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Abstract. Several fuzzifications of formal concept analysis have been proposed
to deal with uncertainty or incomplete information. In this paper, we focus on
the new paradigm of multi-adjoint concept lattices which embeds different fuzzy
extensions of concept lattices, our main result being the representation theorem
of this paradigm. As a consequence of this theorem, the representation theorems
of the other paradigms can be proved more directly. Moreover, the multi-adjoint
paradigm enriches the language providing greater flexibility to the user.
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1 Introduction

The study of reasoning methods under uncertainty, imprecise data or incomplete in-
formation has shown to be an important topic in the recent years. Most of the current
research areas are receiving this message and it is frequentfizzéiedversions of
several well-known standard structures. In this paper, we focus on the area of formal
concept analysis and, specifically, on the generalization of the classical definition of
concept lattice to the fuzzy case.

A number of different approaches have been proposed to generalize the classical
concept lattices given by Ganter and Wille [6] allowing some uncertainty in data. One
of these approaches was proposed by Burusco and Fuente&l&of8] where fuzzy
concept lattices were first presented, and later further developed by Pollandt [13]. Non-
commutative fuzzy logic was considered in the context of concept lattices and similarity
by Georgescu and Popescu [7]. This approach, consisting in generalizing the equality
relation and considering an alternative similarity relation, underlies in the recent work of
Bélohlavek [2], which considered-equalities to extend the fuzzy concept lattice. His
approach was extended in an asymmetric way, although only for the case of classical
equality & = {0,1}) by Krajgi, who introduced the so-called generalized concepts
lattices in [9, 10].

In the context of general logical frameworks, a recent approach so-called multi-
adjoint has been recently introduced and is receiving considerable attention [8, 12].
The multi-adjoint framework was originated as a generalization of several non-classical
logic programming frameworks, its semantic structure is the multi-adjoint lattice, in
which a lattice is considered together with several conjunctors and implications making
up adjoint pairs.



With the idea of providing a general framework in which the different approaches
stated above could be conveniently accommodated, we have to work in a general non-
commutative environment; this naturally leads to the consideration of adjoint triples,
also called pre-implication triples [1] or bi-residuated structures [11] as the main build-
ing blocks of our multi-adjoint concept lattices.

The main result introduced here, apart from the introduction of multi-adjoint con-
cept lattices, is its representation theorem on the multi-adjoint concept lattices, which
gives equivalent conditions in a complete lattice in order to be isomorphic to a multi-
adjoint concept lattice. This theorem can be instantiated to the above mentioned paradigms
and provide a much more easier proof. We also present an example which shows that
the multi-adjoint framework is more expressive that the generalized framework.

The plan of this paper is the following: in Section 2 we recall the basics about Galois
connection and the notion of multi-adjoint concept lattice is introduced, in Section 3
contains the proof of the representation theorem; in Section 4 an example of the multi-
adjoint framework is presented; the paper ends with some conclusions and prospects
for future work.

2 Multi-adjoint concept lattice

A basic notion in formal concept analysis is that@#lois connectionwe start this
section recalling a result which proves that each Galois connection has an associated
complete lattice, calleGalois latticeor concept lattice

Definition 1. Let (P, <;) and (P, <,) be posets, and: P, — P, 1: P, — P;
applications, the pair’, }) forms aGalois connectiotetweenP; and P, if and only
if:

1. Tand! are decreasing.
2.z <zl forall z € P.
3. y<yyltforally € P,.

If P, and P, are complete lattices then the following theorem can be established,
see [5]:

Theorem 1. Let (L, <1), (L2, =2) be complete latticeg,', ') a Galois connection
betweenL,, Ly andC = {(z,y) | 2! = y,x = yl;2 € L;,y € Ly} thenCis a
complete lattice, where

/\(xiayi> = </\ Ti, (\/ yi)'!)  and \/<xi7yi> = <(\/ i), /\yz>

i€l icl icl icl icl el

We will use this theorem in order to prove that our construction of multi-adjoint
concept lattices actually leads to a complete lattice.

Firstly, a generalization of multi-adjoint lattices is introduced in order to admit dif-
ferent sorts, in which we allow non-commutative conjunctors as in [1, 7, 11]. To begin
with, the adjoint pairs are generalized into adjoint triples, the basic blocks of multi-
adjoint concept lattices, as follows:



Definition 2. Let (P, <;), (P2, <s), (P3,<3) be posets and;: P, x P, — Ps,
/i Py x P, — Py, \: P3 x P, — P, be applications, theri&, ,//,~\), is a
adjoint triplewith respect taPy, P», P; if:

— & is increasing in both arguments.

