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Abstract. Several fuzzifications of formal concept analysis have been proposed
to deal with uncertainty or incomplete information. In this paper, we focus on
the new paradigm of multi-adjoint concept lattices which embeds different fuzzy
extensions of concept lattices, our main result being the representation theorem
of this paradigm. As a consequence of this theorem, the representation theorems
of the other paradigms can be proved more directly. Moreover, the multi-adjoint
paradigm enriches the language providing greater flexibility to the user.
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1 Introduction

The study of reasoning methods under uncertainty, imprecise data or incomplete in-
formation has shown to be an important topic in the recent years. Most of the current
research areas are receiving this message and it is frequent to seefuzzifiedversions of
several well-known standard structures. In this paper, we focus on the area of formal
concept analysis and, specifically, on the generalization of the classical definition of
concept lattice to the fuzzy case.

A number of different approaches have been proposed to generalize the classical
concept lattices given by Ganter and Wille [6] allowing some uncertainty in data. One
of these approaches was proposed by Burusco and Fuentes-González [3] where fuzzy
concept lattices were first presented, and later further developed by Pollandt [13]. Non-
commutative fuzzy logic was considered in the context of concept lattices and similarity
by Georgescu and Popescu [7]. This approach, consisting in generalizing the equality
relation and considering an alternative similarity relation, underlies in the recent work of
Bělohĺavek [2], which consideredL-equalities to extend the fuzzy concept lattice. His
approach was extended in an asymmetric way, although only for the case of classical
equality (L = {0, 1}) by Krajči, who introduced the so-called generalized concepts
lattices in [9,10].

In the context of general logical frameworks, a recent approach so-called multi-
adjoint has been recently introduced and is receiving considerable attention [8, 12].
The multi-adjoint framework was originated as a generalization of several non-classical
logic programming frameworks, its semantic structure is the multi-adjoint lattice, in
which a lattice is considered together with several conjunctors and implications making
up adjoint pairs.



With the idea of providing a general framework in which the different approaches
stated above could be conveniently accommodated, we have to work in a general non-
commutative environment; this naturally leads to the consideration of adjoint triples,
also called pre-implication triples [1] or bi-residuated structures [11] as the main build-
ing blocks of our multi-adjoint concept lattices.

The main result introduced here, apart from the introduction of multi-adjoint con-
cept lattices, is its representation theorem on the multi-adjoint concept lattices, which
gives equivalent conditions in a complete lattice in order to be isomorphic to a multi-
adjoint concept lattice. This theorem can be instantiated to the above mentioned paradigms
and provide a much more easier proof. We also present an example which shows that
the multi-adjoint framework is more expressive that the generalized framework.

The plan of this paper is the following: in Section 2 we recall the basics about Galois
connection and the notion of multi-adjoint concept lattice is introduced, in Section 3
contains the proof of the representation theorem; in Section 4 an example of the multi-
adjoint framework is presented; the paper ends with some conclusions and prospects
for future work.

2 Multi-adjoint concept lattice

A basic notion in formal concept analysis is that ofGalois connection, we start this
section recalling a result which proves that each Galois connection has an associated
complete lattice, calledGalois latticeor concept lattice.

Definition 1. Let (P1,≤1) and (P2,≤2) be posets, and↓ : P1 → P2, ↑ : P2 → P1

applications, the pair(↑, ↓) forms aGalois connectionbetweenP1 andP2 if and only
if:

1. ↑ and↓ are decreasing.
2. x ≤1 x↓↑ for all x ∈ P1.
3. y ≤2 y↑↓ for all y ∈ P2.

