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A measure of contradiction based on
the notion of N -weak-contradiction

Humberto Bustince Nicolás Madrid Manuel Ojeda-Aciego

Abstract—In this work we elaborate on the notion of con-
tradiction between fuzzy sets introduced by Trillas et al in a
fuzzy logic context. Our approach is parametric in that the
operator used to define contradiction is rather a variable than
a constant introduced prior to the analysis of contradiction. We
give several motivations to consider weaker operators than the
usual involutive negations, and obtain some preliminary results
which validate this proposal.

I. INTRODUCTION

Contradictions appear in all branch of knowledge; from pure
Science to History through Law. Consider just in Physics the
twin paradox in the special relativity theory; in History the
Gospels of John and the other three Gospels of the New
Testament; and in Law the description of an event given by
two lawyers, one of the defense and another of the accuser.
Moreover, it is interesting to note that contradictions entail
usually new knowledge. A clear example of that feature is
that in Science usually new theories arise from contradictions
between the current theory and new discovered facts; for
instance the consequences of Michelson-Morley experiment,
which contradicted the existence of ether, led to the develop-
ment of relativity.

From a pure computer science point of view, contradictions
have been already considered in different topics. Actually,
there exists currently a number of articles in the literature
studying contradictions in text mining [4] and in medical
databases [1]. In the theoretical area, [2] defines various
measures of contradiction and, if we establish a link between
contradiction and inconsistency, in [3], [9], [7] the reader can
find several measures of inconsistency under different logics.

The measure of contradiction we define in this paper is
based on the notion of N -contradiction presented in [10] in
the fuzzy framework. Roughly, the idea underlying in the
notion of N -contradiction is that two fuzzy sets A and B
are N -contradictory if the logic formula A → ¬B holds
(where the symbol ¬ represents the negation logic operator
associated to N ). If the implication → is residuated, then the
satisfiability of the formula above is equivalent to saying that
A(x) ≤ ¬B(x). However, in this paper we do not consider
literally the definition given in [10] but a weaker one. The
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motivation of that consideration is given in Section II, together
with some results.

In Section III we define the measure of contradiction C.
Moreover, we prove that if the universe U is finite or the
membership functions of the fuzzy sets are continuous, the
measure C satisfies the following properties:
• symmetry; i.e C(A,B) = C(B,A).
• antitonicity; i.e. A1 ≤ A2 implies C(A1, B) ≥ C(A2, B).
• C(A,B) = 0 iff there is x ∈ U such that A(x) = 1 and
B(x) = 1.

• C(A,B) = 1 iff A(x) = 1 implies B(x) = 0 for all
x ∈ U .

At the end of the paper we present also some conclusions
and future lines of work. Finally, let us recall some well-
known notions in order to make this paper as self-contained
as possible. A fuzzy set A is a pair (U , µA) where U is a
set (called the universe of A) and µA is a mapping from U to
[0, 1] (called the membership function of A). Note that a fuzzy
set is fully determined by its membership function. Hence, for
the sake of clarity, we use the same notation for fuzzy sets and
membership functions (i.e A(x) = µA(x)) and the universe is
omitted if whenever it does not generate misunderstandings.

II. N -WEAK-CONTRADICTION

As we stated in the introduction, the measure of contradic-
tion defined in this paper is based on a slight generalization
of the notion of N -contradiction given by [10]. In this sec-
tion we present such a generalization, provide some aspects
motivating the generalization and give some results used in
further sections. Let us begin by giving the definition of f -
weak-contradictory sets.

Definition 1: Let A and B be two fuzzy sets and let
f : [0, 1]→ [0, 1] be an antitonic mapping such that f(0) = 1.
We say that A is f -weak-contradictory w.r.t. B if the inequality
A(x) ≤ f(B(x)) holds for all x ∈ U .

