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Abstract—The theory of fuzzy property-oriented concept
lattices is a formal tool for modeling and processing incomplete
knowledge in information systems. This paper relates this
research topic to that of mathematical morphology, a theory
whose scope is to process and analyze images and signals.
Consequently, the theory developed in the concept lattice
framework can be used in these particular settings.

I. INTRODUCTION

Fuzzy formal concept analysis and fuzzy rough set theory
are two formal tools for modeling and processing incom-
plete information in information systems and, therefore, they
are also used to extract information from these systems.
The key notion that links these two approaches is that of
the fuzzy property-oriented concept lattice framework [13],
which arises as a fuzzy generalization of rough set theory and
in which a set of objects and a set of attributes are assumed,
following the view point of formal concept analysis.

On the other hand, mathematical morphology is a theory
concerned with the processing and analysis of images or
signals using filters and other operators that modify them,
these morphological filters are obtained by means of two
basic operators, the dilation and the erosion.

The fundamentals of this theory (initiated by G. Math-
eron [15] and J. Serra [19], [20]), are in set theory, integral
geometry and lattice algebra. Actually, this methodology
is used in general contexts related to activities such as
information extraction in digital images, noise elimination
or pattern recognition.

Recently, a first relationship between L-fuzzy concept
lattices and fuzzy mathematical morphology was introduced
in [1]. In the present work, the scope of this relationship
is extended to the case of fuzzy property-oriented concept
lattices.

Originally, the theory of formal concept analysis was
developed on the basis of the properties of (antitone) Galois
connections; later, further generalizations were introduced in
terms of the closely related notion of isotone Galois connec-
tion. In fact, the latter notion had already been introduced
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in the framework of category theory under the name of
adjunction (or pair of adjoint functors), and a number of its
instances can be found in very disparate research areas. One
of those areas is that of mathematical morphology, where the
operators of erosion and dilation form an adjoint pair.

The crux of the links between both theories obtained in
this paper is related to the fact that adjunctions (or, synony-
mously, isotone Galois connection) underlie both mathemat-
ical morphology and property-oriented multi-adjoint concept
lattices.

II. PRELIMINARIES

This section recalls the fuzzy property-oriented concept
lattices introduced in a more general environment than
in [13], which use a generalization of the isotone Galois
connections presented in [10]. Later, several basic notions of
mathematical morphology are presented.

A. Fuzzy property-oriented concept lattices

In this section we recall a fuzzy generalization of the
property-oriented concept lattices introduced in [16] and
completed in [17]. The basic building blocks of this ex-
tension are the so-called adjoint triples, which consist of
three operations: a non-commutativity conjunctor and two
residuated implications [11], that satisfy the well-known
adjoint property which allows to reproduce the modus ponens
inference rule in a general framework.

Definition 1 ( [18]): Let (P1,≤1), (P2,≤2), (P3,≤3) be
posets and &: P1×P2 → P3, ↙ : P3×P2 → P1, ↖ : P3×
P1 → P2 be mappings, then (&,↙,↖) is an adjoint triple
with respect to P1, P2, P3 if:

1) & is order-preserving in both arguments.
2) ↙ and ↖ are order-preserving on the first argument1

and order-reversing on the second argument.
3) x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x,

where x ∈ P1, y ∈ P2 and z ∈ P3.

Gödel, product and Łukasiewicz t-norms, together with
their residuated implications, can be seen as examples of
adjoint triples.

Example 1: Since both Gödel, product and Łukasiewicz
t-norms are commutative, the residuated implications satisfy
that ↙G=↖G, ↙P=↖P and ↙L=↖L. Therefore, the
Gödel, product and Łukasiewicz adjoint triples are defined

1Note that the antecedent will be evaluated on the right side, while the
consequent will be evaluated on the left side, as in logic programming
framework.



on [0, 1] as usual, namely:

&P (x, y) = x · y ; z ↖P x =

{
1 if x ≤ z
z/x otherwise

&P (x, y) = x · y ; z ↖P x =

{
1 if x ≤ z
z/x otherwise

&L(x, y) = max{0, x+ y − 1}

z ↖L x = min{1, 1− x+ z} �

More general examples of adjoint triples can be given. In the
next example we show that the discretisations of the previous
examples already lead to adjoint triples.