If P1 andP2 are complete lattices then the following theorem can be established,
see [5]:

Theorem 1. Let (L1,¹1), (L2,¹2) be complete lattices,(↑, ↓) a Galois connection
betweenL1, L2 and C = {〈x, y〉 | x↑ = y, x = y↓; x ∈ L1, y ∈ L2} thenC is a
complete lattice, where

∧

i∈I

〈xi, yi〉 = 〈
∧

i∈I

xi, (
∨

i∈I

yi)↓↑〉 and
∨

i∈I

〈xi, yi〉 = 〈(
∨

i∈I

xi)↑↓,
∧

i∈I

yi〉

We will use this theorem in order to prove that our construction of multi-adjoint
concept lattices actually leads to a complete lattice.

Firstly, a generalization of multi-adjoint lattices is introduced in order to admit dif-
ferent sorts, in which we allow non-commutative conjunctors as in [1, 7, 11]. To begin
with, the adjoint pairs are generalized into adjoint triples, the basic blocks of multi-
adjoint concept lattices, as follows:
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Definition 2. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and&: P1 × P2 −→ P3,
↙ : P3 × P2 −→ P1, ↖ : P3 × P1 −→ P2 be applications, then(&,↙,↖), is a
adjoint triplewith respect toP1, P2, P3 if:

– & is increasing in both arguments.
– ↙ and↖ are increasing in the first argument and decreasing in the second.
– x ≤1 z ↙ y iff x & y ≤3 z iff y ≤2 z ↖ x, wherex ∈ P1, y ∈ P2 and

z ∈ P3.

This last property is known asadjoint propertyand generalises themodus ponensrule in
a non-commutative multi-valued setting. Notice that no boundary condition is required,
in difference to the usual definition of multi-adjoint lattice [12] or implication triples [1].

In order to introduce a Galois connection which generalizes that given in the classi-
cal case, the usual motivation underlying the multi-adjoint framework [8,12] is applied
to that of adjoint triples, and leads to the following definition of multi-adjoint frame.

Definition 3. A multi-adjoint frameL is a tuple

(L1, L2, P,¹1,¹2,≤,&1,↙1,↖1, . . . , &n,↙n,↖n)

whereLi are complete lattices andP is a poset, and such that(&i,↙i,↖i) is an
adjoint triple with respect toL1, L2, P for all i = 1, . . . , n.

A multi-adjoint frame as above will be denoted as(L1, L2, P, &1, . . . , &n), for short.
It is convenient to note that, in principle,L1, L2 andP could be simply posets, the
reason to consider complete lattices is that multi-adjoint frames will used as the under-
lying lattice on which the operations will be made; hence, general joins and meets are
required.

A contextfor a given frame will mean a tuple(A,B, R, σ) defined as below where,
following the usual terminology,A is to be considered as a set of attributes andB as a
set of objects.

Definition 4. Acontextfor a given frame(L1, L2, P, &1, . . . , &n) is a tuple(A,B,R, σ)
such thatA andB are non-empty sets,R is aP -fuzzy relationR : A×B −→ P andσ
is a mapping which associates any object inB (or attribute inA) with some particular
adjoint triple in the frame, that is,σ : B → {1, . . . , n} (or σ : A → {1, . . . , n}).
The fact that in a multi-adjoint context each object (or attribute) has an associated im-
plication is interesting in that subgroups with different degrees of preference can be
established in a convenient way; however, a complete study of this possibility is outside
the scope of this paper. From now on, we will consider in the context the association
σ : B → {1, . . . , n}.

Now, given a frame and a context for that frame, the following mappings↑σ : LB
2 −→

LA
1 and↓

σ

: LA
1 −→ LB

2 can be defined:

g↑σ (a) = inf{R(a, b) ↙σ(b) g(b) | b ∈ B}
f↓

σ

(b) = inf{R(a, b) ↖σ(b) f(a) | a ∈ A}
Notice that these mappings generalise those given in [3,10] and, as proved below, gen-
erate a Galois connection.
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Proposition 1. Given a multi-adjoint frame(L1, L2, P, &1, . . . , &n) and a context(A,B,R, σ),
the pair(↑σ , ↓

σ

) is a Galois connection betweenLA
1 andLB

2 .