The idea underlying the notion of f -weak-contradiction is
to manage contradictory information provided by two fuzzy
sets through a mapping f . Fixed a mapping f and a value of
B(x) (for some x ∈ U), the f -weak-contradiction determines
an upper boud on the value of A(x). Note that as f is antitonic,
the greater the value B(x), the smaller the upper bound and
then also the smaller the value A(x). Moreover, as f(0) =
1, we have that if B(x) = 0 then there is no restriction on
the value of A(x). Note that the restriction depends strongly
on the mapping chosen, thus somehow, different mappings f
determine also “different kinds of contradictions”.

The difference of our approach w.r.t. [10] is related to the
conditions imposed on mappings f used to determine the
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kind of contradiction. Specifically, [10] considers involutive
negations; i.e antitonic mappings N : [0, 1] → [0, 1] such that
N(0) = 1, N(1) = 0 and verifying that N(N(x)) = x for all
x ∈ [0, 1]. Our approach weakens these requirements because
of the following motivations:
• Removing the symmetry imposed by involutions. Con-

sidering involutive negations involves a “strong” symme-
try. That is because if A and B are two fuzzy sets such
that A is N -contradictory w.r.t. B (with N involutive),
then necessarily B is N -contradictory w.r.t. A as well.
This feature entails that for all element in the universe,
if a degree α of A contradicts a degree β of B, then
necessarily a degree β of A contradicts a degree α of A.
In our opinion, there are some cases where, although the
degree α of A contradicts a degree β of B, the degree β
in A does not contradict a degree α of A (i.e. they can
coexist) as the following example shows:
Example 1: Let us consider a situation based on control
systems. In a factory there are two gas tanks A and B
and, by some requirement, the pressure of both tanks must
be equal; however, we can only control the pressure of
tank A. Moreover, by safety reasons, if the pressure in A
is high enough, there is an upper limit on the pressure
gain in A. For instance, if PA(t) and PB(t) are two fuzzy
sets denoting the pressure in A and B respectively at time
t, then the pressure put in A could be given by a fuzzy
set of the following form:

IA(t) = min{PB(t), 2− 2 · PA(t)}

Then, if we assume that the control system is working
well, the values PA(t) = 0.9 and IA(t) = 0.5 represent
a clear contradiction since those values cannot be given
by the control system (i.e. be given by the formula which
defines the value of IA). However, the values PA(t) = 0.5
and IA(t) = 0.9 do not represent any contradiction since
if PB(t) = 0.9, the formula above explains the value of
IA(t). As a result, in this context, the symmetry imposed
by the use of involutive negations needs not hold. �
The example above is really simple but also enough to
motivate, at least, the consideration of arbitrary negations
in the definition of N -contradiction. Moreover, it is
convenient to recall that the notion of coherence presented
in [6] allows arbitrary negations in its definition and is
closely related to N -contradiction (see [5]).

• Mappings f as variables. In our point of view, the
contradiction between two fuzzy sets cannot be explained
a priori by fixing a specific f -contradiction. That is, we
do not fix a mapping f in order to study whether two
fuzzy sets are f -contradictory. Contrariwise, we believe
the mapping f must be fixed a posteriori. That is, given
two fuzzy sets A and B, we study which is the best f -
weak-contradiction to represent the contradiction between
A and B. So, we consider mappings f as variables instead
of fixed elements. Therefore, the structure of the set of
mappings considered to define f -contradictions is now
crucial.

