
1

On the Measure of Incoherence in
Extended Residuated Logic Programs

Nicolás Madrid and Manuel Ojeda-Aciego

Abstract— In this paper we continue analyzing the introduction
of negation into the framework of residuated logic programming
[18], [19]; specifically, we focus on extended programs, in which
strong negation is introduced. The classical approach to extended
logic programs consists in considering negated literals as new,
independent, ones and, then apply the usual monotonic approach
(based on the fix-point semantics and the TP operator); if the
least fix-point so obtained is inconsistent, then the approach
fails and no meaning is attached to the program. This paper
introduces several approaches to considering consistence (under
the term coherence) into a fuzzy setting, and studies some of
their properties.

I. INTRODUCTION

Inconsistency is usually an undesirable feature which arises
naturally: for instance, consider a database consisting of var-
ious newspaper reports about one political event, it is hardly
possible that the knowledge-base so obtained be consistent.
Thus, it is advisable tolerating the inconsistency instead of
rejecting it, see [6].

The problem of the formal management of inconsistency
has been studied for more than three decades, and a number
of different approaches have been introduced by researchers all
over the world. There are practical reasons which suggest the
development of formal frameworks for dealing with inconsis-
tency, in [21] the authors argue that due to the lack of current
software development methods in handling inconsistencies,
software engineers have to resolve inconsistencies whenever
they are detected, and this position sometimes generates ad-
verse side-effects in the development process: When multiple
conflicting solutions exist for the same problem, each solution
should be preserved to allow further refinements along the
development process. An early resolution of inconsistencies
may result in loss of information and excessive restriction of
the design space.

The first logical approaches can be dated back to the
beginnings of the twentieth century with the development of
paraconsistent logical systems, in any of its main orientations:
for automated reasoning, for belief revision, for many-valued
systems, for relevant systems, etc.

A paraconsistent approach for knowledge base integration
allows keeping inconsistent information and reasoning in its
presence, therefore it is not strange to find several approaches
which follow this line: In [12] a paraconsistent logic is used
as the underlying logic for the specification of P-Datalog, a
deductive query language for databases containing inconsistent

Nicolás Madrid and Manuel Ojeda-Aciego are with the School of Computer
Science, University of Málaga, Blv Louis Pasteur s/n, E-29071, Málaga, Spain
(phone: +34 952 132 871; email: {nmadrid,aciego}@ctima.uma.es).

information; in [1] a framework is presented based on an
arbitrary complete bilattice of truth-values, which allows a
precise definition of strong and default negation. There are
some recent approaches, which are particularly useful for non-
monotonic reasoning and for drawing rational conclusions
from incomplete and inconsistent information, such as [2]
which introduces a general framework based on distance
semantics and investigate the main properties of the induced
entailment relations.

Nevertheless, the general interest on inconsistency-tolerant
systems arose in the late eighties, in which there were some
developments in the research line of deductive databases.

When integrating data coming from multiple different
sources we are faced with the possibility of inconsistency in
databases. There are many approaches directed to work with
inconsistent knowledge-bases [11], [4], [9], [7], [16]. Most of
them need at least three truth values {True,False,Inconsistent}.
Therefore multi-valued logic and fuzzy logic seem to be useful
frameworks to develop a inconsistent tolerance approach.

Other researchers have addressed the problem of managing
inconsistent databases, i.e., databases violating integrity con-
straints, and propose a general logic framework for computing
repairs and consistent answers over inconsistent databases, see
for instance [3] or [15]. This paper is somewhat related to
approaches of removing information from the knowledge-base
that causes an inconsistency [5], [8]. However, working in a
fuzzy framework allows us modifying the truth values of the
formulas instead of removing them.

Our approach here is based on logic programming in a
generalized context, namely, on residuated logic programming
with strong negation. Therefore, our knowledge-bases have the
form of extended residuated logic programs, that is, sets of IF-
THEN rules with a literal in the head, with an arbitrary (finite)
number of literals joined with a conjunctor, and weighted by
values in a residuated lattice.

