
Multiple-Valued Tableaux with ∆-reductions

I.P. de Guzmán M. Ojeda-Aciego A. Valverde

Dept. Matemática Aplicada. Universidad de Málaga.
P.O. Box 4114, E-29080 Málaga, Spain

Abstract

We introduce the reduced signed logics which gen-
eralize previous approaches to signed logics in the
sense that each variable is allowed to have its own
set of semantic values. Reductions on both signed
logics and signed formulas are used to describe im-
provements in tableau provers for MVLs. A labelled
deductive system allows to use the implicit informa-
tion in the formulas to describe improved expansion
rules based on these reductions.

Keywords: automated deduction, signed logics

1 Introduction

Signed logics are a fundamental tool in the de-
velopment of automated theorem provers for
Multiple-Valued Logics [8]. The reason is that,
for any finite-valued logic L, it is possible to
define a transformation Φ with the following
property [7, 8]:

A is valid in L if and only if the signed
formula Φ(A) is unsatisfiable

This way, testing validity in a finite-valued lo-
gic reduces to testing satisfiability of signed for-
mulas.

The expansion rules of tableau systems for
MVLs are essentially based in the conversion of
the input formula into a signed formula; and
the closure tests of the tableau system study
the satisfiability of this signed formula. We
will consider the input formula to be already
signed, and we will focus on the development
of a satisfiability tester for signed logics.

The basic idea of a tableau method is the
generation of a tree out of an input formula, to
be tested for satisfiability, by the following op-
erations: Extending the tree by applying an α-
or a β-rule, and after each extension, checking
the set of literals of each branch for unsatisfiab-
ility (the branch is said to be closed whenever
it is unsatisfiable).

The exponential behaviour of (proposi-
tional) tableau methods is due to applications
of the β-rule, for it increases the number of
branches to be analysed. The improved ver-
sions of tableau methods focus on decreasing
the number of applications of β-rules; the main
strategies used being the application of sim-
plifications as a preprocessing step to either
avoid the generation of subsumed branches in
the proof [3] or to decrease the internal links
in the goal formula [9]; or the application of
tests during the proof [4] (subsumption checks,
factoring, lemmata, etc).

We have developed a tableau-based satis-
fiability tester for signed logics with the fol-
lowing improvements:

(i) We make simplifications, generically
called ∆-reductions, during the analysis
of each branch. The complexity of our
simplifications is usually linear, or at
most quadratic, whereas most of the
simplifications described in the literature
have an excessive computational cost.

(ii) A remarkable feature of the ∆-reductions
in a multiple-valued framework is that
they, dynamically, reduce (in the sense
of Definition 2) the logic we are working
with; therefore, it is possible that we are



working with different logics in different
branches.

(iii) The β-rule is improved; the basic β-rule is
replaced by a Davis-Putnam based β-rule
improved with ∆-reductions.

(iv) For efficiency reasons, most tableau sys-
tems use the atomic closure of a branch
to check its unsatisfiability; our method
allows a finer test, with no extra compu-
tational cost.

2 Reduced signed logics

Our approach to signed logics, by using an ab-
stract construction in the framework of pro-
positional logics, has no reference to either an
initial multiple-valued logic or an specific al-
gorithm, i.e. our definition is completely in-
dependent from the application. We also in-
troduce the concept of reduced signed logics,
which generalizes the signed logics in [7, 8] in
the sense that each variable is allowed to have
its own set of semantic values (these restric-
tions can be done in any multiple-valued logic
in order to improve the specification of prob-
lems in which some variables are known not to
be valued in some subset of n). We introduce
the reductions of logics in order to improve
satisfiability testers for signed logics; specific-
ally, these reductions are integrated in the al-
gorithm, in such a way that the underlying
logic is dynamically reduced in each branch;
which is a powerful way of integrating the sim-
plifications described in this work in a tableau
algorithm.

We will assume that every propositional lo-
gic is built on the same countable set of pro-
positional variables, V .