Proof. From now on, to improve readability, we will write(↑, ↓) instead of(↑σ , ↓
σ

) and
↙b,↖b instead of↙σ(b),↖σ(b).

By definition, we have to prove that:

1. ↑ and↓ are decreasing.
This is trivial since the implications are decreasing in the second argument.

2. g ≤ g↑↓ for all g ∈ LB
2 ,

Givena ∈ A andb ∈ B the next chain of inequalities holds because of the adjoint
property:

g↑(a) = inf{R(a, b′) ↙b′ g(b′) | b′ ∈ B} ¹2 R(a, b) ↙b g(b)
g↑(a)&b g(b) ¹2 R(a, b)

g(b) ¹2 R(a, b) ↖b g↑(a)

As the inequality above holds for alla ∈ A, by using the infimum property, it can
be obtained that

g(b) ¹2 inf{R(a, b) ↖b g↑(a) | a ∈ A} = g↑↓(b)

3. f ≤ f↓↑ for all f ∈ LA
1 .

The proof is similar. ut
Now, aconceptis a pair〈g, f〉 satisfying thatg ∈ LB

2 , f ∈ LA
1 and thatg↑ = f and

f↓ = g; with (↑, ↓) being the Galois connection defined above.

Definition 5. Themulti-adjoint concept latticeassociated to a multi-adjoint frame(L1, L2, P, &1, . . . , &n)
and a context(A, B,R, σ) is the set of concepts:

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 andg↑ = f, f↓ = g}

with the ordering〈g1, f1〉 ¹ 〈g2, f2〉 if and only ifg1 ¹ g2 (equivalentlyf1 ¹ f2).

Note that, by Theorem 1, the poset(M,¹) defined above is a complete lattice,
since the arrows(↑, ↓) form a Galois connection between the complete latticesLA

1 and
LB

2 .1

3 The representation theorem

An extension of the representation (or fundamental) theorem on the classical concept
lattice [6] for the multi-adjoint framework is presented below. The result is similar to
those given in previous extensions of the classical concept lattices, but in this general
framework the proof is simpler. To begin with, we need to introduce some definitions
and preliminary results.

1 In the rest of the paper we will assume a fixed multi-adjoint frame and context.
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Definition 6. Given a setA, a posetP with bottom element⊥, and elementsa ∈ A,
x ∈ P , the characteristic mapping@x

a : A → P is defined as:

@x
a(a′) =

{
x, if a′ = a
⊥, otherwise

The following lemma gives a technical property which will be needed later.

Lemma 1. In the concept lattice(M,¹), givena ∈ A, b ∈ B, x ∈ L1 andy ∈ L2,
the following equalities hold:

@x
a
↓(b′) = R(a, b′) ↖b′ x for all b′ ∈ B

@y
b
↑(a′) = R(a′, b) ↙b y for all a′ ∈ A

Proof. By definition of@x
a
↓:

@x
a
↓(b′) = inf{R(a′, b′) ↖b′ @x

a(a′) | a′ ∈ A} = R(a, b′) ↖b′ x

where the last inequality follows becauseR(a′, b) ↖b ⊥1 = >2 (this fact is a conse-
quence of the adjoint property, since⊥1 ¹1 R(a′, b) ↙b >2).

The other equality follows similarly. ut
The following definitions introduce properties which will be used in the statement

of Prop. 2.

Definition 7. Given a complete latticeL, a subsetK ⊆ L is infimum-dense (resp. supremum-
dense) if and only if for allx ∈ L there existsK ′ ⊆ K such thatx = inf(K ′)
(resp.x = sup(K ′)).

