
A Tabulation Proof Procedure
for First-Order Residuated Logic Programs:
Soundness, Completeness and Optimisations

C.V. Damásio, J. Medina, and M. Ojeda-Aciego

Abstract— Residuated logic programs have shown to be a
generalisation of a number of approaches to logic programming
under uncertain or vague information, including fuzzy or
annotated or probabilistic or similarity-based logic program-
ming frameworks. Various computational approaches have been
developed for propositional residuated logic programs: onthe
one hand, there exists a bottom-up neural-like implementation
of the fixed-point semantics which calculates the successive
iterations of the immediate consequences operator; on the
other hand, a goal-oriented top-down tabulation procedurehas
recently been introduced. In this paper, we introduce a sound
and complete tabulation-based proof procedure for the first-
order extension of residuated logic programs.

I. I NTRODUCTION

The development of logics for dealing with imperfect
information (ie uncertain, vague, imprecise) has been con-
sidered an interesting research topic in the recent years.
Regarding extension of logic programming in this context,
several different approaches to the so-called inexact or fuzzy
or approximate reasoning have been proposed. In the specific
topic of logic programming under uncertainty, we can find
approaches involving either fuzzy or annotated or probabilis-
tic or similarity-based logic programming [1], [2], [9]–[11],
[17]–[19], [21], [22].

Residuated and monotonic logic programs [5] and multi-
adjoint logic programs [14] were introduced as general
frameworks which abstract out the particular details of the
different approaches cited above, and focus only on the
computational mechanism of inference. This higher level
of abstraction makes possible the development of general
results about the behaviour of several of the previously cited
approaches.

We will focus here on the particular framework of resid-
uated logic programming. The semantics of monotone and
residuated logic program is characterised, as usual, by the
post-fixpoints of the immediate consequence operatorTP,
which is proved to be monotonic and continuous under
very general hypotheses, see [14]. Following traditional
techniques of logic programming, a procedural semantics
was given in [15], in which non-determinism was discarded
by using reductants. Various computational approaches have
been developed for propositional residuated logic programs:

C.V. Damásio is with the Centro Inteligência Artificial, Univ. Nova de
Lisboa, Portugal. (email: cd@di.fct.unl.pt).

J. Medina is with the Dept. Matemática Aplicada, Univ. de M´alaga, Spain.
(email: jmedina@ctima.uma.es).

M. Ojeda-Aciego is with the Dept. Matemática Aplicada, Univ. de
Málaga, Spain. (email: aciego@ctima.uma.es).

on the one hand, there exists a bottom-up neural-like im-
plementation of the fixed-point semantics which calculates
the successive iterations of the immediate consequences
operator [13]; on the other hand, a goal-oriented top-down
approach tabulation procedure has been presented in [7], [8].
In this paper we maintain our interest on the use of tabulation
(tabling, or memoizing) methods.

Tabulation is a technique which is receiving increasing
attention in the logic programming and deductive database
communities [3], [4], [19], [20]. The underlying idea is,
essentially, that atoms of selected tabled predicates as well
as their answers are stored in a table. When an identical
atom is recursively called, the selected atom is not resolved
against program clauses; instead, all corresponding answers
computed so far are looked up in the table and the associated
answer substitutions are applied to the atom. The process is
repeated for all subsequent computed answer substitutions
corresponding to the atom.

In this work, we provide a tabulation goal-oriented query
procedure for first-order monotone and residuated logic pro-
grams, the main contribution being the proofs of soundness
and completeness.

The structure of the paper is as follows: in Section 2,
the syntax and semantics of our logic programs are sum-
marized; Section 3 introduces a non-deterministic procedure
for tabulation. The soundness and completeness of the tabling
procedure appear in Section 4. Then, an example illustrating
the procedure is extensively discussed in Section 5. The paper
finishes with some conclusions and pointers to future work.

II. SYNTAX AND SEMANTICS

In this section the essentials of first order residuated logic
programming are reviewed. The reader might consult [5]
for the propositional version or [16] for a first-order (multi-
adjoint) language.

The mathematical structure underlying residuated logic
programs is that of residuated lattice, which provides an
abstraction of the usual conjunction and implication and the
modus ponens inference rule. The formal definition is given
below:

Definition 1: A residuated latticeL is a tuple(L,←, &)
satisfying the following items:

1) 〈L,�〉 is a bounded lattice, i.e. it has bottom and top
elements, denoted 0 and 1;

2) (L, &, 1) is a commutative monoid;
3) (&,←) is anadjoint pair in 〈L,�〉; i.e.



a) Operation& is increasing in both arguments,
b) Operation← is increasing in the first argument

and decreasing in the second,
c) For anyx, y, z ∈ P , we have

x � (y ← z) if and only if (x & z) � y (1)

The first two conditions for adjoint pairs specify the
usual properties of “conjunction” and “implication”. The
adjoint condition (1) is more interesting and allows us to
use many-valued versions ofmodus ponens. The valuex
can be understood as the weight associated to the rules, and
therefore condition (1) expresses that in order to satisfy the
rule the value of the consequent (head) must be larger than or
equal to the value of the rule weight conjoined to the value
of the body. Dropping any of the sides of the equivalence in
condition (1) destroys the expected properties of models of
our programs (see [6]). This is the basic inference rule used
in residuated logic programs.