Inconsistence in this context arises when lifting the usual
approach in classical logic to extended logic programs: neg-
ative literals are treated as new, independent, atoms and,
then, the usual (monotonic) approach is applied. The least
model of the program, if consistent, is accepted, otherwise,
the semantics does not assign a meaning to the program. Our
goal in this paper is to propose an adequate generalization
of the concept of inconsistent interpretation in the realm of
extended residuated logic programs.

This kind of programs is introduced in Section II. Then,
in Section III we present a generalization of consistency in a
multi-valued framework, which we have called coherence in
order not to overlap other existing generalizations in the litera-

2

ture. In the rest of the paper we focus on different measures of
the incoherence of a extended residuated logic program. Our
approach follows the four dimensions of inconsistency cited
in [17]: atomic inconsistency, number of inconsistencies, size
of inconsistency, degree of information.

II. PRELIMINARY DEFINITIONS

Definition 1: A residuated lattice is a tuple (L,≤, ∗,←)
such that:

1) (L,≤) is a complete bounded lattice, with top and
bottom elements 1 and 0.

2) (L, ∗, 1) is a commutative monoid with unit element 1.
3) (∗,←) forms an adjoint pair, i.e. ∀x, y, z ∈ L

z ≤ (x← y) iff y ∗ z ≤ x

In residuated lattices one can interpret the operator ∗ like a
conjunction and the operator ← like an implication.

As usual a negation operator, over L, is any decreasing
mapping n : L → L satisfying n(0) = 1 and n(1) = 0.
In the rest of the paper we will consider a residuated lattice
enriched with a negation operator ∼, (L,≤, ∗,←,∼). In order
to introduce our logic programs, we will asume a set Π of
propositional symbols. If p ∈ Π, then both p and ∼ p are called
literals. Arbitrary literals will be denoted with the symbol `
(possible subscripted), and the set of all literals as Lit.

Definition 2: Given a residuated lattice with negation
(L, ∗,←,∼), an extended residuated logic program P is a set
of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m; ϑ〉

where ϑ is an element of L and `, `1, . . . , `n are literals.

Rules will be frequently denoted as 〈` ← B; ϑ〉. As usual,
the formula B is called the body of the rule whereas ` is called
its head. We consider facts as rules with empty body, which
are interpreted as a rule 〈`← 1; ϑ〉.

Definition 3: A fuzzy L-interpretation is a mapping
I : Lit → L; note that the domain of the interpretation can
be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈` ← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B). Finally, I is
a model of P if it satisfies all rules (and facts) in P.

The set made up of every L-interpretation is denoted by IL.
Usually we write interpretation instead of L-interpretation and
Program instead of Residuated logic Program.

III. COHERENCE AND THE SEMANTICS OF EXTENDED
RESIDUATED LOGIC PROGRAM

Let us start this section recalling the semantics for classical
extended logic programs. In classical logic, the syntactic
symbol ∼, occurring in extended logic programs, denote the
strong negation, which is semantically different from default
negation, usually represented by ¬. The semantics of ¬ is as
follows: ¬p is true if and only if p is not true, whereas ∼ p
is true if and only if ∼ p can be inferred by the knowledge
base. In other words, the truth value of p determines the truth

value of ¬p but does not determine the value of ∼ p. Usually
the two kinds of negations appear together in classical logic
programs but in this paper we are only interested in programs
with strong negations.

In the classical case, the semantics of extended programs
is given by the least fix-point of the immediate consequence
operator considering the negated literals as ‘new’ literals [14],
when the obtained fix-point turns out to be inconsistent, then
the program has no meaning. In fuzzy logic, the semantics is
obtained in a similar way, iterating the immediate consequence
operator defined in [18] for residuated logic programs. The
crux of the matter now is when do we reject the obtained
model. To answer this question the concept of consistence (or
inconsistence) has to be generalized.