Definition 1: Let ω : V → 2nr∅ be a func-
tion, called the possible truth values function,
we define

1. The set of ω-signed literals as follows:

litω = {S:p | S ⊆ ω(p), p ∈ V} ∪ {⊥,>}

In a literal ` = S:p, the set S is called the
sign of ` and p is the variable of `.

2. The signed logic valued in n by ω, denoted
Sω = (Sω,M), is the logic defined as fol-
lows:

(a) Its (propositional) language Sω is the
words algebra (formω,⊥,>,∨,∧) gener-
ated by litω where ⊥ and >, the lo-
gical constants and boolean conjunction
and disjunction can work with any finite
arity. The elements of formω are called
ω-signed formulas.

(b) Its generalized matrix, M = (N , D, I) is
given by:

b.1 N = ({0, 1}, 0, 1,max,min)
b.2 D = {1}
b.3 The elements of I are ω-assignments,

that is, homomorphisms I : Sω → N
defined as the unique extension of a
function ı : litω → {0, 1} verifying:

i. For every p ∈ V there exists
a unique j ∈ ω(p) such that
ı({j}:p) = 1.

ii. ı(S:p) = 1 if and only if there ex-
ists j ∈ S such that ı({j}:p) = 1.

If ω(p) = n for all p ∈ V , we have the
usual n-valued signed logic, otherwise the
logics Sω are called reduced signed logics.

Validity and satisfiability are defined in Sω
in the usual manner: An ω-signed formula, A,
is satisfiable if there exists an ω-assignment I
such that I(A) = 1; in this case, I is a model
for A; A, is valid if every ω-assignment I is a
model of A. Two ω-signed formulas are equi-
valent, A ≡ B, if I(A) = I(B) for every ω-
assignment I. An ω-signed formula A is a con-
sequence of the set of ω-signed formulas Γ if
every model of Γ is a model of A. Given a lit-
eral S:p, its conjugate (ω(p)rS):p will be denoted
S:p. Similarly, we say that ⊥ is the conjugate
of > and vice versa.

The ∆-reductions on a given logic, which
will be introduced in the following section, re-
strict the possible truth-values for one or more
variables, the obtained logic is said to be a re-
duction of the initial logic:



Definition 2: Let Sω1 and Sω2 be logics val-
ued in n. We say that Sω1 is a reduction of
Sω2 if ω1(p) ⊆ ω2(p) for all p. The study of
the satisfiability in the reduced logics can be
easily lifted to the initial logic, as stated in the
proposition below:

Proposition 1 If Sω1 and Sω2 are two logics
valued in n and Sω1 is a reduction of Sω2, then:

1. Every formula of Sω1 is a formula in Sω2;
that is

formω1 ⊆ formω2

2. If I is a ω1-signed assignment, then there
is a unique ω2-signed assignment extend-
ing I.

3 The ∆-reductions

We introduce here some simplifications to be
applied to sets of formulas Ω = {A1, . . . , Am}.
We call ∆-reductions to these strategies, which
use sets of unitary implicants and implicates
of the formulas to generalize purity properties
and dynamically modify the signed logic we are
working in. The prefix ∆ is introduced because
the sets of implicants and implicates we will use
are the ∆-sets, introduced in [1].

Literals {j}:p are fundamental in the descrip-
tion of the ∆-reductions, so we introduce a sim-
plified notation for them:

pj
def
= {j}:p

these literals and their conjugated will be
called, respectively, positive and negative lit-
erals.

Definition 3: If A is a signed formula and
pj |= A, we say that pj is an unitary implicant
of A; if A |= pj, then we say that pj is an
unitary implicated of A.

The following definitions are needed in or-
der to define the ∆-reductions. Specifically,
we have two types of reductions, namely, re-
ductions on the logic we are working in and
reductions on the formulas.

Definition 4: Let Sω be a signed logic
valued in n, p a propositional variable and
j ∈ ω(p); the reductions associated to the map-
pings ω[p 6= j] and ω[p = j] are defined as
follows:

• ω[p 6= j](p) = ω(v) if v 6= p and
ω[p 6= j](p) = ω(p)r {j}.

• ω[p = j](v) = ω(v) if v 6= p and
ω[p = j](p) = {j}.