Example 2: Let [0, 1]m be a regular partition of [0, 1] in
m pieces, for example [0, 1]2 = {0, 0.5, 1} divides the unit
interval in two pieces.

Consider the discretization of the Gödel t-norm repre-
sented by the operator &∗G : [0, 1]20 × [0, 1]8 → [0, 1]100

defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8, as:

x&∗G y =
d100 ·min{x, y}e

100

where d e is the ceiling function.
For this operator, the corresponding residuated impli-

cation operators ↙∗G : [0, 1]100 × [0, 1]8 → [0, 1]20 and
↖∗G : [0, 1]100 × [0, 1]20 → [0, 1]8 are defined as:

b↙∗G a =
b20 · (b↙G a)c

20

b↖∗G c =
b8 · (b↖G a)c

8

where b c is the floor function.
The tuple (&∗G,↙∗G,↖∗G) is an adjoint triple; it is re-

markable that the operator &∗G is neither commutative nor
associative, as this is not required in the definition of adjoint
triple. �

The basic structure, which fixes the triplet of lattices and
the adjoint triple, is the fuzzy property-oriented frame.

Definition 2: Given two complete lattices (L1,�1) and
(L2,�2), a poset (P,≤) and one adjoint triple with respect
to P,L2, L1, (&,↖), a fuzzy property-oriented frame is the
tuple

(L1, L2, P,�1,�2,≤,&,↖)

The notion of fuzzy property-oriented context is defined
analogously to the one given in [18], and is given below.

Definition 3: Let (L1, L2, P,&,↖) be a fuzzy property-
oriented frame. A context is a tuple (A,B,R) such that A
and B are non-empty sets (usually interpreted as attributes
and objects, respectively), R is a P -fuzzy relation R : A ×
B → P .

From now on, we will consider a fixed fuzzy property-
oriented frame (L1, L2, P,&,↖) and a fixed context
(A,B,R).

The mappings ↑Π : LB2 → LA1 and ↓
N

: LA1 → LB2 are
defined as

g↑Π(a) =
∨
{R(a, b) & g(b) | b ∈ B}

f↓
N

(b) =
∧
{f(a)↖ R(a, b) | a ∈ A}

These definitions generalize the classical possibility and
necessity operators [9]. Moreover, (↑Π , ↓

N

) is an isotone
Galois connection (also known as adjunction) and, therefore,
↑Π↓N

: LB2 → LB2 is a closure operator and ↓
N ↑Π : LA1 → LA1

is an interior operator.
A concept, in this environment, is a pair of mappings

〈g, f〉, with g ∈ LB , f ∈ LA, such that g↑Π = f and
f↓

N

= g, which will be called fuzzy property-oriented
concept. In that case, g is called the extent and f , the intent
of the concept. The set of all these concepts will be denoted
as FΠN .

Definition 4: The associated fuzzy property-oriented con-
cept lattice to the fixed frame and context (or, the concept
lattice of (A,B,R) based on rough set theory) is defined as
the set

FΠN = {〈g, f〉 ∈ LB2 × LA1 | g↑Π = f and f↓
N

= g}

in which the ordering is defined by 〈g1, f1〉 �
〈g2, f2〉 iff g1 �2 g2 (or equivalently f1 �1 f2).

The pair (FΠN ,�) is a complete lattice [16], which
generalizes the concept lattice introduced in [6] to a fuzzy
environmernt.

B. Mathematical Morphology

The fundamentals of mathematical morphology ground on
two basic operators: erosions and dilations. Those operators
were introduced originally on Euclidean Spaces by means
of translations and joins of subsets [15], [19]. However,
in subsequent approaches [12], [20], such definitions were
extended to apply to complete lattices in order to cover
broader applications. In this paper, we use directly this later
algebraical definition.