There are many ideas underlying the concept of inconsis-
tence: conflicting inference, inferring contradiction formulas,
lack of models, etc. We will focus our generalization in
the idea of excess of information which leads to a conflict
of the negation meta-rule. Let n be a negation operator,
the negation meta-rule is defined as follow:“if p has truth
value ϑ then n(p) has the truth value n(ϑ)”. The negation
meta-rule is the idea underlying in the negation as failure
and it has no use in computing the semantics for extended
residuated logic programs, however it is crucial to determine
when we reject models. Contradicting the negation meta-rule
by excess of information means that the program rules infer
more information for a propositional symbol p which could
be inferred using the negation meta-rule.

The term coherence was considered in order to not overlap
with other definitions of fuzzy-consistence in the literature.
The notion of incoherent interpretation is given below:

Definition 4: A fuzzy L-interpretation I over Lit is co-
herent if the inequality I(∼ p) ≤ ∼ I(p) holds for every
propositional symbol p.

We have three main reasons to believe that incoherence is a
good generalization of consistence in a fuzzy logic program-
ming framework. Firstly, it is easy to implement because it
only depends of the negation operator. Secondly, it allows
lack of knowledge; for example, I such that I(`) = 0 for all
` ∈ Lit is always coherent. Finally, our notion of coherence
coincides with consistence in the classical framework (it is
easy to check that), with the important consequence that a
coherent interpretation allows that two opposite literals, such
as p and ∼ p, live together . . . under some requirements.

As we said above, given an extended residuated logic
program P we can obtain its least model by considering the
negated literals as new, independent, propositional symbols
and then, iterating the immediate consequence operator. Obvi-
ously, the notion of coherence applies to programs as follows:

Definition 5: Let P be an extended residuated logic pro-
gram, we say that P is coherent if its least model is coherent.

Although the definition of coherent program might look
as a hard restriction, the following property of coherent
interpretations shows that a program is coherent if and only if
it has, at least, one coherent model.

Proposition 1: Let I and J be two interpretations satisfying
I ≤ J . If J is coherent, then I is coherent as well.

3

Corollary 1: An extended residuated logic program is co-
herent if and only if it has one coherent model.

In order to continue with some properties of the notion of
coherence, take into account that an interpretation I assigns a
truth degree to any negative literal ∼ p independently from the
negation operator. This way, if we have two different negation
operators (∼1 and ∼2) we can talk about the coherence of I
wrt any of these operators.

Proposition 2: Let ∼1 and ∼2 be two negation operators
such that ∼1 ≤ ∼2, then any interpretation I that is coherent
wrt ∼1 is coherent wrt ∼2.

Example 1: Consider the lattice [0, 1] with the usual order,
the Gödel connectives and the following program P:

r1 : 〈p←; 1〉
r2 : 〈q ← p; 0.8〉
r3 : 〈∼ q ←; 0.7〉

The least model is M = {(p, 1); (q, 0.8); (∼ q, 0.7)}. If we
consider the usual negation n(x) = 1 − x to determine the
coherence of the program we obtain that P is not coherent,
and the least model semantics fails in this case. However, if
we consider the negation:

n(x) =
{

1 if x ≤ 0.8
0 if x ≥ 0.8

the program is coherent and the least model semantics provides
a meaning to the program.

As a consequence, note that the chosen negation operator to
determine the coherence restricts, in some sense, the semantics
of our programs.

We define an ordering among extended residuated logic
programs as follows: Let P1 and P2 be two extended programs,
then P1 ⊆ P2 if and only if for each rule 〈ri; ϑ1〉 in P1 there
exists another rule1 〈ri; ϑ2〉 in P2 such that ϑ1 ≤ ϑ2.

Proposition 3: Let P1 ⊆ P2 be two extended programs then
the least model of P1 is smaller than the least model of P2.

