), for a ∈ A

Theorem 3 ( [4, 5]). Let C = 〈B,A, r〉 be an L-context. 〈〈L-FCL(C),≈〉,�〉
is a completely L-ordered set in which infima and suprema can be described as
follows: for an L-set γ ∈ LL−FCL(C) we have:

1 inf(γ) = {〈↓ (
⋃
A

γ), ↑↓ (
⋃
A

γ)〉}

1 sup(γ) = {〈↓↑ (
⋃
B

γ), ↑ (
⋃
B

γ)〉}.

Finally, given two formal context C1, C2, we will consider a completely L-
ordered set based on the on the set of L-Chu correspondences between both
contexts. This definition is original and does not follow from Bělohlávek’s work.

Definition 18. Given two L-fuzzy contexts 〈Bi, Ai, ri〉 for i ∈ {1, 2} we define〈
〈L-ChuCors,≈2〉,�2

〉
, where

ϕ1 ≈2 ϕ2 =
∧

ø1∈B1

∧
a2∈A2

(↑2 (ϕ2L(o1))(a2)↔↑2 (ϕ1L(o1))(a2))

=
∧

ø1∈B1

∧
a2∈A2

(↓1 (ϕ2R(a2))(o1)↔↓1 (ϕ1R(a2))(o1))

=
∧

ø1∈B1

∧
a2∈A2

(βϕ2
(o1)(a2)↔ βϕ1

(o1)(a2))

ϕ1 �2 ϕ2 =
∧

ø1∈B1

∧
a2∈A2

(↑2 (ϕ2L(o1))(a2)→↑2 (ϕ1L(o1))(a2))

=
∧

ø1∈B1

∧
a2∈A2

(↓1 (ϕ2R(a2))(o1)→↓1 (ϕ1R(a2))(o1))

=
∧

ø1∈B1

∧
a2∈A2

(βϕ2
(o1)(a2)→ βϕ1

(o1)(a2))

3 The internal Hom functor

It is noticeable the existence of an internal Hom functor between L-fuzzy formal
contexts. The construction is based on the definition below, which extends one
given by Mori in [15]:
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Definition 19. Given two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} a new
formal L-fuzzy context C1 ( C2 is defined as 〈L-ChuCors(C1, C2), B1 ×A2, r

?〉
where the mapping r? : B1 ×A2 → L is given by

r?(ϕ, (o1, a2)) = ↑2 (ϕL(o1))(a2) = ↓1 (ϕr(a2))(o1)

Theorem 4. Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2}, then
there is an isomorphism〈

〈L-FCL(C1 ( C2),≈1〉,�1

〉 ∼=
〈
〈L-ChuCors(C1, C2),≈2〉,�2

〉
.

Proof. Consider an arbitrary concept 〈Φ, β〉, where Φ ∈ LL-ChuCors and β ∈
LB1×A2 , then

β(o1)(a2) = ↑? (Φ)(o1, a2)

=
∧

ϕ∈L-ChuCors(C1,C2)

(Φ(ϕ)→ r?(ϕ, (o1, a2)))

=
∧
ϕ

(Φ(ϕ)→↑2 (ϕL(o1))(a2))

=
∧
ϕ

(Φ(ϕ)→
∧

o2∈B2

(ϕL(o1)→ r2(o2, a2)))

=
∧

o2∈B2

∧
ϕ

(Φ(ϕ)→ (ϕL(o1)→ r2(o2, a2)))

=
∧

o2∈B2

∧
ϕ

((Φ(ϕ)⊗ ϕL(o1))→ r2(o2, a2))

=
∧

o2∈B2

(
∨
ϕ

(Φ(ϕ)⊗ ϕL(o1))→ r2(o2, a2))

=
∧

o2∈B2

((
⋃
Φ)L(o1)(o2)→ r2(o2, a2))

= ↑2 ((
⋃
Φ)L(o1))(a2)

Similarly we obtain:

βt(a2)(o1) = ↑? (Φ)(o1, a2)

. . .

=
∧
ϕ

(Φ(ϕ)→ ↓1 (ϕR(a2))(o1))

. . .

=
∧

a1∈A1

(
∨
ϕ

(Φ(ϕ)⊗ ϕR(a2)(a1))→ r1(o1, a1))

= ↓1 ((
⋃
Φ)R(a2))(o1)
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Now, as we have seen that β ∈ LB1×A2 is closed in C1 ( C2, then β is in
L-Bonds(C1, C2).