— //and are increasing in the first argument and decreasing in the second.

—x<yz/y iff x&y<sz iff y<oz\_x Wwherexe P,ye€ P,and
zZ e P3.

This last property is known asljoint propertyand generalises theodus ponensile in
a non-commutative multi-valued setting. Notice that no boundary condition is required,
in difference to the usual definition of multi-adjoint lattice [12] or implication triples [1].

In order to introduce a Galois connection which generalizes that given in the classi-
cal case, the usual motivation underlying the multi-adjoint framework [8,12] is applied
to that of adjoint triples, and leads to the following definition of multi-adjoint frame.

Definition 3. A multi-adjoint frameZ is a tuple

(L17L27P7517527§7&17/17\17' "1&717/”7\“)

where L; are complete lattices an@ is a poset, and such thdt:;, /%, \;) is an
adjoint triple with respect td.y, Lo, Pforall i = 1,..., n.

A multi-adjoint frame as above will be denoted@dsi, Lo, P, &1, - - -, &»), for short.
It is convenient to note that, in principld,;, Lo and P could be simply posets, the
reason to consider complete lattices is that multi-adjoint frames will used as the under-
lying lattice on which the operations will be made; hence, general joins and meets are
required.

A contextfor a given frame will mean a tupled, B, R, o) defined as below where,
following the usual terminologyA is to be considered as a set of attributes &nas a
set of objects.

Definition 4. Acontextfor agivenframéL,, Lo, P, &1, ..., &x) isatuple(A, B, R, o)
such that4 and B are non-empty sets is a P-fuzzy relationR: A x B — P ando
is a mapping which associates any objecHr{or attribute in A) with some particular
adjoint triple in the frame, thatisy: B — {1,...,n} (oro: A — {1,...,n}).

The fact that in a multi-adjoint context each object (or attribute) has an associated im-
plication is interesting in that subgroups with different degrees of preference can be
established in a convenient way; however, a complete study of this possibility is outside
the scope of this paper. From now on, we will consider in the context the association
o:B—{1,...,n}.

Now, given a frame and a context for that frame, the following mapping€.? —
L{ and'”: L{ — L can be defined:

9" (a) = inf{R(a,b) /7 g(b) | b€ B}
FY7(b) = inf{R(a,b) N\ fla)|a€ A}

Notice that these mappings generalise those given in [3,10] and, as proved below, gen-
erate a Galois connection.



Proposition 1. Given a multi-adjoint frameLq, Lo, P, &1, . .., &) and acontextA, B, R, o),
the pair('~,'”) is a Galois connection betwedr* and LY.

Proof. From now on, to improve readability, we will writg, ! ) instead of '-, ") and

/b, instead of,/7®), X ).

By definition, we have to prove that:

1. T and! are decreasing.
This is trivial since the implications are decreasing in the second argument.
2. g<glltforallgc LY,
Givena € A andb € B the next chain of inequalities holds because of the adjoint

property:
g'(a) = inf{R(a, V') /¥ g(t) |V € B} =5 R(a,b) /* g(b)
9'(a) &b g(b) <2 R(a,b)
g(b) =2 R(a,b) s g ()

As the inequality above holds for all € A, by using the infimum property, it can
be obtained that

g(b) =2 inf{R(a,b) 4 ¢'(a) | a € A} = g"*(b)

3. f< fUforall f € L.
The proof is similar. O

Now, aconcepis a pair(g, f) satisfying thay € L2, f € L{* and thaty' = f and
f+ = g;with (T, 1) being the Galois connection defined above.

Definition 5. Themulti-adjoint concept latticassociated to a multi-adjoint framé 1, Lo, P, &1, - - -

and a contextA, B, R, o) is the set of concepts:

M={{g.f)ge Ly, feLiandg' = [ f' =g}
with the ordering(g1, f1) =< (g2, f2) if and only ifg; < go (equivalentlyf; < f).

Note that, by Theorem 1, the poseW, <) defined above is a complete lattice,
since the arrows', }) form a Galois connection between the complete latticgsand
LBl

3 The representation theorem

An extension of the representation (or fundamental) theorem on the classical concept
lattice [6] for the multi-adjoint framework is presented below. The result is similar to
those given in previous extensions of the classical concept lattices, but in this general
framework the proof is simpler. To begin with, we need to introduce some definitions
and preliminary results.