Therefore we can say that the greater a program is the more
information it provides. Now, as coherence represents excess
of information, the following proposition holds easily:

Proposition 4: Let P1 ⊆ P2 be two extended programs. If
P2 is coherent then P1 is coherent as well.

To finish this section, we give the definition of incoherent
propositional symbol with respect to an extended residuated
logic program:

Definition 6: Let P be a extended residuated logic program.
Let MP be the least model of P, then a propositional symbol
p is incoherent (wrt P) if and only if MP(∼ p) > ∼(MP(p)).

In the rest of the paper we will keep using MP to denote the
least model of an extended residuated logic program P (either
coherent or not).

1Note that the only difference between both rules is the assigned weight.

IV. INCOHERENCE WRT PROPOSITIONAL SYMBOLS

In this section, we will consider measuring coherence of
a program in terms of the atomicity incoherence on the
propositional symbols.

Let P be an extended residuated logic program, and recall
that a propositional symbol p ∈ Π is coherent wrt P iff p is
coherent wrt MP, the least model of P. If p is not coherent
wrt P then p is incoherent wrt P. Hereafter we will simply
state p is coherent/incoherent without mentioning the program,
whenever it is not ambiguous.

As stated in the introduction, a possibility to measure the
amount of incoherence of a program is simply to count the
number of incoherences, by determining the percentage of
incoherent propositional symbols appearing in P. We chose
the latter.

We denote the number of incoherent propositional symbols
appearing in P as NI(P) (note that NI(P) is a positive
integer), and we define the incoherence measure I1 as follows:

I1(P) =
NI(P)
|ΠP|

(1)

where ΠP denotes the crisp set of propositional symbols
appearing in P. Note that I1(P) ∈ [0, 1], if I1(P) = 0 then
there are no incoherent propositional symbols in P, that is,
P is a coherent program. However, if I1(P) = 1 then every
propositional symbol is incoherent in P.

Note that the measure above just provides a notion of
aggregated ‘local incoherences’. It could be convenient to
consider as well, some ‘global’ account of incoherences. For
this purpose, we define a particular type of mappings in order
to establish how incoherent an interpretation is.

A mapping m : L × L → R is a pre-coherence measure if
the following properties hold for all interpretation I ∈ IL:

1) m(I(∼ p),∼ I(p)) = 0 iff p is a coherent propositional
symbol wrt I .

2) m is monotonic wrt the first variable and antitonic wrt
the second variable.

If L is a linear lattice then for each distance d defined over
L we can make a coherence measure (called the coherence
measure induced by the distance d) as follow:

md(x, y) =
{

0 if x ≤ y
d(x,∼ y) if x > y

The proof is easy and left to the reader.

Now, there are two ways to measure incoherent information:
either estimating the maximal size of incoherence or estimat-
ing the average size of incoherence. For the former, we have
the following definition:

I2(P) = sup
p∈ΠP

{
m
(
MP(∼ p),∼MP(p)

)}
(2)

If there is a finite number of propositional symbols in the
program, then the supremum is actually a maximum, and there
exists p such that I2(P) = m(M(∼ p),∼M(p)).

For the average size of incoherence, we need a greatest
incoherent value for P. Thanks to the second condition in the
definition of pre-coherence measure, the value m(>,⊥) is the

4

maximal value which can be obtained by m. We define the
third measure of incoherence as follows:

I3(P) =

∑
p∈P

m
(
MP(∼ p),∼MP(p)

)
|ΠP| ·m(>,⊥)

(3)

Note that I3 is defined on two dimensions of incoherence:
on the one hand, on the number of incoherent symbols and, on
the other hand, provides a global amount of the incoherence
in the program.

Proposition 5: For each i = 1, 2, 3, P is a coherent program
if and only if Ii(P) = 0.