Every bond β ∈ L-Bonds(C1, C2) is closed in C1 ( C2, because of the
following chain of equalities:

β(o1)(a2) = ↑2 (ϕβ(o1))(a2) = r?(ϕβ , (o1, a2))

= 1→ r?(ϕβ , (o1, a2))

=
∧
ϕ

(χϕβ
(ϕ)→ r?(ϕβ , (o1, a2)))

= ↑? (χϕβ
)(o1, a2)

As a result we obtain that there is a bijection between L-ChuCors(C1, C2) and
L-FCL(C1 ( C2).

Let 〈Φi, βi〉 for i ∈ {1, 2} be two concepts of C1 ( C2, then

〈Φ1, β1〉 �1 〈Φ2, β2〉 =
∧

o1∈B1

∧
a2∈A2

(β2(o1)(a2)→ β1(o1)(a2)) = ϕβ1
�2 ϕβ2

Similarly for the L-equalities ≈i. ut
Theorem 5. Let C = 〈B,A, r〉 be an arbitrary L-context. Then there is an
isomorphism between L-ordered sets〈

〈L-FCL(C),≈1〉,�1

〉 ∼=
〈
〈L-ChuCors(⊥, C),≈2〉,�2

〉
such that ⊥ = 〈{�}, L, λ〉, where λ(�, l) = l, for any l ∈ L.

Proof. Let ϕ ∈ L-ChuCors(⊥, C) be an arbitrary L-Chu correspondence. Then
ϕL : {�} → LB and ϕR : A→ LL where ϕL(�) is closed in C and ϕR(a) is closed
in ⊥ for any a ∈ A. It means that every left side of any Chu correspondence
from ⊥ to C is an object part of some concept of C.

Now let 〈f, g〉 be an arbitrary concept of C. Then we can construct the L-Chu
correspondence from ⊥ to C. ϕL(�) = f . From Lemma 7 we know that

ϕR(a) = ↑λ (ϕ∗L(↓ (χa))) = ↑λ (
∧
o∈B

(ϕL(�)(o)→ r(o, a)))

= ↑λ (
∧
o∈B

(f(o)→ r(o, a))) = ↑λ (↑ (f)(a)) = ↑λ (g(a))

Hence ϕR will assign a closed L-set in ⊥ to every a ∈ A. And with any closed
g ∈ LA there will be a new L-set from LL such that ϕR(a)(l) = ↑λ (g(a))(l) =
(l→ g(a)).

Consider new two L-concepts 〈f1, g1〉, 〈f2, g2〉 of context C and two L-Chu
correspondences ϕf1 and ϕf2 assigned to the concepts. Then

〈f1, g1〉 �1 〈f2, g2〉 =
∧
a∈A

(g2(a)→ g1(a)) =
∧
a∈A

(↑ (f2)(a)→↑ (f1)(a))

=
∧
a∈A

(↑ (ϕf2)(a)→↑ (ϕf1)(a)) = ϕf1 �2 ϕf2 .

The equality 〈f1, g1〉 ≈1 〈f2, g2〉 = ϕf1 ≈2 ϕf2 can be proved similarly. ut
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Corollary 1. For any L-concept C = 〈B,A, r〉 there is an isomorphism between
L-ordered sets〈

〈L-FCL(C),≈1〉,�1

〉 ∼=
〈
〈L-FCL(⊥( C),≈1〉,�1

〉
.

We have that⊥( C = 〈L-ChuCors(⊥, C), {�}×A, rC〉, where rC(ϕ, (�, a)) =
↑ (ϕL(�))(a), but because of the previous isomorphisms we can consider ⊥( C
as 〈L-FCL(C), A, rC〉, where rC(〈f, g〉, a) = g(a), for any concept 〈f, g〉 of C
and for any attribute a ∈ A.

Now consider an arbitrary γ ∈ LL-FCL(C).

↑C (γ)(a) =
∧

〈f ′,g′〉∈L-FCL(C)

(γ(〈f ′, g′〉)→ rC(〈f ′, g′〉, a))

=
∧
〈f ′,g′〉

(γ(〈f ′, g′〉)→ g′(a))

=
∧
〈f ′,g′〉

(γ(〈f ′, g′〉)→↑ (f ′)(a))

=
∧
〈f ′,g′〉

(γ(〈f ′, g′〉)→
∧
o∈B

(f ′(o)→ r(o, a)))

=
∧
o∈B

∧
〈f ′,g′〉

(γ(〈f ′, g′〉)→ (f ′(o)→ r(o, a)))

=
∧
o∈B

∧
〈f ′,g′〉

((γ(〈f ′, g′〉)⊗ f ′(o))→ r(o, a)))

=
∧
o∈B

(
∨
〈f ′,g′〉

(γ(〈f ′, g′〉)⊗ f ′(o))→ r(o, a))

=
∧
o∈B

(
⋃
B

γ)→ r(o, a))

= ↑ (
⋃
B

γ)(a)

Then 〈↓ (↑C (γ)), ↑C (γ)〉 = 〈↓↑ (
⋃
B γ), ↑ (

⋃
B γ)〉 the concept of C is the only

element of 1 sup(γ) from Bělohlávek’s theorem 3.