Y In the rest of the paper we will assume a fixed multi-adjoint frame and context.



Definition 6. Given a setd, a posetP with bottom element , and elementa € A,
x € P, the characteristic mappin@?: A — P is defined as:

e Jx, ifd=a
@(a’) = {L, otherwise

The following lemma gives a technical property which will be needed later.

Lemma 1. In the concept latticé M, <), givena € A, b € B,z € Ly andy € Lo,
the following equalities hold:

@*'(y) = R(a,b')\y «  forall ¥ eB
@'(a) = R(d\b) /by forall o' €A

Proof. By definition of @
@zl (V) = inf{R(a’,b') \p @5 (a') | @' € A} = R(a, V) N @

where the last inequality follows becauB¢a’,b) \, L1 = T2 (this fact is a conse-
quence of the adjoint property, singg <, R(a’,b) ,/* T5).
The other equality follows similarly. ad

The following definitions introduce properties which will be used in the statement
of Prop. 2.

Definition 7. Given a complete latticé, a subsef C L is infimum-dense (resp. supremum-
dense) if and only if for alke € L there existsk’ C K such thatz = inf(K’)
(resp.z = sup(K")).

Definition 8. Let (M, <) be a multi-adjoint concept latticé)/, C) a complete lattice
and a: Ax Ly — V,3: Bx Ly — V two maps. We say thatis (V, R)-related with
« if we have that:

la) a[A x L] is infimum-dense;
1b) B[B x L] is supremum-dense; and
2) foreacha € A,b€ B,z € L1 andy € Ls:

B(b,y) C a(a,z) ifandonlyif z&,y < R(a,b)

Proposition 2. Given a multi-adjoint concept lattiocg\M, <), a complete lattic€V, C)
and two mapsf € L{, g € L&, if there exist two applicationg: B x Ly, — V,
a: A x Ly — V,whereg is (V, R)-related witha: we have that:

. Bisincreasing in the second argument.

« is decreasing in the second argument.

. g'(a) =sup{z € L1 | vy C a(a, )}, wherev, = sup{3(b, g(b)) | b € B}.
fH(b) =sup{y € Ly | B(b,y) C vy}, wherevy = inf{a(a, f(a)) | a € A}.

M g, (b) = sup{y € L2 | B(b,y) C v}, thensup{3(b, g, (b)) | b € B} = v.

M fu(a) =sup{z € L1 | v C afa,z)}, thensup{a(a, f,(a)) | a € A} =v.

oOUThWN R



Proof. We give the proofs for items 1, 3 and 5, since the others are similar.

1. Lety; <5 y2 € Lo, asf(b,y2) € V anda[A x L;] is infimum-dense there exists
a set of indicest and K = {(aj,z;) | j € A} € A x Ly such that3(b,ys) =
inf{a(a;,z;) | j € A}, s08(b,y2) C a(aj,z;) forall j € A. Now, by Def. 8 property
2, it follows thatz; &, y2 < R(a;,b) for all j and, agn = o,

zj &y <z &py2 < R(aj,b) forall j
Therefore,3(b, y1) C a(aj,z;) for all j and, as3(b, y2) is the infimum,5(b,y1) C

B(b,y2), sS04 is increasing in the second argument.

3. Givenz € L, by the adjoint property the inequality <; R(a,b) ,/° g(b) is
equivalent tox &3 g(b) < R(a,b) which is also equivalent, by Def. 8 property 2, to
B(b, g(b)) C a(a,x) forall b € B, therefore by the supremum property

vy = sup{B(b,g(b)) | b € B} C a(a,x)
Thus, we obtain the equality of the sets:

{z€L|z =y R(a,b) /P gb)forallb € B} = {x € Ly | v, C a(a, )}
Therefore:

9'(a) = inf{R(a,b) ,/* g(b) | b € B}

© supl{z € L1 | & <1 R(a,b) /* g(b) forallb € B}

= sup{z € Ly | vy C a(a,z)}

where(x) is given from the adjoint property.
5. Firstly we will show that, for any € V, sup{3(b,¢,(b)) | b € B} C v, and let us
write Y, = {y € Lo | 3(b,y) C v} for anyb € B, so thaty, (b) = sup Y.

Givenv € V, asalA x L4] is infimum-dense, there is a set of indicdsand
K ={(a;,z;) | j € A} € A x L suchthav = inf{a(a;,z;) | j € A}.