• Duality instead of “formal” symmetry imposed by
involutions. We recall that in the first motivational item

we have removed the symmetry imposed by involutions.
However, everybody has in mind that the idea of contra-
diction is, somehow, symmetric. That idea can be roughly
described by: if A is “contradictory” w.r.t. B then B
must be, somehow, also “contradictory” w.r.t. A as well;
although possibly under different f -weak-contradictions.
Unfortunately, considering only negation operators is not
enough to guarantee that feature, since there are fuzzy
sets A and B such that A is N -weak-contradictory
w.r.t. B but B is not N -weak-contradictory w.r.t. A
for any negation N . Therefore, we have two options:
either imposing more restrictions on negation operators
or reducing them. We have chosen the latter approach in
order to achieve a structure of complete lattice in the
set of mappings used to define f -weak-contradictions.
Specifically, we substitute the requirement f(1) = 0
(imposed on negation operators) by f(1) ∈ [0, 1). Under
such consideration we can obtain Proposition 5 (to be
introduced later in this section), which relates the weak-
contradiction of A w.r.t. B with the weak-contradiction
of B w.r.t. A. Hence, from a formal point of view, the
idea of symmetry is changed by duality. It is worth
mentioning, that in Section III we show that the degree of
both kinds of contradictions is the same. The two types
of contradiction given in Example 1 are related below:
Example 2: It is not difficult to check that, by assuming
that the control system works good, PA is f1-weak-
contradictory w.r.t. IA and IA is f2-weak-contradictory
w.r.t. PA where:

f1(x) =
{

1 if x ≤ 1
2

2− 2 · x otherwise

f2(x) =
{

3
2 −

1
2 · x if x ≤ 1

2
1
2 otherwise

Note that although f1 defines a negation operator, f2 does
not; actually, it is not difficult to check that there is no
negation N satisfying that IA is N -weak-contradictory
w.r.t. PA.

• A final requirement. The last point concerns only
practical motivations (practical from a theoretical point
of view). Note that up to now, we have motivated the
use of antitonic mappings f : [0, 1] → [0, 1] verifying
that f(0) = 1 and f(1) 6= 1. This family of mappings
(denoted by Ω) forms a lattice by considering the point-
wise ordering; but does not define a complete lattice,
since

sup(Ω) = f>(x) = 1 for all x ∈ [0, 1]

does not belong to Ω. Including f> in Ω has two conse-
quences. On the one hand, it gives to Ω the structure of
complete lattice (useful feature as we show in Section III).
On the other hand, the use of f> to define the f>-weak-
contradiction allows us to consider the non-contradiction
as a special case of weak-contradiction. Hence every pair
of fuzzy sets can be considered contradictory up to some
degree; that feature is useful in practice.

In the rest of this section we provide some theoretical
results on the notion of f -weak-contradictory fuzzy sets to be
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used later. The first result shows that the f -weak-contradiction
is preserved by considering subsets of f -weak-contradictory
fuzzy sets.

Proposition 1: Let A,B,C and D be four fuzzy sets such
that A ≤ C and B ≤ D. If A is f -weak-contradictory w.r.t. B
then C is f -weak-contradictory w.r.t. D for any mapping f .

As we explained in the motivational items above, the
mappings f used to defined the f -weak-contradiction can
be considered as variables. The following result provides a
relationship between f -weak-contradictory fuzzy sets w.r.t.
different mappings. Let us recall that Ω denotes the set of
antitonic mappings f : [0, 1] → [0, 1] such that f(0) = 1 and
f(1) 6= 1.

Proposition 2: Let A and B be two fuzzy sets and let f1
and f2 be two mappings in Ω such that f1 ≤ f2. If A is f1-
weak-contradictory w.r.t. B then A is f2-weak-contradictory
w.r.t. B as well.

From the previous result we can consider the mapping f
in Definition 1 as a degree. Note that if A is f -weak-
contradictory w.r.t. B, then as a consequence of the proposition
above, A is g-weak-contradictory w.r.t. B for all f ≤ g. Thus,
the lesser the mapping f , the more “kinds of contradictions
of A w.r.t. B” hold. In other words: the lesser the mapping,
the greatest the contradiction. Hence the mappings

f>(x) = sup(Ω)(x) = 1 and

f⊥(x) = inf(Ω)(x) =
{

1 if x = 0
0 otherwise

determine the weakest and strongest degree of f -weak-
contradiction, respectively. The following corollaries show
some basic properties on these two extremal cases of f -weak-
contradiction.