Definition 5: If A is a formula in Sω, we
define the following substitutions:

• A[p 6= j] is a formula in Sω[p6=j] obtained
from A by replacing {j}:p by ⊥, {j}:p by >
and S:p by (Sr{j}):p; in addition, the con-
stants are deleted using the 0-1-laws.

• A[p = j] is a formula in Sω[p=j] obtained
from A by replacing every literal S:p with
j ∈ S by > and every literal S:p with j /∈ S
by ⊥; in addition, the constants are de-
leted using the 0-1-laws.

3.1 αCR-rule: complete reduction

The first ∆-reduction we introduce, called
complete reduction [1], is associated to unitary
implicants of the formulas; the complete reduc-
tion generates as its output equisatisfiable and
smaller-sized formulas in a reduction of the ini-
tial logic.

Theorem 1 Let A be a formula in Sω such
that A |= pj, then A is satisfiable in Sω if and
only if A[p 6= j] is satisfiable in Sω[p6=j]. In
addition, every model of A[p 6= j] in Sω[p6=j] is
a model of A in Sω.

This theorem will be used as an α-like rule
in the tableau prover, the αCR-rule.

3.2 αPL-rule: pure literals

The definition of pure literal in signed logics
that can be found in the literature corresponds
to our pure positive literals. The possibility
of reducing the logic also allows to exploit the



pure negative literals. These concepts are in-
troduced below:

Definition 6: Let A ∈ Sω and p ∈ V.

1. A positive literal pj is called pure in A if
j ∈ S for every literal S:p in A.

2. A negative literal pj is called pure in A if
j /∈ S for every literal S:p in A.

Theorem 2 Let A be a formula in Sω

1. If pj is pure in A, then A is satisfiable in
Sω if and only if A[p = j] is satisfiable
in Sω[p=j]. Furthermore, every model of
A[p = j] in Sω[p=j] is a model of A in Sω.

2. If pj is pure in A, then A is satisfiable in
Sω if and only if A[p 6= j] is satisfiable
in Sω[p6=j]. Furthermore, every model of
A[p 6= j] in Sω[p6=j] is a model of A in Sω.

This theorem will be used as an α-like rule
in the tableau prover, the αPL-rule.

3.3 βDP -rule

The ∆-reductions provide an alternative form
for the β-rule which can be interpreted as a
generalized version of the Davis-Putnam pro-
cedure. The following result justifies the cor-
rectness of the expansion rule which will be
denoted βDP -rule.

Theorem 3 Let p be a variable occurring in a
formula A in Sω and consider j ∈ ω(p). Then,
A is satisfiable if and only if some of the fol-
lowing conditions hold:

1. A[p = j] is satisfiable in Sω[p=j], and a
model for A[p = j] is a model for A.

2. A[p 6= j] is satisfiable in Sω[p6=j], and a
model for A[p 6= j] is a model for A.

3.4 αDP -rule

The choosing of an adequate literal p to branch
in Theorem 3 might not branch the tableau,
but split it. The following corollary of The-
orem 3, justifies the correctness of a new α-like
rule, called the αDP -rule.

Corollary 1 Let Ω = {A1, . . . , Am} be a set
of formulas in Sω such that

1. pj |= Ai for all i ∈ {1 ≤ i ≤ k − 1}

2. pj′ |= Ai for every j′ ∈ ω(p)r {j} and for
all i ∈ {k ≤ i ≤ m}

Then Ω is satisfiable if and only if one of the
following conditions hold:

1. Ω[p 6= j] = {A1[p 6= j], . . . , Ak−1[p 6= j]}
is satisfiable in Sω[p6=j], in this case a
model for Ω[p 6= j] is a model for Ω.

2. Ω[p = j] = {Ak[p = j], . . . , Am[p = j]} is
satisfiable in Sω[p=j], in this case a model
for Ω[p = j] is a model for Ω.