4 Galois functor from L-ChuCors to the category of
semilattices Slat

Let us start with the following technical lemma.

Lemma 10. Let Ci = 〈Bi, Ai, ri〉 be an L-fuzzy formal context for i ∈ {1, 2} and
ϕ ∈ L-ChuCors(C1, C2). Assign b ∈ LB1×A2 as a new L-relation defined by an
L-bond βϕ, namely, b(o1, a2) = βϕ(o1)(a2), for all o1 ∈ B1 and a2 ∈ A2. Finally,
consider the (up- and down-) arrow mappings ↑b, ↓b defined on the relation b.
For all f ∈ LB1 , g ∈ LA2 holds

↑2 (ϕL∗(f)) =↑b (f) and ↓1 (ϕR∗(g)) =↓b (g).

10



Proof.

↓1 (ϕR∗(g)) =
∧

a1∈A1

(ϕR∗(g)→ r1(o1, a1))

=
∧

a1∈A1

(
∨

a2∈A2

(ϕR(a2)(a1)⊗ g(a2)))→ r1(o1, a1))

=
∧

a1∈A1

∧
a2∈A2

((ϕR(a2)(a1)⊗ g(a2))→ r1(o1, a1))

=
∧

a1∈A1

∧
a2∈A2

((g(a2)⊗ ϕR(a2)(a1))→ r1(o1, a1))

=
∧

a1∈A1

∧
a2∈A2

(g(a2)→ (ϕR(a2)(a1)→ r1(o1, a1)))

=
∧

a2∈A2

(g(a2)→
∧

a1∈A1

(ϕR(a2)(a1)→ r1(o1, a1)))

=
∧

a2∈A2

(g(a2)→↓1 (ϕR(a2))(o1))

=
∧

a2∈A2

(g(a2)→ βϕ(o1)(a2))

=
∧

a2∈A2

(g(a2)→ b(o1, a2))

=↓b (g)(o1)

The second equation can be proved similarly. ut

Lemma 11. For all f ∈ LB1 and g ∈ LA2 holds

f ≤ ↓1 (ϕR∗(g)) ⇔ g ≤ ↑2 (ϕL∗(f)).

Proof.

⇐ Let us assume g ≤ ↑2 (ϕL∗(f)), then

↓1 (ϕR∗(g)) = ↓b (g)

=
∧

a2∈A2

(g(a2)→ b(o1, a2))

by hypothesis

≥
∧

a2∈A2

(↑2 (ϕL∗(f))(a2)→ b(o1, a2))

from Lemma 10

=
∧

a2∈A2

(↑b (f)(a2)→ b(o1, a2))

= ↓b↑b (f)(o1) ≥ f(o1)

11



⇒ Similar. ut

Proposition 1. For all f ∈ LB1 closed in C1 and g ∈ LA2 closed in C2, the
following equivalence holds

〈f, ↑1 (f)〉 ≤ 〈↓1 (ϕR∗(g)), ↑1↓1 (ϕR∗(g))〉 ⇔
⇔ 〈↓2↑2 (ϕL∗(f)), ↑2 (ϕL∗(f))〉 ≤ 〈↓2 (g), g〉

Proof. The equivalence above can be rewritten as

f ≤ ↓1 (ϕR∗(g)) ⇔ g ≤ ↑2 (ϕL∗(f)),

which holds from Lemma 11. ut

Given an L-fuzzy formal context C, let us assume the existence of a mapping
Gal such that Gal(C) is a complete lattice of formal concepts in C.

Definition 20. Let Ci = 〈Bi, Ai, ri〉 be an L-formal context for i ∈ {1, 2},
ϕ ∈ L-ChuCors(C1, C2) and 〈f, ↑1 (f)〉, 〈↓2 (g), g〉 be L-concepts from Gal(C1)
or Gal(C2) respectively. Define ϕ∨ : Gal(C1)→ Gal(C2) by

ϕ∨(〈f, ↑1 (f)〉) = 〈↓2↑2 (ϕL∗(f)), ↑2 (ϕL∗(f))〉

and ϕ∧ : Gal(C2)→ Gal(C1) by

ϕ∧(〈↓2 (g), g〉) = 〈↓1 (ϕR∗(g)), ↑1↓1 (ϕR∗(g))〉.