Definition 8. Let (M,¹) be a multi-adjoint concept lattice,(V,v) a complete lattice
and α : A×L1 → V , β : B×L2 → V two maps. We say thatβ is (V, R)-related with
α if we have that:

1a) α[A× L1] is infimum-dense;
1b) β[B × L2] is supremum-dense; and
2) for eacha ∈ A, b ∈ B, x ∈ L1 andy ∈ L2:

β(b, y) v α(a, x) if and only if x &b y ≤ R(a, b)

Proposition 2. Given a multi-adjoint concept lattice(M,¹), a complete lattice(V,v)
and two mapsf ∈ LA

1 , g ∈ LB
2 , if there exist two applicationsβ : B × L2 → V ,

α : A× L1 → V , whereβ is (V, R)-related withα we have that:

1. β is increasing in the second argument.
2. α is decreasing in the second argument.
3. g↑(a) = sup{x ∈ L1 | vg v α(a, x)}, wherevg = sup{β(b, g(b)) | b ∈ B}.
4. f↓(b) = sup{y ∈ L2 | β(b, y) v vf}, wherevf = inf{α(a, f(a)) | a ∈ A}.
5. If gv(b) = sup{y ∈ L2 | β(b, y) v v}, thensup{β(b, gv(b)) | b ∈ B} = v.
6. If fv(a) = sup{x ∈ L1 | v v α(a, x)}, thensup{α(a, fv(a)) | a ∈ A} = v.
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Proof. We give the proofs for items 1, 3 and 5, since the others are similar.
1. Let y1 ¹2 y2 ∈ L2, asβ(b, y2) ∈ V andα[A × L1] is infimum-dense there exists
a set of indicesΛ andK = {(aj , xj) | j ∈ Λ} ⊆ A × L1 such thatβ(b, y2) =
inf{α(aj , xj) | j ∈ Λ}, soβ(b, y2) v α(aj , xj) for all j ∈ Λ. Now, by Def. 8 property
2, it follows thatxj &b y2 ≤ R(aj , b) for all j and, asy1 ¹2 y2,

xj &b y1 ≤ xj &b y2 ≤ R(aj , b) for all j

Therefore,β(b, y1) v α(aj , xj) for all j and, asβ(b, y2) is the infimum,β(b, y1) v
β(b, y2), soβ is increasing in the second argument.

3. Givenx ∈ L1, by the adjoint property the inequalityx ¹1 R(a, b) ↙b g(b) is
equivalent tox&b g(b) ≤ R(a, b) which is also equivalent, by Def. 8 property 2, to
β(b, g(b)) v α(a, x) for all b ∈ B, therefore by the supremum property

vg = sup{β(b, g(b)) | b ∈ B} v α(a, x)

Thus, we obtain the equality of the sets:

{x ∈ L1 | x ¹1 R(a, b) ↙b g(b) for all b ∈ B} = {x ∈ L1 | vg v α(a, x)}

Therefore:

g↑(a) = inf{R(a, b) ↙b g(b) | b ∈ B}
(∗)
= sup{x ∈ L1 | x ¹1 R(a, b) ↙b g(b) for all b ∈ B}
= sup{x ∈ L1 | vg v α(a, x)}

where(∗) is given from the adjoint property.

5. Firstly we will show that, for anyv ∈ V , sup{β(b, gv(b)) | b ∈ B} v v, and let us
write Yb = {y ∈ L2 | β(b, y) v v} for anyb ∈ B, so thatgv(b) = sup Yb.

Given v ∈ V , asα[A × L1] is infimum-dense, there is a set of indicesΛ and
K = {(aj , xj) | j ∈ Λ} ⊆ A× L1 such thatv = inf{α(aj , xj) | j ∈ Λ}.

If Yb = ∅, thengv(b) = ⊥2 and we have the next chain of equivalences:

gv(b) ¹2 R(aj , b) ↖b xj iff xj &b gv(b) ≤ R(aj , b) iff β(b, gv(b)) v α(aj , xj) (1)

Otherwise, ifYb is non-empty, then, by Def. 8 property 2, we have for allj ∈ Λ and
y ∈ Yb:

β(b, y) v v v α(aj , xj) iff xj &b y ≤ R(aj , b) iff y ¹2 R(aj , b) ↖b xj

by computing the supremum ony, we get togv(b) = sup Yb ¹2 R(aj , b) ↖b xj , and
then the rest of equivalences in (1) apply.