4 A labelled deductive system

In this section we use the ∆-reductions intro-
duced above to develop a refinement of the ba-
sic tableaux system stated in the introduction.
The system is described as a labelled deduct-
ive system [5] where the nodes of the execution
tree (which are sets of formulas), are labelled
with (ω,∆0,∆1) where ω determines the logic
we are using in the branch, ∆0 is a set of unit-
ary implicates of the formulas and ∆1 is a set
of implicants of the formulas. Since the calcu-
lation of the set of all the unitary implicants
and implicates is very complex, we will only
use those implicants/implicates which can be
determined by means of a linear complexity al-
gorithm.

Definition 7: Let A be a ω-signed formula,
∆0(A) is either ⊥ or a set of negative literals,
and ∆1(A) is either > or a set of positive lit-
erals. The recursive definition of these sets is
given by the following rules:



∆0(⊥) = ⊥, ∆1(⊥) = ∅
∆0(>) = ∅, ∆1(>) = >
∆0(S:p) = pj1 . . . pjm,

if ∅ 6= S 6= ω(p), ω(p)r S = {j1, . . . , jm}
∆1(S:p) = pj1 . . . pjm,

if ∅ 6= S 6= ω(p), S = {j1, . . . , jm}
∆0 (

∧n
i=1Ai) = Uni(∆0(A1), . . . ,∆0(An))

∆0 (
∨n
i=1Ai) = Int(∆0(A1), . . . ,∆0(An))

∆1 (
∧n
i=1Ai) = Int(∆1(A1), . . . ,∆1(An))

∆1 (
∨n
i=1Ai) = Uni(∆1(A1), . . . ,∆1(An))

The operator Uni calculates the union of its ar-
guments, and also identifies the result with ⊥
(resp. >) if it contains all the negative (resp.
positive) literals with variable p for some vari-
able p.1 The operator Int calculates the inter-
section of its arguments.

When applying Theorem 1 and Corollary 1
in the satisfiability tester for every branch, we
will use the ∆-lists. For this reason we have
called ∆-reductions to the simplifications de-
scribed in this work.

For the sake of simplicity, the ∆-sets will
be written as lists whose elements are ordered
with the lexicographic order of the variables
and the numerical order of truth-values. Thus,
the sets ∆0(A) and ∆1(A) will be sometimes
called ∆-lists.

From the definition of ∆-lists the following
fundamental theorem arises:

Theorem 4 Let A be a ω-signed formula:

1. If pj ∈ ∆0(A), then A |= pj

2. If ∆0(A) = ⊥, then A ≡ ⊥; in this case,
A is called 0-conclusive.

3. If pj ∈ ∆1(A), then pj |= A; specifically,
in this case A is satisfiable and any inter-
pretation satisfying I({j}:p) = 1 is a model
for A.

4. If ∆1(A) = >, then A ≡ >; in this case,
A is called 1-conclusive.

5. If ∆1(A)∪∆0(A) is the set of all the pos-
itive literals with variable p, then A ≡

1If A |= pj for every j ∈ ω(p), then A is unsatisfiable;
dually, if pj |= A for every j ∈ ω(p), then A is valid.

∨
`∈∆1(A) `; in this case, A is called

simple.

Definition 8: Let A be a ω-signed formula,
we say that A is ∆-restricted if it has neither
conclusive nor simple subformulas.

The calculation of ∆0(A) and ∆1(A) is lin-
ear w.r.t. the size of the formula; furthermore,
during the calculation it is possible to elimin-
ate the conclusive subformulas of A and substi-
tute the simple formulas by the corresponding
literal. Consequently, the conversion into ∆-
restricted form is linear. In the following, we
will only work with ∆-restricted formulas.

4.1 Expansion rules

In the tableau system we are describing now
the tableau’s nodes are sets of signed formulas
labelled as follows:

(ω,∆0,∆1):{A1, . . . Am}

where A1, . . . , Am are ∆-restricted formulas
in Sω and

∆0 = ∆0(A1) ∪ · · · ∪∆0(Am)
∆1 = ∆1(A1) ∩ · · · ∩∆1(Am)

All the rules introduced in this section (but
the α-rule) require the updating of the ∆-labels
in the generated leaves, in order to always ob-
tain ∆-restricted formulas; therefore, the res-
ulting labels (∆′0,∆

′
1) in the newly generated

leaves need not to be the same as the previous
ones (∆0,∆1).