Lemma 12. Let Ci = 〈Bi, Ai, ri〉 be an L-context for i ∈ {1, 2}. For every
ϕ ∈ L-ChuCors(C1, C2) holds

1. ϕ∨ is supremum-preserving,
2. ϕ∧ is infimum-preserving.

Proof. 1. From Lemma 8

ϕ∨(〈↓1↑1 (
∨
i∈I

fi),
∧
i∈I
↑1(fi)〉) =

= 〈↓2↑2 (ϕL∗(↓1↑1 (
∨
i∈I

fi))), ↑2 (ϕL∗(↓1↑1 (
∨
i∈I

fi)))〉

= 〈↓2↑2 (
∨
i∈I

ϕL∗(fi))(a2),
∧
i∈I
↑2 (ϕL∗(fi))(a2)〉

Hence, ϕ∨ assigns to the join 〈↓1↑1 (
∨
i∈I fi),

∧
i∈I ↑1 (fi)〉 in L-FCL(C1),

a join of L-concepts 〈↓2↑2 (
∨
i∈I ϕL∗(fi))(a2),

∧
i∈I ↑2 (ϕL∗(fi))(a2)〉 from

L-FCL(C2).
2. Similarly to Lemma 8 it can be proved that ϕ∧ preserves meets, since it as-

signs to a meet of L-concepts 〈
∧
i∈I ↓2 (gi), ↑2↓2 (

∨
i∈I gi)〉 from L-FCL(C2)

the meet of L-concepts 〈
∧
i∈I ↓1 (ϕR∗(gi)), ↑1↓1 (

∨
i∈I gi)〉 from L-FCL(C1).

ut
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We are in position to define the Galois functor announced at the beginning
of this section

Definition 21. Define a mapping Gal, which to every L-context C assigns the
complete lattice 〈L-FCL(C),≤〉 of L-concepts of C, and to every L-Chu corre-
spondence from L-ChuCors(C1, C2) between two L-contexts C1 and C2 assigns
a supremum-preserving mapping ϕ∨ between L-FCL(C1) and L-FCL(C2).

Theorem 6. Gal is a functor from category L-ChuCors to category Slat.

Proof. Given an arbitrary L-context, C = 〈B,A, r〉, by definition Gal(C) is a
complete concept lattice, in particular, a semilattice.

Recall that, for the identity arrow of category L-ChuCors, the following equal-
ities hold for all f ∈ LB and all g ∈ LA ↑ (ιl∗(f)) = ↑ (f) and ↓ (ιr∗(g)) =↓ (g).

Now, consider 〈f, ↑(f)〉 ∈ L-FCL(C),

ιC∗(〈f, ↑ (f)〉) = 〈↓↑ (ιl∗(f)), ↑ (ιl∗(f))〉 = 〈↓↑ (f), ↑ (f)〉 = 〈f, ↑ (f)〉

Hence Gal assigns to an identity arrow of L-ChuCors an identity arrow of Slat,
i.e. Gal(ιC) = ιGal(C).

Let Ci = 〈Bi, Ai, ri〉 be an L-context for all i = {1, 2, 3}, and for all j ∈ {1, 2}
let ϕj ∈ L-ChuCors(Cj , Cj+1). Consider 〈f, ↑ (f)〉 ∈ L-FCL(C1)

(ϕ2 ◦ ϕ1)∨(〈f, ↑1 (f)〉) = 〈↓3↑3 ((ϕ2 ◦ ϕ1)L∗(f)), ↑3 ((ϕ2 ◦ ϕ1)L∗(f))〉
= 〈↓3↑3↓3↑3 (ϕ2L∗(ϕ1L∗(f))), ↑3↓3↑3 (ϕ2L∗(ϕ1L∗(f)))〉
= 〈↓3↑3 (ϕ2L∗(ϕ1L∗(f))), ↑3 (ϕ2L∗(ϕ1L∗(f)))〉
= 〈↓3↑3 (ϕ2L∗(↓2↑2 (ϕ1L∗(f)))), ↑3 (ϕ2L∗(↓2↑2 (ϕ1L∗(f))))〉
= ϕ2∨(〈↓2↑2 (ϕ1L∗(f)), ↑2 (ϕ1L∗(f))〉)
= ϕ2∨(ϕ1∨(〈f, ↑1 (f)〉))

Hence Gal(ϕ2 ◦ ϕ1) = (ϕ2 ◦ ϕ1)∨ = ϕ2∨ ◦ ϕ1∨ = Gal(ϕ2) ◦Gal(ϕ1)
So Gal : L-ChuCors→ Slat is a functor. ut

5 Galois functor from L-ChuCors to L-Slat

The results in the two sections above are merged here in order to extend the
definition of the previously introduced functor.