Definition 5: Let (L1,≤1) and (L2,≤) be two complete
lattices. A mapping ε : L1 → L2 is called an erosion if for
all X ⊆ L1 we have:

ε(
∧
X) =

∧
x∈X

ε(x)

A mapping δ : L2 → L1 is called a dilation if for all Y ⊆ L2

we have:
δ(
∨
Y ) =

∨
y∈Y

δ(y)

So, roughly speaking, every erosion commutes with in-
fimum and every dilation with supremum. Note that the
definition above takes into account the case where X and
Y are empty. That means that erosions assign the greatest
element of L1 to the greatest element of L2 and dilations
assign the least element of L2 to the least element of L1.
Let us see some examples.

Example 3: The best known family of erosions and dila-
tions comes from the original definition in the framework of



Euclidean Spaces. Specifically, the lattice considered here is
the powerset of the real plane R2 (denoted by ℘R2). Such
definitions are based on translations, so let us recall that for
each P ∈ R2, we can consider the translation τP defined as
the only translation which sends the origin O ∈ R2 to P .
Thus, given a subset S ⊆ R2, called structuring element, the
erosion εS and dilation δS of a subset X ⊆ R2 are defined
by

εS(X) =
⋂
s∈S

τ−s(X)

δS(X) =
⋃
s∈S

τs(X)

It is well-known that εS and δS defined as above are
really an erosion and a dilation, respectively, according to
Definition 5. �

Example 4: The family of erosions and dilations given
in the example above are invariant under translation. No-
tice, however, that it is easy to define erosions and dila-
tions without such a property in ℘R2. Consider a mapping
W : R2 → ℘R2 associating to each point a subset of R2.
Then, for each subset X of R2, we can introduce the operator
δW defined by

δW (X) =
⋃
x∈X

W (x)

which is a dilation.
We can obtain an erosion from δW by complementation,

that is, by defining εW (X) = (δW (Xc))c. �
Perhaps the most important relation between erosions and

dilations is given in terms of adjoint pairs, so let us begin
by recalling the notion of adjoint pair.

Definition 6: A pair (ε, δ) of mappings ε : L1 → L2 and
δ : L2 → L1 between complete lattices (L1,≤1) and (L2,≤)
is an adjoint pair if and only if for every X ∈ L1 and Y ∈ L2

we have

Y ≤ ε(X) if and only if δ(Y ) ≤ X

The naming ε and δ chosen in the previous definitions
is not casual, since the operators introduced in Definitions 5
and 6 are adjoint each other. The following two results (The-
orems 1 and 2) were proven in [12], somehow rediscovering
facts well-known in category theory. Sadly, such a situation
is repeatedly found in different areas.

Firstly, we have the following result:
Theorem 1: If (ε, δ) an adjoint pair. Then, ε is an erosion

and δ is a dilation.
On the other hand, the converse can be written in the

following sense:
Theorem 2: Let ε : L1 → L2 be an erosion. Then there

exists exactly one dilation δε : L2 → L1 such that (ε, δε)
forms an adjoint pair. Specifically, such a dilation can be
determined by the expression:

δε(Y ) =
∧
{Z ∈ L2 | Y ≤ ε(Z)}

for every Y ∈ L2.

Similarly, for every dilation δ : L2 → L1 there exists
exactly one erosion εδ : L1 → L2 such that (εδ, δ) forms
an adjoint pair. Moreover, such an erosion is determined by
the expression:

εδ(X) =
∨
{Z ∈ L1 | δ(Z) ≤ X}

for every X ∈ L1.
Example 5: The operators εS and δS defined in Example 3

form an adjoint pair independently of the structuring element
S ⊆ R2. �

It is worth mentioning that Mathematical Morphology is
not just about considering erosions and dilations; many other
notions and operations are used as well, for instance open-
ings, closings and Hit-Miss transformations, among others,
are also object of study in this theory. But for the sake of
simplicity, we restrict the introduction of preliminary notions
to a minimum and will not go further in this section.

III. A FIRST BRIDGE BETWEEN BOTH THEORIES

In some sense, a first link between both theories can
be straightforwardly obtained from Theorem 2, using the
fact that the necessity and possibility operators forms an
adjunction (or isotone Galois connection). Therefore, we can
formulate the following proposition:

Proposition 1: Every necessity (respectively, possibility)
operator of a property-oriented concept lattice is an erosion
(resp., dilation).