Before studying the basic results of these measures, let
us see an example which clarifies the different incoherence
measures defined so far:

Example 2: Consider L = [0, 1], the pre-coherence mea-
sure induced by the Euclidean distance in [0, 1], the product
logic connectives and the negation operator ∼(x) = 1−x. Let
P be the following program :

r1 = 〈p←, 1〉

r2 = 〈q ← p, 0.9〉

r3 = 〈∼ q ← p, 0.9〉

r4 = 〈r ← ∼ q, 0.8〉

r5 = 〈∼ r ← p, 0.8〉

The minimal model of P is:

MP = {(p, 1); (∼ p, 0); (q, 0.9); (∼ q, 0.9); (r, 0.72); (∼ r, 0.8)}

In this example, we obtain the following measures for P:

I1(P) =
2
3

I2(P) = max{0, 0.8, 0.52} = 0.8

I3(P) =
1.32

3
= 0.44

As stated above, incoherence represents just an excess of
information. If this is so, when including new rules to a
program, the incoherence measure should grow. The following
proposition proves this fact.

Proposition 6: Let P ⊆ Q be two extended residuated logic
programs. Then:

Ii(P) ≤ Ii(Q) for all i = 1, 2, 3;

Proof: Since P ⊆ Q, then MP ≤ MQ, and the proof is
trivial for i = 1.

For i = 2 and i = 3 the proof follows from the inequality

m(MQ(∼ p),∼MQ(p)) ≥ m(MP(∼ p),∼MP(p))

for all p ∈ ΠP.
The defined measures establish how incoherent a program

is, but they say nothing about the reason of the incoher-
ence. The main reason of the incoherence is the excess of

information, and this information is generated by the rules.
Therefore, the reason of the incoherence is in the rules. In
the following sections, we define incoherence measures and
information measures for rules with the aim of determining
what rule/s can be safely removed in order to obtain a coherent
program.

A. Rule-based incoherence

The aim here is to define other measures of incoherence for
rules wrt an extended residuated logic program, which might
help to determine a value of incoherence caused by a given
rule in P. These functions are based on the previous measures.
We define for a rule r and an incoherent extended program P
the following incoherence measures:

Ii(r; P) = 1− Ii(P r {r})
Ii(P)

i = 1, 2, 3

Where Pr{r} denotes the program P without the rule r. Note
that, as a consequence of Proposition 6, the value of these
measures are in the unit interval: if Ii(r; P) = 0, then rule r
does not cause incoherence in P, however, if Ii(r; P) = 1 then
we might obtain a coherent program by removing the rule r
in P.

B. On the information in a rule

In the previous section we have studied how incoherence
can change when we remove a rule of a logic program. The
aim of this section is to determine how many information is
lost from the program when (some) rules are removed. We
start by defining the information measure of a program.

Let P be an extended residuated logic program, then we
define the information measure of P as follows:

INF(P) =
∑

`∈Lit

m(MP(`),⊥)

The information measure is monotonic wrt the ordering be-
tween logic programs, that is:

Proposition 7: Let P ⊆ Q be two extended residuated logic
programs, then

INF(P) ≤ INF(Q).

Given a rule r of P, we can compute the amount of
information lost when removing r from P as follows:

INF(r; P) = 1− INF(P r {r})
INF(P)

Observe that if INF(r; P) = 0 then r contributes no new
information to P.

Example 3: We continue with Example 2. The information
measure of P is

INF(P) = 5.32

The results of the measures of incoherence and loss of
information are shown in Figure 1.

Note that if we remove either rule r1 or rule r3, the
new program is coherent. This occurs because I1(r1, P) =
I1(r3, P) = 1.

5

I1(ri; P) I2(ri; P) I3(ri; P) INF(r; P)
r1 1 1 1 1
r2 0.5 0.35 0.61 0.15
r3 1 1 1 0.3
r4 0.5 0 0.4 0.13
r5 0.5 0 0.4 0.15

Fig. 1. Results for Example 3.