Lemma 13. For any two arbitrary L-contexts C1 and C2 there is an isomor-
phism〈
〈L-ChuCors(C1, C2),≈2〉,�2

〉 ∼= 〈
〈L-ChuCors(⊥( C1,⊥( C2),≈2〉,�2

〉
Proof. Consider ϕ ∈ L-ChuCors(C1, C2). Now by Lemma 7 we can construct an
L-Chu correspondence ϕ ∈ L-ChuCors(⊥( C1,⊥( C2) such that ϕR : A2 →
LA1 and ϕL : L-FCL(C1)→ LL-FCL(C2) in the following way:
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– ϕR = ϕR
– ϕL(〈f1, g1〉) = ↓C2

(ϕ∗R(↑C1
(χ〈f1,g1〉))) = ↓C2

(ϕ∗R(g1))) = ↓C2
(ϕ∗R(g1)))

Conversely, given an L-Chu correspondence ϕ ∈ L-ChuCors(⊥( C1,⊥( C2)
then we can construct ϕ ∈ L-ChuCors(C1, C2) as follows:

– ϕR = ϕR
– ϕL(o) = ↓2 (ϕ∗R(↑1 (χo))) = ↓2 (ϕ∗R(↑1 (χo))) = ↓2 (ϕ∗R(↑1 (χo))) for any

object o ∈ B1

For any pair ϕ1, ϕ2 ∈ L-ChuCors(C1, C2) we have

ϕ1 �2 ϕ2 =
∧

o1∈B1

∧
a2∈A2

(↓1 (ϕ2R(a2))(o1)→ ↓1 (ϕ1R(a2))(o1))

=
∧

o1∈B1

∧
a2∈A2

(↓1 (ϕ2R(a2))(o1)→ ↓1 (ϕ1R(a2))(o1))

= ϕ1 �2 ϕ2

Similarly for ≈2. ut
Now we can create a mapping that assigns, to every L-Chu correspondence

ϕ ∈ L-ChuCors(C1, C2), a supremum preserving mapping between completely
L-ordered sets

〈
〈L-FCL(C1),≈1〉,�1

〉
and

〈
〈L-FCL(C2),≈1〉,�1

〉
in the fol-

lowing way: Let γ be an arbitrary L-set of concepts γ ∈ LL-FCL(C1). Now we
will use the same construction as in the previous section, but for ϕ.

ϕ∨(〈↓C1↑C1 (γ), ↑C1 (γ)〉) = 〈↓C2↑C2 (ϕL∗(γ)), ↑C2 (ϕL∗(γ))〉

From previous results we know that 1 sup(γ) = ↑C1
(γ) and 1 sup(ϕL∗(γ)) = ↑C2

(ϕL∗(γ)), so then mapping ϕ∨ is supremum preserving .
Now we will create a Galois functor L-Gal from L-ChuCors to L-Slat, the

category of supremum preserving mappings between completely L-ordered sets,
in following way:

– Given an L-fuzzy context C, L-Gal(C) will be the completely L-ordered set〈
〈L-FCL(C),≈1〉,�1

〉
– to every ϕ ∈ L-ChuCors(C1, C2), L-Gal(ϕ) will be the supremum preserving

mapping ϕ∨

As the construction is the same as in the previous section about Galois func-
tor, we can state that the mapping L-Gal : L-ChuCors → L-Slat is a functor
from category L-ChuCors to L-Slat.

6 Conclusions and future work

We have presented some interesting and useful properties of the category L-
ChuCors of L-Chu correspondences between formal L-fuzzy contexts. Specifi-
cally, we have introduced a functor between L-ChuCors and a category of supre-
mum preserving mappings between completely L-ordered sets.

As future work, we plan to continue the study of the functor L-Gal, and
consider its possible fullness and/or faithfullness.
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5. R. Bělohlávek, Lattice-type fuzzy order is uniquely given by its 1-cut: proof and
consequences, Fuzzy Sets and Systems, vol.143, pp.447–458, 2004.

6. B. Davey and H. Priestley, Introduction to Lattices and Order, Cambridge Uni-
versity Press, second edition, 2002.

7. B. Ganter and R. Wille, Formal concept analysis, Springer–Verlag, 1999.
8. B. Ganter, Relational Galois connections, in Proc. Intl Conf on Formal Concept

Analysis, Lecture Notes in Computer Science 4390:1–17, 2007.
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