Corollary 1: Let A and B be two fuzzy sets such that
A is f⊥-weak-contradictiory w.r.t. B. Then A is f -weak-
contradictory w.r.t. B for all f ∈ Ω.

Corollary 2: Let A and B be two fuzzy sets, then A is
f>-weak-contradictory w.r.t. B.

The result above states that every pair of fuzzy sets is,
at least, non- contradictory. The following two results deter-
mine the structure of f⊥-weak-contradictory and f>-weak-
contradictory fuzzy sets, respectively.

Proposition 3: Let A and B be two fuzzy sets. A is f⊥-
weak-contradictiory w.r.t. B if and only if B(x) > 0 implies
A(x) = 0 for all x ∈ U .

Proposition 4: Let A and B be two fuzzy sets. The only f -
weak-contradiction of A w.r.t. B is the f>-weak-contradiction
if and only if there exists a sequence {xi}i∈N ∈ U such that
B(xi) = 1 for all xi ∈ U and limA(xi) = 1.

Proof: Let us assume firstly that there exists a sequence
{xi}i∈N ∈ U such that B(xi) = 1 for all xi ∈ U and
limA(xi) = 1. Then the only mapping f ∈ Ω satisfying the
inequality A(xi) ≤ f(B(xi)) = f(1) for all xi is f>.

On the other hand, let us consider that all sequence
{xi}i∈N ∈ U such that B(xi) = 1 for all xi ∈ U implies
limA(xi) 6= 1. Consider the mapping

f(x) =
{

sup{(A(x) : x ∈ U and B(x) = 1} if x = 1
1 otherwise

Note that f ∈ Ω, that f 6= f> (since sup{(A(x) : x ∈
U and B(x) = 1} 6= 1 straightforwardly by hypothesis) and
that A is f -weak-contradictory w.r.t. B (straightforward).

Corollary 3: Let A and B be two fuzzy sets defined on a
finite universe and such that the only f -weak-contradiction of
A w.r.t. B is the f>-weak-contradiction. Then, there exists
x ∈ U such that A(x) = B(x) = 1.

The final result is related to the duality introduced in the
motivational items above.

Proposition 5: Let A and B be two fuzzy sets such that
A is f -weak-contradictory w.r.t. B. Then B is f -weak-
contradictory w.r.t. A, where f is defined by:

f(z) =
{

1 if x = 0
sup{x ∈ [0, 1] such that f(x) ≥ z} otherwise

Note that if the mapping f used in the result above is
bijective, then f = f−1. Note also, that such result estab-
lishes a way to permute the fuzzy sets involved in f -weak-
contradiction.

Proof: Obviously, f is well-defined and belongs to Ω. Let
us show that B(x) ≤ f(A(x)) for all x ∈ U . If f(B(x)) = 0,
then as A is f -weak-contradictory w.r.t. B we have that
A(x) ≤ f(B(x)) = 0; thus in that case A(x) = 0 as well.
Therefore, as f(A(x)) = f(0) = 1, the inequality holds
trivially. Let us assume now that f(B(x)) 6= 0. Then, by
definition of f , we have that

f(f(B(x))) = sup{x ∈ [0, 1] such that f(x) ≥ f(B(x))} ≥ B(x).

Then, by using also that A(x) ≤ f(B(x)) we have that:

B(x) ≤ f(f(B(x))) ≤ f(A(x))

III. A MEASURE OF CONTRADICTION

In this section we introduce a measure to determine how
contradictory two fuzzy sets are. The idea underlying such
measure is the more f such that two fuzzy sets A and B are
f -weak-contradictory, the more contradiction between A and
B. Hence the contradiction between two fuzzy sets A and B
can be characterized by a subset of mappings of Ω. That is,
by considering the set:

F(A,B) =
{
f ∈ Ω | A is f -weak-contradictory w.r.t. B

}
(1)

So the idea is to measure the contradiction between two
fuzzy sets A and B by measuring the set F(A,B). Note
that F(A,B) is not empty thanks to Proposition 2. In what
follows, we show that the set F(A,B) can be characterized
by its minimum element; so measuring F(A,B) is equivalent
to measure such element. Note that we can guarantee the
existence of the infimum of F(A,B) thanks to the complete
latice structure of Ω. Hence we only have two prove that,
effectively, inf(F(A,B)) ∈ F(A,B).