V. INCOHERENCE WRT RULES

In this section we study coherence on the basis of sets of
rules in the program. If we consider crisp sets of rules, then
we could directly apply the crisp approaches based on set of
formulae [5], [13] to our extended residuated logic programs.

However, our rules 〈` ← B; ϑ〉 differ from classical ones
in an essential aspect, its weight. The value ϑ ∈ L represents
somehow the truth value of the rule in the program. In this
way, we can think of modifying that value with the aim to
obtaining a coherence measure.

For that purpose, we need to fix a t-norm A to handle
the values of L (recall that a t-norm is a commutative and
monotonic map L × L → L satisfying A(⊥, x) = ⊥ and
A(>, x) = x). Fixed such t-norm, we can define a operator to
modify the weights of rules.

Given an extended residuated logic program P, a set
{〈ri, ϑi〉}i of rules in P and a value ϕ ∈ L we define a
new extended residuated logic program OP({〈ri, ϑi〉}i, ϕ) as
follows:

OP({〈ri, ϑi〉}i, ϕ) = (P r {〈ri, ϑi〉}i) ∪ {〈ri,A(ϑi, ϕ)〉}i

In other words, the operator OP changes the weights of
〈rj , ϑj〉 ∈ {〈ri, ϑi〉}i by A(ϑj , ϕ).

We define the coherence measure for a set of rules
{〈ri, ϑi〉}i ∈ P as:

COHP({〈ri, ϑi〉}i) =
= sup{ϕ ∈ L | OP({〈ri, ϑi〉}i, ϕ) is coherent}

Note firstly that COHP cannot be defined for any set of rules;
at end of this section we will return to this problem.

COHP({〈ri, ϑi〉}i) somehow determines the degree to which
the weights ϑi have to decrease in order to obtain a coherent
program. If COHP({〈ri, ϑi〉}i) = 0, then we can obtain a
coherent program by removing the rules {〈ri, ϑi〉}i in P. How-
ever, if COHP({〈ri, ϑi〉}i) = 1 we do not need to decrease the
weights of {〈ri, ϑi〉}i in order to obtain a coherent program.

Some properties of COHP are presented below:
Proposition 8: If P is a coherent extended residuated logic

program then COHP(X) = > for every set of rules X ∈ P.

Proposition 9: P is a coherent residuated logic program if
and only if COHP(X) = > for a set of rules X ∈ P.

Roughly speaking, Propositions 8 and 9 above say that a
program is coherent if and only if we do not need to decrease
the weights of any rule to obtain a coherent program.

The coherence measure COHP is antitonic wrt the order of
extended residuated logic programs.

Proposition 10: Let Q ⊆ P be two extended residuated
logic programs, then for each set of rules {〈ri, ϑ

Q
i 〉}i ∈ Q,

there exists another set {〈ri, ϑ
P
i 〉}i of rules in P such that:

COHQ({〈ri, ϑ
Q
i 〉}i) ≥ COHP({〈ri, ϑ

P
i 〉}i)

Proof: As Q ⊆ P, then ϑQ
i ≤ ϑP

i for each i ∈ I. Since
the map A is monotonic then A(ϑQ

i , ϕ) ≤ A(ϑP
i , ϕ) and thus

OQ({〈ri, ϑ
Q
i 〉}i, ϕ) ⊆ OP({〈ri, ϑ

P
i 〉}i, ϕ)

Therefore, using Proposition 4, the inequality holds.

Proposition 10, in natural language, says us that the more
information we have the more we should have to decrease the
weights of the rules in order to recover coherence.

Proposition 11: The coherence measure COHP is
monotonic, i.e if {〈ri, ϑi〉}i ⊆ {〈rj , ϑj〉}j then
COHP({〈ri, ϑi〉}i) ≤ COHP({〈rj , ϑj〉}j∈J).

Proof: As in Proposition 10, the proof follows from the
fact that

OP({〈ri, ϑ
P
i 〉}i, ϕ) ⊇ OP({〈rj , ϑ

P
j 〉}j∈J , ϕ)

holds for all ϕ ∈ L, together with Proposition 4.