Recalling thatv = inf{α(aj , xj) | j ∈ Λ} we obtain thanβ(b, gv(b)) v v for all
b ∈ B. Finally, taking supremum on the left hand side, we get

sup{β(b, gv(b)) | b ∈ B} v v
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For the other inequality, asβ[B×L2] is supremum-dense we have thatv = sup{β(bj , yj) |
(bj , yj) ∈ A×L2, j ∈ Λ′}. Then, for anyj ∈ Λ′ we have thatyj ∈ Ybj and, moreover,
yj ¹2 sup Ybj

= gv(bj). Sinceβ is increasing in the second argument, by item 1, we
obtain:

β(bj , yj) v β(bj , gv(bj)) v sup{β(bj , gv(bj)) | j ∈ Λ} v sup{β(b, gv(b)) | b ∈ B}
As v is the supremum onj of β(bj , yj), we getv v sup{β(b, gv(b)) | b ∈ B}. ut

We can now state and prove the representation theorem for multi-adjoint concept
lattices.

Theorem 2. Given a complete lattice(V,v) and a multi-adjoint concept lattice(M,¹
), we have thatV is isomorphic toM if and only if there exist applicationsα : A×L1 →
V , β : B × L2 → V such thatβ is (V, R)-related toα.

Proof. Given an isomorphismϕ : M→ V , the mappingsα : A×L1 → V andβ : B×
L2 → V can be naturally defined, for everya ∈ A, b ∈ B, x ∈ L1 andy ∈ L2, as
follows:

α(a, x) = ϕ(〈@x
a
↓, @x

a
↓↑〉) β(b, y) = ϕ(〈@y

b
↑↓

, @y
b
↑〉)

Let us prove thatβ is (V, R)-related toα:
Firstly, let us show thatα[A×L1] is infimum-dense. By definition, we have to prove

that givenv ∈ V there existsK ⊆ A× L1 such thatv = inf(α[K]).
If ϕ−1(v) = 〈g, f〉 ∈ M, we defineK = {(a, f(a)) | a ∈ A} ⊆ A× L1. Sinceϕ

is an isomorphism, it is sufficient to prove that

〈g, f〉 = inf{〈@f(a)
a

↓
, @f(a)

a

↓↑〉 | a ∈ A}

Let us prove, for instance, thatg(b) = inf{@f(a)
a

↓
(b) | a ∈ A}. By Lemma 1, we have

that@f(a)
a

↓
(b) = R(a, b) ↖b f(a), thus

inf{@f(a)
a

↓
(b) | a ∈ A} = inf{R(a, b) ↖b f(a) | a ∈ A} = f↓(b) = g(b)

Similarly, we can prove thatβ[B × L2] is supremum-dense.
It only remains to prove that givena ∈ A, b ∈ B, x ∈ L1 andy ∈ L2, we have that

β(b, y) v α(a, x) iff x&b y ≤ R(a, b).
For the direct implication, asϕ is order-preserving and reflecting, we have that

β(b, y) v α(a, x) is equivalent to〈@y
b
↑↓

, @y
b
↑〉 ≤ 〈@x

a
↓, @x

a
↓↑〉 and, in particular, to

@y
b
↑↓ ≤ @x

a
↓. From the properties of Galois connection, Lemma 1, and the adjoint

property we obtain the following chain:

y = @y
b (b) ¹2 @y

b
↑↓(b) ¹2 @x

a
↓(b) = R(a, b) ↖b x iff x&b y ≤ R(a, b)