Proposition 6: Let A and B be two fuzzy sets and let {fi}
be a subset of mappings of Ω. If A is fi-weak-contradictory
w.r.t. B for any fi, then A is inf{fi}-weak-contradictory w.r.t.
B.
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Proof: It is straightforward to check that f = inf{fi}
is given by f(x) = inf{fi(x)} for all x ∈ [0, 1]. More-
over, as A is fi-weak-contradictory w.r.t. B for any fi then
A(u) ≤ fi(B(u)) for all u ∈ U . That implies that A(u) ≤
inf{fi(B(u)))} = f(B(u)) for all u ∈ U . So A is f -weak-
contradictory w.r.t. B.

As a straightforward consequence of the above result, we
have that the infimum of F(A,B) is indeed a minimum. In
other words, for all fuzzy sets A and B, there exists the least
mapping f ∈ Ω verifying that A is f -weak-contradictory w.r.t.
B. Moreover, thanks to Proposition 2, we can characterize the
set F(A,B) as follows:

Corollary 4: Let A and B be two fuzzy sets, then:

F(A,B) = {f ∈ Ω such that fA,B ≤ f}

where fA,B = min{F(A,B)}
Therefore, as we previously announced, measuring F(A,B)

is equivalent to measure the least mapping f ∈ Ω verifying
that A is f -weak-contradictory w.r.t. B. And without any
doubt, the best way to measure a mapping defined from [0, 1]
to [0, 1] is by definite integrals. So we define the measure of
contradiction between two fuzzy sets as follows.

Definition 2: Let A and B be two fuzzy sets, let fA,B be
the least element of F(A,B). The measure of contradiction
between A and B is defined by:

C(A,B) = 1−
∫ 1

0

fA,B(x)dx

Some remarks about the “measure” C:
• Note that C is well-defined for all pair of fuzzy sets A

and B, since the mapping fA,B is always antitonic and
the Lebesgue’s integral of antitonic functions is always
well-defined.

• The definite integral appears negated in the formula of
C(A,B) since the lesser the mapping fA,B , the more
contradictory A w.r.t. B is (i.e the greater F(A,B) is).
On the other hand, the constant 1 is included because∫ 1

0
f>(x)dx (the definite integral corresponding to the

mapping which determines the minimal degree of con-
tradiction) is equal to 1. Hence, C is always positive,
C(A,B) = 0 means that there is no contradiction between
A and B and C(A,B) = 1 means that A is f -weak-
contradictory w.r.t. B for all f ∈ Ω.

• A priori, the measure C(A,B) is not symmetric. However,
below we show that, although the contradiction of A w.r.t.
B is not necessarily the same as the contradiction of
B w.r.t. A (in terms of the sets of weak-contradictions
F(A,B) and F(B,A)), the measure of contradiction
coincides in both cases. In other words, we show that
C is symmetric; i.e. C(A,B) = C(B,A) for all fuzzy set
A and B.

First of all, let us show that the term “measure of contra-
diction” makes sense, since C is antitonic.

Proposition 7: Let A,B,C and D be four fuzzy sets such
that A ≤ C and B ≤ D. Then C(A,B) ≥ C(C,D).

Proof: By using Proposition 1 we have that:

F(A,B) ⊆ F(C,D)

and by Corollary 4, that is equivalent to fA,B ≤ fC,D. Now
the inequality C(A,B) ≥ C(C,D) is straightforward.