The converse is also true in some sense. That is, any
erosion operator ε can be identified with the necessity
operator associated to some fuzzy property-oriented concept
lattice. However the proof is not as straightforward as in the
previous result.

Theorem 3: Consider two complete lattices, L1 and L2,
and an erosion operator ε : L1 → L2, then there exists
a frame (L1, L2, P,&,↖), a context (A,B,R) and two
isomorphisms φ1 : L1 → LA1 , φ2 : L2 → LB2 , such that
ε = φ−1

2 ◦ ↓N ◦ φ1, where ↓
N

is the necessity operator
associated with the frame and context.

Proof: To begin with, we will build the frame. The
choice of lattices L1 and L2 is easy, we consider L1 = L1

and L2 = L2; the poset P is the singleton {e}, where e is
an arbitrary element and the implication ↖ : L1 × P → L2

is defined, for all z ∈ L1, as z ↖ e = ε(z).
The adjoint conjunctor &: P × L2 → L1 is defined from

the implication as:

e& y =
∧
{z ∈ L1 | y � z ↖ x}

=
∧
{z ∈ L1 | y � ε(z)} = δ(y)

for all y ∈ L2, where δ : L2 → L1 is the dilation satisfying
that (ε, δ) is an isotone Galois connection. Consequently, the
pair (&,↖) satisfies the adjoint property and, therefore, the
considered property-oriented frame is (L1, L2, P,&,↖).

Now, the context (A,B,R) is given by A = B = {a} and
R : A×B → P is defined by R(a, a) = e.

Since A is a singleton, we can give a trivial isomorphism
φ1 : L1 → LA1 , defined for every z ∈ L1, as φ1(z) = fz ,



where fz ∈ LA1 is the constant mapping fz(a) = z. Anal-
ogously, an isomorphism φ2 : L2 → LB2 can be introduced.
Note that, given g ∈ LB2 , φ−1

2 (g) = g(a).
Thus, given z ∈ L1, we have the following chain of

equalities

φ−1
2 ◦ ↓

N

◦ φ1(z) = φ−1
2 (fz↓

N

)

= fz
↓N

(a)

=
∧
{fz(a)↖ R(a, a) | a ∈ A}

= fz(a)↖ R(a, a)
= ε(fz(a))
= ε(z)

Note that the theorem above can be rewritten in terms of
dilations as follows:

Corollary 1: Given two complete lattices, L1 and L2,
and a dilation operator ε : L2 → L2, there exists a frame
(L1, L2, P,&,↖), a context (A,B,R) and two isomor-
phisms φ1 : L1 → LA1 , φ2 : L2 → LB2 , such that δ =
φ−1

1 ◦ ↑Π ◦ φ2, where ↑Π is the necessity operator associated
with the frame and context.

The theorems introduced so far establish a strong link
between the theory of fuzzy property-oriented concept lat-
tices and mathematical morphology. However, although the
existence of the link is interesting theoretically, it could be
useless in practice. The reason is because the context built
in the proof of Theorem 3 simply consists of two singletons
and a trivial relation.

In the rest of the section, we focus on a slightly different
problem which can be stated as follows: given an isotone Ga-
lois connection (or adjunction) (ε, δ) with ε : L1

A → L2
B ,

we study the existence of a frame (L1, L2, P,&,↖) and
context (A,B,R) satisfying the equality f↓

N

= ε(f) and
g↑Π = δ(g).

It is worth to point out two interesting and important
differences of this statement with the one given in Theorem 3.
On the one hand, both the domain and codomain of the
erosion (and, obviously, the dilation) are fuzzy powersets,
which are directly related to the frame and context of the
concept lattice, thus they are already known elements. In
other words, to prove the statement, we simply need to define
the poset P together with the conjunction & and implication
↖, and the relation R : A × B → P . And on the other
hand, the relationship between the necessity operator and
the erosion does not involve any isomorphism, instead they
are exactly the same.