If Y, = &, theng, (b) = L, and we have the next chain of equivalences:

gu(b) =2 R(aj,b) o x; iff 25 & go(b) < R(ay,b) iff 3(b, g,(0)) E afay,z5) (1)

Otherwise, ifY; is non-empty, then, by Def. 8 property 2, we have forjal A and
yeYy

B, y) Ev E alaj,z;) iff 2 &y < R(ay,b) iff y <o R(aj,b) \» 7
by computing the supremum @n we get tog, (b) = supY;, <2 R(a;,b) \ z;, and
then the rest of equivalences in (1) apply.

Recalling thaw = inf{a(a;,z;) | j € A} we obtain tharp(b, g, (b)) T v for all
b € B. Finally, taking supremum on the left hand side, we get

sup{B(b, g, (b)) | be B} C v



For the other inequality, a8 B x L] is supremum-dense we have that sup{5(b;,y;) |
(bj,y;) € Ax Lo, j € A'}. Then, for anyj € A" we have thay; € Y3, and, moreover,
y; =2 supYy, = g,(b;). Sinces is increasing in the second argument, by item 1, we
obtain:

B(bs,y;) E B(bs; 9u(bs)) E sup{B(bs, gu(b;)) | 5 € A} C sup{f(b, gu(b)) [ b € B}
As v is the supremum op of 3(b;, y,), we getv T sup{3(b, g, (b)) | b € B}. O

We can now state and prove the representation theorem for multi-adjoint concept
lattices.

Theorem 2. Given a complete latticé/, C) and a multi-adjoint concept latticeM, <
), we have thaV’ is isomorphic toM if and only if there exist applications: AxL; —
V,B: B x Ly — V such thatg is (V, R)-related toc.

Proof. Given an isomorphism: M — V, the mappings.: Ax Ly — V andj: B x
Lo — V can be naturally defined, for evetyc A, b € B,z € Ly andy € Lo, as
follows:

ala,z) = (@2 @z Bb,y) = (@, @p'y)

Let us prove thatl is (V, R)-related too:

Firstly, let us show that[A x L] is infimum-dense. By definition, we have to prove
that givenv € V there existd C A x L, such that = inf(a[K]).

If o=1(v) = (g, f) € M, we defineK = {(a, f(a)) | a € A} C A x L;. Sincep
is an isomorphism, it is sufficient to prove that

(g, f) = it {(@]@" @f@'y | g e A}

Let us prove, for instance, thatb) = inf{@g(“)l(b) | a € A}. By Lemma 1, we have
that@! " (5) = R(a,b) N f(a), thus

inf{@f@" (b) | a € A} = inf{R(a,b) " f(a) | a € A} = F*(b) = g(b)

Similarly, we can prove tha#[B x L] is supremum-dense.

It only remains to prove that givene A, b € B, z € L, andy € L, we have that
B(b,y) C ala,z) iff z&,y < R(a,b).

For the direct implication, ag is order-preserving and reflecting, we have that
B(b,y) C a(a,z) is equivalent toj@?'* @?"y < (@z! @'y and, in particular, to
@}j” < @gl. From the properties of Galois connection, Lemma 1, and the adjoint
property we obtain the following chain:

y = @Y (b) =5 @Y (b) 2, @7H(b) = R(a,0) \p o iff x &y < R(a,b)

For the other implication, it is sufficient to prove thaj < @ij as this is equivalent to

@Zb’Tl < @gi which finally impliesg(b, y) C «(a, ), from the definition ofw and 3,
andy order-preserving.



But this is clear because, if € A with a’ # a, then@Z(a’) < @gT(a') holds
becaus@?(a’) = 1,.If o’ = a,asz &y < R(a,b) applying the adjoint property and
Lemma 1 we obtain that:

@?(a) = x <1 R(a,b) ,/* y = @' (a)

Now, conversely, assume we have mappingsd x Ly — V,3: Bx Ly — V
wheref is (V, R)-related tow, and let us construct an isomorphigm M — V. We
define the mapping for every(g, f) € M as follows:

©({g, f)) = sup{B(b,g(b)) | b € B}

To prove that it is a lattice isomorphism we introduce another mappiny — M
which is the inverse mapping ¢f.

The mappingy is defined for eachv € V asv¥(v) = (g, fu), Where, for each
b € Banda € A, g,(b) and f,(a) are defined as in Proposition 2. This proposition
shows that) is well-defined as well, that isg,, f,) is a concept. The argument is as
follows:

gUT(a) =sup{z € L1 | vy, C a(a,z)} =sup{z € L; | v C a(a,z)} = f,

where the first equality is obtained from item 3 and, from item 5 we have the other
equality because,, = sup{3(b, g,(b)) | b € B} = v. The equalityf} = g, is proved
analogously.