A couple of examples should help to clarify the meaning of
the coherence measure.

Example 4: We continue from Example 2. We consider the
t-norm A = min(x, y). The coherence measure for each single
rule is:

r1 r2 r3 r4 r5

COHP(ri) 5/9 − 1/9 − −

that is, we cannot obtain a coherent program removing one of
the rules r2, r4 or r5. However, if we decrease the weight of
r1, at least, to 5/9 we obtain a coherent program. The same
occurs if we decrease the weight of r3 to 1/9.

Example 5: In some cases, removing single rules never
provides a coherent model. For example, over [0, 1] and the
Gödel connectives, we consider the following program:

r1 : 〈p←; 0.8〉

r2 : 〈q ←; 0.8〉

r3 : 〈p← q; 0.8〉

r4 : 〈q ← p; 0.8〉

r5 : 〈∼ p← q; 0.8〉

r6 : 〈∼ q ← p; 0.8〉

The minimal model of this program is:

MP = {(p, 0.8); (∼ p, 0.8); (q,∼ 0.8); (∼ q, 0.8)}

If we consider the negation operator n(x) = 1 − x, then
the program is not coherent and it makes sense measuring
its incoherence. We start by measuring the coherence of the
whole program P using the minimum t-norm:

COHP(P) = 0.5

6

That means that if we change the weight of every rule in the
program by 0.5, we get a coherent program. However, if we
change only the weight of a single rule, we never obtain a
coherent program because COHP does not get defined for any
single rule.

Let us consider again the problem of the existence of COHP
for a given set of rules. This is not a big problem, the
inexistence of COHP for the set of rules X simply means
that we cannot obtain a coherent program removing X in P.
In some circumstances, the programmer could be interested
in removing (or modifying) certain rules to obtain a coherent
program, but COHP is not defined for this set of rules. The
solution is removing (or modifying) more rules than the
(initially) desired. This solution is guaranteed by the following
result.

Proposition 12: Let P be an extended residuated logic
program. Then COHP(P) is always defined.

Corollary 2: Let P be an extended residuated logic pro-
gram. Then for each set X of rules in P there exists a set of
rules Y such that X ⊆ Y and COHP(Y) is defined.

Remark 1: The inclusion operator in the above corollary is
to be understood in the crisp sense. That is X ⊆ Y means
that every rule 〈` ← B; ϑ〉 in X belongs to Y as well (with
the same weight).

Consider a set of rules {〈ri, ϑi〉}i for which COHP is
undefined. Then, thanks to Corollary 2, we can consider
minimal sets of rules containing it for which COHP is defined.
Thus, if we want to remove (or modify) the rules {〈ri, ϑi〉}i
to obtain a coherent program, we may modify by using COHP
any of these minimal sets.

Example 6: Continuing with Example 5. Suppose that the
programmer wants to modify the rule r6 to obtain a coherent
program. Obviously COHP(r6) is not defined. However, r6

is contained in some minimal set of rules in the sense of
Corollary 2. The coherence measure for these minimal sets
is as follows:

x {r6, r5} {r6, r1, r2} {r6, r1, r3} {r6, r2, r4}
COHP(x) 0.2 0.5 0.2 0.2

VI. CONCLUSIONS AND FUTURE WORK

A number of different measures for the incoherence of an
extended residuated logic program have been presented. This
is an important topic which deserves certain attention in order
to provide adequate generalizations of the classical theory of
classical logic programming with strong negation to fuzzy
frameworks.

Much work still have to be done on this topic, in particular,
to find possible connections with other existing approaches
to inconsistent interpretations in the literature. This is an
extremely wide area, since potentially interesting results may
have been published in very different contexts. For instance,
a potentially interesting research line for our goal seems to be
that of the measures of contradiction between pairs of fuzzy
sets [10].