For the other implication, it is sufficient to prove that@x
a ≤ @y

b
↑ as this is equivalent to

@y
b
↑↓ ≤ @x

a
↓ which finally impliesβ(b, y) v α(a, x), from the definition ofα andβ,

andϕ order-preserving.
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But this is clear because, ifa′ ∈ A with a′ 6= a, then@x
a(a′) ¹1 @y

b
↑(a′) holds

because@x
a(a′) = ⊥1. If a′ = a, asx &b y ≤ R(a, b) applying the adjoint property and

Lemma 1 we obtain that:

@x
a(a) = x ¹1 R(a, b) ↙b y = @y

b
↑(a)

Now, conversely, assume we have mappingsα : A × L1 → V , β : B × L2 → V
whereβ is (V, R)-related toα, and let us construct an isomorphismϕ : M → V . We
define the mappingϕ for every〈g, f〉 ∈ M as follows:

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B}

To prove that it is a lattice isomorphism we introduce another mappingψ : V → M
which is the inverse mapping ofϕ.

The mappingψ is defined for eachv ∈ V asψ(v) = 〈gv, fv〉, where, for each
b ∈ B anda ∈ A, gv(b) andfv(a) are defined as in Proposition 2. This proposition
shows thatψ is well-defined as well, that is,〈gv, fv〉 is a concept. The argument is as
follows:

gv
↑(a) = sup{x ∈ L1 | vgv v α(a, x)} = sup{x ∈ L1 | v v α(a, x)} = fv

where the first equality is obtained from item 3 and, from item 5 we have the other
equality becausevgv = sup{β(b, gv(b)) | b ∈ B} = v. The equalityf↓v = gv is proved
analogously.

To prove the equalityψ(ϕ(〈g, f〉)) = 〈g, f〉, it is sufficient to prove thatf =
fvϕ , wherevϕ = ϕ(〈g, f〉), but this follows from Proposition 2 (item 3) sincevg =
sup{β(b, g(b)) | b ∈ B} = ϕ(〈g, f〉) = vϕ and

g↑(a) = sup{x ∈ L1 | vg v α(a, x)}

The other composition gives the identity as well, that is,v = ϕ(ψ(v)) = ϕ(〈gv, fv〉) =
sup{β(b, gv(b)) | b ∈ B} for all v ∈ V , as an application of item 5 of Proposition 2.

To finish the proof it is sufficient to prove thatϕ it is order-preserving, since any
order-preserving bijection between lattice is a lattice isomorphism, see [5]. Given〈g1, f1〉,
〈g2, f2〉 inMwith 〈g1, f1〉 ≤ 〈g2, f2〉, we have thatg1 ≤ g2 and thereforeβ(b, g1(b)) v
β(b, g2(b)) for all b ∈ B, sinceβ is increasing in the second argument. Thus, by defini-
tion of ϕ, we obtain that:

ϕ(〈g1, f1〉) v ϕ(〈g2, f2〉)
ut

This theorem can be shown to embed the corresponding ones given in [2, 3, 9].Re-
garding an improvement of a previous representation theorem: let us notice that, in
Proposition 2 it is proved directly that the functionα is decreasing andβ is increasing
in their second argument, hence these hypotheses, which are explicitly required for the
representation theorem of [9], can be dropped.

Let us finish this section with a further proposition which relates the behaviour of
the mappingsα andβ.
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Proposition 3. Given a multi-adjoint concept lattice(M,¹), a concept〈g, f〉 ∈ M
and two mappingsβ : B ×L2 →M, α : A×L1 →M, whereβ is (M, R)-related to
α, we have that:

sup{β(b, g(b)) | b ∈ B} = inf{α(a, f(a)) | a ∈ A}
Proof. Givena ∈ A, we have that

f(a) = g↑(a) = inf{R(a, b) ↙b g(b) | b ∈ B}
thenf(a) ¹1 R(a, b) ↙b g(b) for all b ∈ B and applying the adjoint property and
Property2 we have thatβ(b, g(b)) v α(a, f(a)) for all b ∈ B. Therefore if we apply
the supremum and infimum properties we obtain the inequality:

sup{β(b, g(b)) | b ∈ B} v inf{α(a, f(a)) | a ∈ A}
Let vβ = sup{β(b, g(b)) | b ∈ B} ∈ V be, asα[A× L1] is infimum-dense there exists
a set of indicesΛ andK = {(aj , xj) | j ∈ Λ} ⊆ A×L1 such thatvβ = inf{α(aj , xj) |
j ∈ Λ} and, for allj ∈ Λ andb ∈ B, we have thatβ(b, g(b)) v α(aj , xj) which leads
us, from Property 2, toxj ¹1 R(aj , b) ↙b g(b) and, using thatf = g↑, toxj ¹1 f(aj)
for all j ∈ Λ. Hence we have the following chain which provides the required equality:

vβ = sup{β(b, g(b)) | b ∈ B} v inf{α(a, f(a)) | a ∈ A}
v inf{α(aj , f(aj)) | j ∈ Λ}
(∗)
v inf{α(aj , xj) | j ∈ Λ}
= vβ

where(∗) holds becausexj ¹1 f(aj) for all j ∈ Λ andα is decreasing in the second
argument. ut

4 A toy example

Now, we apply the language capabilities of the multi-adjoint concept lattices in an ex-
ample introduced by Umbreit [14] and used by [4]. Furthermore, in the multi-adjoint
concept lattice framework the use can express in a better way his necessities.

Example 1.Let ([0, 1], [0, 1], [0, 1],≤,≤,≤,&G,&L) be the multi-adjoint frame where
&G and&L are the commutative G̈odel and Łukasiewicz conjunctors respectively, so
the residuated implications are defined as:

b ↖L a = b ↙L a = min{1, 1 + b− a}
b ↖G a = b ↙G a =

{
1, if b ≥ a;
b, otherwise.

The different contexts considered later have the same set of objects and attributes:

A = {warm, cold, poor in rain, calm wind}
B = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

9



R warm cold poor in raincalm wind
Mon 0.5 0.5 1 1
Tue 1 0 1 1
Wed 0.5 0.5 0 0
Thu 0.5 0.5 1 0
Fri 0 1 0 0
Sat 0 1 0.5 0
Sun 0 1 1 1

Fig. 1. Table Example 1.

and identical relationshipR : A×B → P , which is defined in Fig. 1.
Now, if we consider the contexts(A,B, R, σ1), (A,B, R, σ2), whereσ1(b) = &G

andσ2(b) = &L for everyb ∈ B we can check that we obtain the same result as [4].
We can see this in the concrete example of the problem ofwalking time, that is defined
in [14] as a day of the week not much warm or cold and with no rain, so the fuzzy
notion can be expressed by the fuzzy subsetf : A → [0, 1] defined as:

f(warm) = 0.5, f(cold) = 0.5, f(poor in rain) = 1, f(calm wind) = 0.5

and represented as:f = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}. A multi-
adjoint concept which represents the situation given byf is required.

With the first context we have that

f↓(Mon) = inf{R(a, Mon) ↖G f(a) : a ∈ A}
= inf{0.5 ↖G 0.5, 0.5 ↖G 0.5, 1 ↖G 1, 1 ↖G 0.5}
= 1

Doing the same for the other days the value0 is obtained.
In a similar wayf↓↑ is calculated:

f↓↑(warm) =
= inf{R(warm, b) ↙G f↓(b) : b ∈ B}
= inf{0.5 ↙G 1, 1 ↙G 0, 0.5 ↙G 0, 0.5 ↙G 0, 0 ↙G 0, 0 ↙G 0, 0 ↙G 0}
= 0.5

If the same is done for the other attributes we have thatf↓↑(cold) = 0.5 and that
f↓↑(poor in rain) = f↓↑(calm wind) = 1. So, the best days for walking time (with
definition given above) is Monday while the others are bad days.