The answer to the problem stated above is positive, and
the detailed construction of the frame and context are given
in the proof of the following theorem.

Theorem 4: Let ε : L1
A → L2

B be an erosion, then
there exists a frame (L1, L2, P,&,↖) and context (A,B,R)
satisfying the equality f↓

N

= ε(f).
Proof: To begin with, concerning the frame, we choose

the poset P to be the Cartesian product with the discrete
ordering, that is the ordering defined by the equality relation,

i.e. (P,≤3) = (A × B,=). As a result of this choice, one
can define the relation R : A × B → A × B as the identity
mapping.

Now, in order to define the implication ↖ : L1 × (A ×
B) → L2, it will be convenient to consider the family of
auxiliary mappings introduced below:

Given an attribute a0 ∈ A and a value x ∈ L1, the mapping
φa0,x : A→ L1 is defined as

φa0,x(a) =

{
x if a = a0

> otherwise

Now, given x ∈ L1 and (a, b) ∈ A×B, we define

x↖ (a, b) = ε(φa,x)(b)

which is increasing in the first argument (this is easy,
since the mappings φai,x are increasing wrt x, and also
ε is increasing) and, vacuously, decreasing in the second
component (since we are considering the discrete ordering
in A×B).

At this point, aiming at the expression given in the state-
ment, it is not difficult to see that its “expected” associated
conjunctor &: (A×B)× L2 → L1 by

(a, b) & y =
∧
{z | y ≤2 z ↖ (a, b)}

=
∧
{z | y ≤2 ε(φa,z)(b)}

In order to check that, actually, & and ↖ satisfy the
corresponding adjoint property, one has to check that the
infimum in the definition above is indeed a minimum. This
follows from the fact that the meet of elements zj satisfying
y ≤2 ε(φa,zj

)(b) actually satisfies the inequality as well,
since

ε(φa,Vj zj
) = ε(

∧
j

φa,zj ) =
∧
j

ε(φa,zj )

We have just to verify that the necessity operator associ-
ated to the frame and context just described coincides with
ε. Firstly, we will check the equality for the φ-mappings:

φ↓
N

ai,x(b) =
∧
a∈A

φai,x(a)↖ R(a, b)

= φai,x(ai)↖ R(ai, b)
= x↖ R(ai, b)
= x↖ (ai, b)
= ε(φai,x)(b)

Finally, given any mapping f ∈ L1
A, we will benefit from

another use of the φ-mappings as a means to represent f as
a meet indexed by the elements of A. Specifically, we can
write f =

∧
i∈I φai,f(ai) where I is an index set such that



A = {ai | i ∈ I}. Thus,

f↓
N

(b) =
(∧
i∈I

φai,f(ai)

)↓N

(b)

=
∧
i∈I

φai,f(ai)
↓N

(b)

=
∧
i∈I

ε(φai,f(ai))(b)

= ε
(∧
i∈I

φai,f(ai)

)
(b)

= ε(f)(b)

IV. CONCLUSIONS AND FUTURE WORK

Focusing on the fact that adjunctions (or isotone Galois
connections) underlie the theory of both property-oriented
multi-adjoint concept lattices and mathematical morphology,
we have obtained some results linking erosion and dilation
operators to the necessity operator of certain instance of
property-oriented multi-adjoint concept lattice.

The existence of this first link allows for foreseeing future
developments in which both frameworks can be merged, so
that algorithms given for fuzzy concept lattices could be
applied to mathematical morphology and vice versa.

In this paper, we have established a relationship between
certain framework of fuzzy formal concept analysis and
mathematical morphology. Concerning possible future work,
we will further extend the link by considering extended
frameworks in both topics. On the one hand, new theoretical
results have been obtained concerning the use of Galois
connections within multi-adjoint concept lattices [8]; on the
other hand, we can consider as well fuzzy mathematical
morphology, which has interesting applications, for instance,
fuzzy morphological image processing has been given in [2]–
[5], [7], [14] using L-fuzzy sets as images and structuring
elements.
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Mathematical Morphologies. Mathware & Soft Computing, 8(1):31–
46, 2001.
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