REFERENCES

[1] J. Alcântara, C. Damásio, and L. Pereira. An encompassing framework
for paraconsistent logic programs. Journal of Applied Logic, 3(1):67–95,
2005.

[2] O. Arieli. Distance-based paraconsistent logics. Int. J. Approx. Reason-
ing, 48(3):766–783, 2008.

[3] P. Barceló and L. E. Bertossi. Logic programs for querying inconsistent
databases. In PADL ’03: Proceedings of the 5th International Symposium
on Practical Aspects of Declarative Languages, pages 208–222, London,
UK, 2003. Springer-Verlag.

[4] N. D. Belnap. A Useful Four-Valued Logic. In J. M. Dunn and
G. Epstein, editors, Modern Uses of Multiple-Valued Logic, pages 8–
37. D. Reidel Pub., 1975.

[5] S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in
uncertain and inconsistent knowledge bases. In In Proceedings of Un-
certainty in Artificial Intelligence, pages 411–419. Morgan Kaufmann,
1993.

[6] L. Bertossi, A. Hunter, and T. Schaub. Introduction to Inconsistency
Tolerance. In A. H. Leopoldo Bertossi and T. Schaub, editors, Incon-
sistency Tolerance, Lecture Notes in Computer Science 3300, pages 1
– 14. Springer Verlag, 2005.

[7] P. Besnard and A. Hunter. Quasi-Classical Logic: Non-Trivializable
Classical Reasoning From Inconsistent Information. In Symbolic and
Quantitative Approaches to Reasoning and Uncertainty 95, Lecture
Notes in Artificial Intelligence 946, pages 44–51. Springer Verlag, 1995.

[8] P. Besnard and A. Hunter. A Logic-based Theory of Deductive
Arguments. Artificial Intelligence, 128:203–235, 2001.

[9] P. Besnard and T. H. Schaub. Signed Systems for Paraconsistent
Reasoning. Journal of Automated Reasoning, 20:191–213, 1998.

[10] S. Cubillo, C. Torres, and E. Castiñeira. Self-contradiction and con-
tradiction between two Atanassov’s intuitionistic fuzzy sets. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
16(3):283–300, 2008.

[11] N. C. A. da Costa. On the Theory of Inconsistent Formal System. Notre
Dame Journal of Formal Logic, 15 (4):497–510, 1974.

[12] S. de Amo and M. S. Pais. A paraconsistent logic programming
approach for querying inconsistent databases. Int. J. Approx. Reasoning,
46(2):366–386, 2007.

[13] D. Dubois and H. Prade. Properties of measures of information in
evidence and possibility theories. Fuzzy Sets Syst., 100(supp.):35–49,
1999.

[14] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

[15] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying
and repairing inconsistent databases. IEEE Trans. on Knowl. and Data
Eng., 15(6):1389–1408, 2003.

[16] A. Hunter. Reasoning with Contradictory Information Using Quasi-
Classical Logic. Journal of Logic and Computation, 10 (5):677–703,
2000.

[17] A. Hunter and S. Konieczny. Approaches to measuring inconsistent
information. In Inconsistency Tolerance. Volume 3300 of Lecture Notes
in Computer Science, pages 189–234. Springer, 2005.

[18] N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics
for residuated logic programs. In Proc of WI-IAT’08. Worshop on Fuzzy
Logic in the Web, pages 260–264, 2008.

[19] N. Madrid and M. Ojeda-Aciego. On coherence and consistence in
fuzzy answer set semantics for residuated logic programs. Lect. Notes
in Computer Science, 2009. To appear.

[20] Z. Majkic. Meta many-valued logic programming for incomplete and
locally inconsistent databases. In Proc of Database Engineering and
Applications Symposium, pages 459 – 461, 2004.

[21] F. Marcelloni and M. Aksit. Leaving inconsistency using fuzzy logic.
Information & Software Technology, 43(12):725–741, 2001.