To prove the equalitw(¢({(g, f))) = (g, f), it is sufficient to prove thaff
fv,» Wherev, = ¢({(g, f)), but this follows from Proposition 2 (item 3) sineg

sup{f(b,g(b)) | b € B} = ¢((g, f)) = v, and

gl (a) =sup{z € L1 | vy C a(a,x)}

The other composition gives the identity as well, thatis; (¢ (v)) = ©({gv, fv)) =
sup{3(b, g,(b)) | b € B} forall v € V, as an application of item 5 of Proposition 2.

To finish the proof it is sufficient to prove thatit is order-preserving, since any
order-preserving bijection between lattice is a lattice isomorphism, see [5]. Givefl ),
(92, f2) In Mwith (g1, f1) < (g2, f2), we have thag, < g, and thereforgl(b, g1 (b)) C
B(b, g2(b)) for all b € B, sinceg is increasing in the second argument. Thus, by defini-
tion of , we obtain that:

©({g91, f1)) T (g2, f2))
0

This theorem can be shown to embed the corresponding ones given in [2, 3, 9].Re-
garding an improvement of a previous representation theorem: let us notice that, in
Proposition 2 it is proved directly that the functians decreasing and is increasing
in their second argument, hence these hypotheses, which are explicitly required for the
representation theorem of [9], can be dropped.

Let us finish this section with a further proposition which relates the behaviour of
the mappingsy ands.



Proposition 3. Given a multi-adjoint concept latticeM, <), a concept(g, f) € M
and two mappings: B x Ly — M, a: A x L; — M, whereg is (M, R)-related to
a, we have that:

sup{B(b, g(b)) | b € B} = inf{a(a, f(a)) | a € A}

Proof. Givena € A, we have that
f(a) = g'(a) = inf{R(a,b) ,/* g(b) | b € B}

then f(a) <1 R(a,b) /° g(b) for all b € B and applying the adjoint property and
Property2 we have thati(b, g(b)) T «a(a, f(a)) for all b € B. Therefore if we apply
the supremum and infimum properties we obtain the inequality:

sup{G(b, g(b)) | b € B} Cinf{a(a, f(a)) | a € A}

Letvg = sup{B(b,g(b)) | b € B} € V be, asa[A x L] is infimum-dense there exists
asetofindicestandK = {(a;,z;) | j € A} € AxL; suchthabg = inf{a(a;, z;) |
j € A} and, for allj € Aandb € B, we have that(b, g(b)) C «(a;, z;) which leads
us, from Property 2, te; <1 R(a;,b) ,/* g(b) and, using thaf = ¢',tox; =<1 f(a;)
for all j € A. Hence we have the following chain which provides the required equality:
v = sup{f(b,g(b)) | b € B} E inf{a(a, f(a)) [ a € A}
C inf{a(a, f(a;)) | j € A}

(*)
C inf{a(a;,z;) [ j € A}
= ’UB

where(x) holds because; <1 f(a;) for all j € A and« is decreasing in the second
argument. O

4 Atoy example

Now, we apply the language capabilities of the multi-adjoint concept lattices in an ex-
ample introduced by Umbreit [14] and used by [4]. Furthermore, in the multi-adjoint
concept lattice framework the use can express in a better way his necessities.

Example 1.Let ([0, 1],[0,1],[0,1], <, <, <, &a, & 1) be the multi-adjoint frame where
& andg;p are the commutative @lel and tukasiewicz conjunctors respectively, so
the residuated implications are defined as:

bNra=b,"a=min{l,1+b—a}

o G ].7 Ibea,
b\ga=b/ a_{b7 otherwise.

The different contexts considered later have the same set of objects and attributes:

A = {warm cold, poor in rain calm wind}
B = {Mon, Tue Wed Thu, Fri, Sat Sun}



R |warm|cold|poor in raincalm wind
Mon| 0.5 | 0.5 1
Tue| 1 0
Wed 0.5 | 0.5
Thu| 0.5 |0.5
Fri| 0 1
Sat| 0 1 0.5
Sun| 0 1 1

O = O
— OO OO~

Fig. 1. Table Example 1.

and identical relationshi®: A x B — P, which is defined in Fig. 1.