To prove the final statement given in the remarks is neces-
sary to provide the algebraic structure of fA,B (i.e. the least
element of F(A,B)). Let A and B two fuzzy sets, and let
us denote by Im(A × B) the set of pairs (A(x), B(x)) for
x ∈ U .

Lemma 1: Let A and B be two fuzzy sets. The operator
fA,B : [0, 1]→ [0, 1] defined by

fA,B(x) =

1 if x = 0
sup
x≤γ
{δ ∈ [0, 1] | (γ, δ) ∈ Im(A×B)} otherwise

(2)
is the minimum of F(A,B).

The proof of the lemma above is similar to the proof
of the least negation conserving coherence presented in [8].
Hereafter, fA,B denotes the least element of F(A,B). The
structure of fA,B given in Lemma 1 allows us to prove the
symmetry of the measure C.

Theorem 1: Let A and B be two fuzzy sets. Then
C(B,A) = C(A,B).

Proof: Note that C(A,B) and C(B,A) determine the
areas of the sets:

SA,B = {(x, y) | y ≤ fA,B(x)}

SB,A = {(x, y) | y ≤ fB,A(x)}

respectively. Hence, if we show that SA,B is the reflection of
SB,A w.r.t. the line r ≡ x = y then both areas are equal and
the proof ends (since reflections do no modify areas). So, we
only have to prove the following equality:

τr(SA,B) = {(x, y) | x ≤ fA,B(y)} =
= {(x, y) | y ≤ fB,A(x)} = SB,A

where τr(SA,B) denotes the reflection of SA,B w.r.t. the line r.
Let us begin by showing τr(SA,B) ⊆ SB,A. Consider (x, y) ∈
τr(SA,B) with y 6= 0 (the case y = 0 is straightforward), then
x ≤ supy≤γ{δ ∈ [0, 1] | (γ, δ) ∈ Im(A × B)}. Therefore,
there exists (γ, δ) ∈ Im(A× B) such that x ≤ δ and y ≤ γ.
Hence, both equalities implies that y ≤ supx≤δ{γ ∈ [0, 1] |
(γ, δ) ∈ Im(A × B)} = fB,A(x); as we want to prove. The
another inclusion is similar.

The measure of contradiction C(A,B) is a value between 0
and 1.

Proposition 8: Let A and B be two fuzzy sets, then
C(A,B) ∈ [0, 1]

Proof: Follows from the fact that
∫ 1

0
fdx ∈ [0, 1] for all

f ∈ Ω.
The following proposition presents other interesting prop-

erties of the measure C. Specifically, the result characterizes
the extremal cases C(A,B) = 0 and C(A,B) = 1.

Proposition 9: Let A and B be two fuzzy sets. Then:
• C(A,B) = 1 if and only if B(x) > 0 implies A(x) = 0

for all x ∈ U .
• C(A,B) = 0 if and only if there exists a sequence
{xi}i∈N ⊆ U such that limA(xi) = limB(xi) = 1.
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Proof: Let us begin by proving the first item. It is easy to
check that C(A,B) = 1 if and only if

∫ 1

0
fA,Bdx = 0, and the

only f ∈ Ω such that
∫ 1

0
fdx = 0 is f⊥. Therefore necessarily

fA,B = f⊥. On the other hand, by Proposition 3 we have that
fA,B = f⊥ is equivalent to the statement B(x) > 0 implies
A(x) = 0 for all x ∈ U .