If we use the second context we obtain that:

f↓ = {Mon/1, Tue/0.5, Wed/0, Thu/0.5, Fri/0, Sat/0.5, Sun/0.5}
f↓↑ = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}

In this case the best day is also Monday, but Tuesday, Thursday, Saturday and Sunday
are good ones, while Wednesday and Friday are bad ones. Hence, as stated above, the
concepts obtained〈f↓, f↓↑〉 are the same as in [4].
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However, we can consider a multi-adjoint context where we can adapt the definition
of walking timein order to consider some restriction in the objects (or attributes). Given
the context(A, B,R, σ3), whereσ3(b) = &G for every b ∈ B1 and σ3(b) = &L

for everyb ∈ B2, whereB1 = {Mon, Tue, Wed, Thu, Fri} andB2 = {Sat, Sun}, we
can think in the problem ofwalking timeas besides the considerations above, better at
weekends, obtaining in this case the next results:

f↓(b1) = inf{R(a, b1) ↖G f(a) : a ∈ A} for b1 ∈ B1

f↓(b2) = inf{R(a, b2) ↖L f(a) : a ∈ A} for b2 ∈ B2

hencef↓ = {Mon/1, Tue/0, Wed/0, Thu/0, Fri/0, Sat/0.5, Sun/0.5}. We make the
same forf↓↑ taking into account the relationship between objects and implications:

f↓↑(warm) =
= inf({R(warm, b1) ↙G f↓(b1) : b1 ∈ B1} ∪ {R(warm, b2) ↙L f↓(b2) : b2 ∈ B2}
= 0.5

Doing the same for the other attributes:

f↓↑ = {warm/0.5, cold/0.5, poor in rain/1, calm wind/0.5}
Now, though the user prefers weekends, Monday is still the best day, but now, Saturday
and Sunday are better days than the others. Remind that fuzzy notions related to the
attributes can be given, for exampleweather in weekendscan be studied, represented
by the fuzzy set:

g = {Mon/0, Tue/0, Wed/0, Thu/0, Fri/0, Sat/1, Sun/1}
and fixed the attention in the attributes ‘warm’ and ‘poor in rain’, considering different
implications, that is, the context could be(A,B, R, τ) whereτ is defined as:

τ(warm) = τ(poor in rain) = &L ; τ(cold) = τ(calm wind) = &G

5 Conclusions and Future Work

Multi-adjoint concept lattices have been introduced as a generalization of different ex-
isting approaches to fuzzified and/or generalized versions of the classical concept lat-
tice. One of the interesting features is that in a multi-adjoint context each object (or
attribute) has an associated implication and, thus, subgroups with different degrees of
preference can be easily established; this is one topic of future work.

The representation theorem for multi-adjoint concept lattices has been shown by
taking advantage of the relationship between Galois connections and concept lattices
given in [5]. This fact shows that the “concepts” defined in [2, 3, 9] form a complete
lattice without having to rely on the particular definitions of the Galois connections.

The multi-adjoint concept lattice embeds the generalized concept lattice [10] and,
as a consequence, other different fuzzy extensions of the classical concept lattice [6],
such as the fuzzy concepts of [3] and of [2] for the case of{0, 1}-equality.
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Continuing with the comparison of the multi-adjoint frame with other fuzzy ap-
proaches, one future work would be to study the relationship between the concepts
given in [7]. Another point to take into account is the introduction ofL-equalities to
completely embed the fuzzy concept lattice of [2].
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2. R. Bělohĺavek. Concept lattices and order in fuzzy logic.Annals of Pure and Applied Logic,
128:277–298, 2004.

3. A. Burusco and R. Fuentes-González. The study of L-fuzzy concept lattice.Mathware &
Soft Computing, 3:209–218, 1994.
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