Now, if we consider the contex{s4, B, R,01), (A, B, R, 03), whereo; (b) = &¢
andoq(b) = &, for everyb € B we can check that we obtain the same result as [4].
We can see this in the concrete example of the problewetiing time that is defined
in [14] as a day of the week not much warm or cold and with no rain, so the fuzzy
notion can be expressed by the fuzzy sulfsefl — [0, 1] defined as:

f(warm) = 0.5, f(cold) = 0.5, f(poorinrain =1, f(calmwind = 0.5

and represented ag:= {warm/0.5, cold/0.5, poor in rairy 1, calm wind/0.5}. A multi-
adjoint concept which represents the situation giverf liyrequired.
With the first context we have that

f+(Mon) = inf{R(a,Mon) \ ¢ f(a): a € A}
= inf{0.5 \ g 0.5,0.5 \ g 0.5,1 \ ¢ 1,1 \¢ 0.5}
=1
Doing the same for the other days the value obtained.
In a similar wayf+' is calculated:
T (warm) =
= inf{ R(warm b) /¢ f'(b): b€ B}
=inf{0.5 /1,1 /90,05 ,90,05,0,0,90,0,90,0,%0}
=0.5
If the same is done for the other attributes we have fHatcold) = 0.5 and that
f(poorinrain = f!T(calmwind = 1. So, the best days for walking time (with
definition given above) is Monday while the others are bad days.
If we use the second context we obtain that:
f+={Mon/1, Tue/0.5, Wed/0, Thu/0.5, Fri/0, Sat/0.5, Sury0.5}
T = {warm/0.5, cold/0.5, poor in rair/1, calm wind/0.5}
In this case the best day is also Monday, but Tuesday, Thursday, Saturday and Sunday

are good ones, while Wednesday and Friday are bad ones. Hence, as stated above, the
concepts obtaineff!, f11) are the same as in [4].
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However, we can consider a multi-adjoint context where we can adapt the definition
of walking timein order to consider some restriction in the objects (or attributes). Given
the context(A, B, R, 03), whereos(b) = & for everyb € By andos(b) = &1,
for everyb € By, whereB; = {Mon, Tue Wed Thu, Fri} and B, = {Sat Sun}, we
can think in the problem ofvalking timeas besides the considerations above, better at
weekends, obtaining in this case the next results:

fH(b) = inf{R(a,b1) \¢ f(a): a € A} for b € B
fH(by) = inf{R(a,by) \ fla): a € A} for by € By

hencef! = {Mon/1, Tue/0, Wed/0, Thu/0, Fri/0, Say0.5, Sury0.5}. We make the
same forf!! taking into account the relationship between objects and implications:

T (warm) =
= inf({R(warm by) /¢ f4(b1): by € Bi} U {R(warmby) /L ft(by): by € By}
=05

Doing the same for the other attributes:
1 = {warm/0.5, cold/0.5, poor in rairy1, calm wind/0.5}

Now, though the user prefers weekends, Monday is still the best day, but now, Saturday
and Sunday are better days than the others. Remind that fuzzy notions related to the
attributes can be given, for exampleather in weekendsan be studied, represented

by the fuzzy set:

g = {Mon/0, Tue/0, Wed/0, Thu/0, Fri/0, Say'1, Sury1}

and fixed the attention in the attributes ‘warm’ and ‘poor in rain’, considering different
implications, that is, the context could be, B, R, 7) wherer is defined as:

7(warm) = 7(poor in rain = &, ; 7(cold) = 7(calm wind) = &¢

5 Conclusions and Future Work

Multi-adjoint concept lattices have been introduced as a generalization of different ex-
isting approaches to fuzzified and/or generalized versions of the classical concept lat-
tice. One of the interesting features is that in a multi-adjoint context each object (or
attribute) has an associated implication and, thus, subgroups with different degrees of
preference can be easily established; this is one topic of future work.

The representation theorem for multi-adjoint concept lattices has been shown by
taking advantage of the relationship between Galois connections and concept lattices
given in [5]. This fact shows that the “concepts” defined in [2, 3, 9] form a complete
lattice without having to rely on the particular definitions of the Galois connections.

The multi-adjoint concept lattice embeds the generalized concept lattice [10] and,
as a consequence, other different fuzzy extensions of the classical concept lattice [6],
such as the fuzzy concepts of [3] and of [2] for the cas€0ofl }-equality.
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Continuing with the comparison of the multi-adjoint frame with other fuzzy ap-
proaches, one future work would be to study the relationship between the concepts
given in [7]. Another point to take into account is the introductioneéqualities to
completely embed the fuzzy concept lattice of [2].
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