The following expansion rules will be con-
sidered in our improved tableaux system.

4.1.1 α-rule

(ω,∆0,∆1):{. . . , A1 ∧ · · · ∧Am, . . . }

(ω,∆0,∆1):{. . . , A1, . . . , Am, . . . }

4.1.2 αCR-rule

(ω,{pj}∪∆0,∆1):{A1, . . . , Am}

(ω[p6=j],∆′0,∆′1):{A1[p 6= j], . . . , Am[p 6= j]}



4.1.3 αPL-rule

If pj is pure in Ai for all i ∈ {1, . . . ,m}, then

(ω,∆0,∆1):{A1, . . . , Am}

(ω[p=j],∆′0,∆
′
1):{A1[p = j], . . . , Am[p = j]}

If pj is pure in Ai for all i ∈ {1, . . . ,m}, then

(ω,∆0,∆1):{A1, . . . , Am}

(ω[p6=j],∆′0,∆′1):{A1[p 6= j], . . . , Am[p 6= j]}

4.1.4 αDP -rule

If {A1, . . . Am} is pj-splittable, that is
{A1, . . . Am} = {Al1 , . . . Alk−1

} ∪ {Alk , . . . Alm}
satisfying

1. pj |= Ali for all i ∈ {1 ≤ i ≤ k − 1}

2. pj′ |= Ali for every j′ ∈ ω(p)r{j} and for
all i ∈ {k ≤ i ≤ m}

(ω,∆0,∆1):{A1, . . . , Am}

(ω[p=j],∆′0,∆
′
1):{Al [p = j], . . . , A [p = j]}

(ω[p6=j],∆′′0 ,∆′′1 ):{A

1

lk

lk-1

lm
[p 6= j], . . . , A [p 6= j]}

4.1.5 βDP -rule

(ω,∆0,∆1):{A1, . . . , Am}

(ω[p=j],∆′0,∆
′
1):{A1[p = j], . . . , Am[p = j]}

(ω[p6=j],∆′′0 ,∆′′1 ):{A1[p 6= j], . . . , Am[p 6= j]}

4.2 The improved tableaux system

We can now describe our improved tableaux
system with ∆-labels, as follows:

Definition 9: Let Ω = {A1, . . . , Am} be a
set of restricted ω-signed formulas

1. The following tree is a tableau for Ω:

(ω,∆0,∆1):{A1, . . . Am}

where ∆0 = ∆0(A1)∪ · · · ∪∆0(Am), ∆1 =
∆1(A1) ∩ · · · ∩∆1(Am);

2. If T is a tableau for Ω, and T ∗ results from
T by the application of any tableau expan-
sion rule, then T ∗ is a tableau for Ω:

Definition 10: Let T be a tableau for
{A1, . . . , Am}

1. A branch of T , with leaf
(ω,∆0,∆1):{A1, . . . Am}, is said to be
closed if ∆0 = ⊥.

2. A branch of T , with leaf
(ω,∆0,∆1):{A1, . . . Am}, is said to be
open ∆1 6= ∅.

Note that our definition of closed and open
branch is based on Theorem 4, and it is by no
means standard: the condition ∆0 = ⊥ is more
general than the atomic closure of a branch,
and the condition ∆1 6= ∅ allows to detect the
satisfiability of a branch even when that branch
is not still complete.

The completeness and correctness of this im-
proved tableaux method is a consequence of
Theorems 1–4, and Corollary 1:

Theorem 5 Let Ω = {A1, . . . , Am} be a set of
ω-signed formulas

1. If Ω has a closed tableau, then it is unsat-
isfiable.

2. If Ω has a tableau with an open branch,
then it is satisfiable; in addition, if pj
is any element in the ∆1-list of the leaf
(ω′,∆0,∆1):{Ω′}, then any model of pj in Sω′
is a model of Ω in Sω.