Let us continue by proving the second item. Note that
C(A,B) = 0 if and only if

∫ 1

0
fA,Bdx = 1, and it is easy

to check that the set of f ∈ Ω satisfying that
∫ 1

0
fdx = 1 is

given by {fα}α∈[0,1] where:

fα(x) =
{
α if x = 1
1 otherwise

Note that if α = 1 then fα = f>. Let {βi}i∈N be a sequence
of elements in [0, 1] such that 0 6= βi 6= 1 for all i ∈ N and
limβ1 = 1. Then, by using that fA,B is given by Lemma 1:

fA,B(x) =

1 if x = 0
sup
x≤γ
{δ ∈ [0, 1] | (γ, δ) ∈ Im(A×B)} otherwise

and that fA,B = fα for some α ∈ [0, 1], we have that:

fA,B(βi) = sup
βi≤γ
{δ ∈ [0, 1] | (γ, δ) ∈ Im(A×B)} = 1

So, for each βi 6= 0 there exists a sequence {xβi

j } of elements
in U such that limA(xβi

j ) = 1 and that B(xβi

j ) ≥ βi for all j ∈
N. Hence, as limβi = 1, we can construct a general sequence
{xk} of elements in U such that limA(xk) = limB(xk) = 1.

To prove the converse we only have to take into account
that if such sequence exists, then necessarily fA,B = fα for
some α ∈ [0, 1].

The proposition above entails some interesting corollaries
for the case C(A,B) = 0.

Corollary 5: Let A and B be two fuzzy sets. If there exists
an element x ∈ U such that A(x) = B(x) = 1 then C(A,B) =
0.

The converse of the result above is achieved if the universe
considered is finite or if the membership functions are contin-
uous.

Corollary 6: Let A and B be two fuzzy sets defined on a
finite universe U . Then: C(A,B) = 0 if and only if there exists
an element x ∈ U such that A(x) = B(x) = 1.

The following result is interesting when the universe consid-
ered is a bounded subset of Rn and the fuzzy sets are defined
by using continuous membership functions.

Corollary 7: Let U be a bounded set of R and let A and B
be two fuzzy sets defined on U with continuous membership
functions. Then, C(A,B) = 0 if and only if there exists an
element x ∈ U such that A(x) = B(x) = 1.

Proof: Note that one implication is a direct consequence
of Corollary 5. Let us assume that C(A,B) = 0. By Proposi-
tion 9, we know that there exists a sequence {xi}i∈N ⊆ U such
that limA(xi) = limB(xi) = 1. Let us show that there exists
an element x ∈ {xi}i∈N such that A(x) = B(x) = 1. As U is
bounded, then {xi}i∈N is bounded as well. Thus we can ensure
there exist a convergent subsequence of {xi}i∈N; let us denote
such subsequence by {yi}i∈N. Let us show that x = lim yi is

the searched element. On the one hand, let us show that x ∈ U .
As [0, 1] is a closed set of R and the membership function of
A is continuous, the set U = A−1([0, 1]) is closed. Moreover,
as U is bounded by hypothesis, U is necessarily a compact of
R. Therefore, as {yi}i∈N ⊆ U then x = lim yi ∈ U . On the
other hand, by continuity we have:

A(x) = A(lim yi) = limA(yi) = 1

Similarly we can prove that B(x) = 1.

IV. CONCLUSION AND FUTURE WORK

The main contribution of this paper is the presentation of
a measure of contradiction between fuzzy sets considered on
the basis of the notion of f -weak-contradiction. The notion
of f -weak-contradiciton has been introduced and motivated
by considering the mappings f ’s as degrees. Moreover, re-
sults concerning with the notion of f -weak-contradiction has
been presented. With respect to the measure of contradic-
tion C(A,B) we have motivated its definition by the idea
of considering the least mapping f ∈ Ω verifying that A
is f -weak-contradictory w.r.t. B and we have proved four
interesting properties, namely: antitonicity; symmetry; and
characterizations of the two extremal cases (both given by
Proposition 9).

A number of things remain to be done as future work.
On the one hand, a comparison between the measure of
contradiction defined in this paper and that defined in [2]
should be done. On the other hand, more properties for C must
be studied (for instance the continuity) and other measures
of contradiction can be defined following the same idea that
followed here to define C (for instance measuring fA,B without
using the Lebesgue’s integral).
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