4.3 Describing the algorithm

Attending to the complexity of each rule, the
following algorithm is given for a set Ω of ω-
signed formulas.

Step 1 Generate the one-leaf tableau for Ω.

Step 2

2.1 If every branch is closed, then the initial
set is unsatisfiable and the algorithm ends.

2.2 If there exists an open branch, then the
initial set is satisfiable, a model is given as
in Theorem 5 and the algorithm ends.



Step 3 If the α-rule can be applied on a non-
closed branch, then it is applied as many
times as possible and go back to step 2.

Step 4 If the ∆0-label of the leaf of a non-
closed branch is non-empty, then the αCR-
rule is applied for all the elements in ∆0

and go back to step 2.

Step 5 If the conjunction of the formulas in
the leaf of a non-closed branch have pure
literals, then the αPL-rule is applied for
each pure literal and go back to step 2.

Step 6 If the αDP -rule can be applied on a
non-closed branch, then this rule is ap-
plied and go back to step 2.

Step 7 If no rule of type α can be applied on
a non-closed branch, then the βDP -rule is
applied and go back to step 2.

5 Conclusions

The ∆-reductions introduced above allow the
development of refinements of basic tableau
systems. These refinements can be described
as a labelled deductive system [5], with labels
(ω,∆0,∆1) where ω determines the logic in
which the closing property is analysed, and ∆0

(resp. ∆1) is the set of implicates (resp. implic-
ants) of the formulas, as defined in [1].

The computational pay-off of the use of re-
ductions may seem doubtful, since some time
must be spent for scanning the formula and
applying the corresponding reduction. It is
known that a tableau proof for a formula A
of size n is (potentially) of size O(2n), so if
the reduction decreases the size of A at least
by 1, then the potential search space would be
reduced at least by half.

The reductions of formulas applied during
the expansion of the tableau have complexity
at most quadratic, the given closure tests are
more general than the atomic closure test but
with a similar cost. Therefore, we are apply-
ing a polynomial processing for an exponential
gain.

A more general approach to the ∆-
reductions in many-valued logics can be seen

in [1]. The TAS methodology for signed logics,
a rewrite-based version of the reductions, and
a more detailed study of the signing transform-
ations can be seen in [10]. Finally, it is worth
to note that reductions can be successfully ap-
plied to several types of logic [2, 6].

References

[1] G. Aguilera, I. P. de Guzmán, M. Ojeda, and
A. Valverde. Reducing signed propositional
formulas. Soft Computing, 2(4):157–166, 1999.

[2] G. Aguilera, I. P. de Guzmán, M. Ojeda. In-
creasing the efficiency of automated theorem
proving. Journal of Applied Non-Classical Lo-
gics, 5(1):9–29, 1995.

[3] B. Beckert, R. Hähnle, and G. Escalada-Imaz.
Simplification of many-valued logic formulas
using anti-links. Journal of Logic and Com-
putation, 8(4):569–587, 1998.

[4] W. Bibel, S. Bruening, U. Egly, D. Korn, and
T. Rath. Issues in theorem proving based on
the connection method. LNAI 918, pp. 1–16,
1995.

[5] D. M. Gabbay. Labelled Deductive Systems.
Oxford University Press, 1996.

[6] I. P. de Guzmán, M. Ojeda, A. Valverde. Im-
plicates and reduction techniques for temporal
logics. LNAI 1489, pp. 309-323. 1998 (exten-
ded version to appear in the Annals of Math-
ematics and AI )

[7] R. Hähnle. Automated Deduction in Multiple
Valued Logics. Oxford University Press, 1993.

[8] J. J. Lu, N. V. Murray, and E. Rosenthal.
A framework for automated reasoning in
multiple-valued logics. Journal of Automated
Reasoning, 21(1):39–67, 1998.

[9] K. Mayr. Link deletion in model elimination.
Lect. Notes in Artif. Intelligence 918, pp. 169–
184, 1995.

[10] A. Valverde. ∆-trees of implicants and implic-
ates and reductions of signed logics in ATPs.
PhD thesis, Universidad de Málaga, Spain,
July 1998.