Now, we can introduce residuated logic programs as those
constructed from a signature of monotone operators and
interpreted on a complete residuated lattice:

Definition 2: A residuated programover a residuated
complete lattice〈L,←,⊗〉 is a finite set of rulesA ← B
satisfying:

1) Theheadof the ruleA is an atom.
2) Thebody formulaB is a formula built from atoms or

elements of the latticeB1, . . . , Bn (with n ≥ 0) by the
use of arbitrary monotonic operators, also denoted by
B[B1, . . . , Bn].

A queryis a propositional symbol intended as a question?A
prompting the system.

An interpretationis a mappingI from the Herbrand base
of the program toL. Note that each of these interpretations
can be uniquely extended via the adjoint condition to the
whole set of formulas, in this case it is denotedÎ. The
ordering � on the underlying lattice can also be easily
extended to the set of interpretations, inheriting a structure
of complete lattice.

The definition of satisfiability, as stated above, relies
heavily in the adjoint condition, and is the following:

Definition 3:

1) An interpretationI satisfiesA← B if and only if

Î (Bη) � I(Aη)

for all grounding substitutionη.
2) An interpretationI is a modelof P iff all its rules are

satisfied byI.
The immediate consequences operator, given by van Em-

den and Kowalski, can be easily generalised to the framework
of residuated logic programs.

Definition 4: Let P be a residuated program over a com-
plete latticeL. The immediate consequences operatorTP

maps interpretations to interpretations and, for an interpreta-
tion I and a ground atomA, TP(I)(A) is defined as

sup{Î(Bη) | Cη ← Bη ∈ G(P) andA = Cη}

whereG(P) denotes the grounding ofP.
The semantics of a residuated logic program can be

characterised, as usual, by the post-fixpoints ofTP; that is, an
interpretationI is a model of a residuated logic programP
if and only if TP(I)(A) � I(A) for all ground atomA.

TheTP operator is proved to be monotonic and continuous
under very general hypotheses, see [14], and it is remarkable
that these results are true even for non-commutative and non-
associative conjunctors. In particular, by continuity, the least
model can be reached in at most countably many iterations
of TP on the least interpretation, denotedTP ↑

ω. In what
follows, we will assume this behaviour for all our programs,
together with finite dependency (this requirement ensures that
there is at most finitely many rules matching a goal, hence
generating finitely many branches after the applications of
rules R1 and R2 below).

III. T HE TABLING PROCEDURE

In this section we describe a simple version of the first-
order tabling proof procedure for residuated logic programs
which allows to obtain more directly the proofs of soundness
and completeness.

The procedure generates a set of trees, each one computing
answers for a given subgoal. The answers computed for any
subgoal are stored in a list (theanswer list), which is denoted
pictorially as a label of the root node of each tree.

R1: Create New Tree.

Given an atomA, let P(A) be the finite set of rules〈Cj ←
Bj〉 of P, with variables renamed apart, such that there exists
a mguθj satisfyingCjθj = Aθj , wherej = 1, . . . , m.

Construct the following tree with rootA

A : {A : 0}

Aθ1 ← B1θ1 . . . Aθm ← Bmθm

and append it to the current forest. If the forest does not
exist, then create a new forest containing this single tree.

R2: New Subgoal.

Select a non-tabulated atomC occurring in a leaf of some
tree (note that non-tabulated means that there is no tree in
the forest with root containing a variant ofC), then create a
new tree as indicated in Rule 1, and append it to the forest.

R3: Answer Return.

Select in any non-root node an atomC which is tabulated
(i.e. there is a tree with rootC′ which is a variant ofC). Let
C′θ′ : r be an element of the answer list ofC′, which unifies
with C, and was not consumed before. LetCΘ = C′θ′Θ
be their most general unifier. Then, add a new successor node

Aθ ← B[. . . , C, . . . ]

AθΘ← B[. . . , r, . . . ]Θ

2



R4: Value Update.

Consider a leaf in the tree for an atomC, having the form
Cθ ← B[s1, . . . , sm]θ, whereB does not contain atoms, then
evaluate the corresponding arithmetic formula in the body of
the ruleB[s1, . . . , sm], assume that is value is, say,s. If there
is a variant ofCθ with same values in the answer list of
C then we do nothing, otherwise we add the new answer
Cθ : s.

R5: Answer merging.

Let A1 : s1 and A2 : s2 be two instances in an an-
swer list, which unify with mguθ. Then, add the answer
A1θ : sup{s1, s2} wheneverA1θ : sup{s1, s2} is not in the
answer list (modulo renaming of variables).

Remarks:

1) Note that a list of “computed” answers is attached
to the root of each tree in the forest, in terms of a
substitution and a value inL. The answer list of a root
C is denoted byAL(C).

2) Recall that the only rules which change the values in
the answer list of the roots of the trees in the forest
are R4 and R5.

A Non-Deterministic Procedure for Tabulation

Now, we can state the general non-deterministic procedure
for calculating the answer to a given query by using a
tabulation technique in terms of the previous rules.

Initial step
Create the initial forest with the application of R1
to the query.

Next steps
Non-deterministically select an atom and apply one
of the rules R2, R3, R4 or R5.

There are several improvements that can be made to the
basic tabulation proof procedure, for instance, by considering
subsumption-based tabulation instead of variants, but we are
not concerned with efficiency in this paper, but in showing
soundness and completeness of the basic procedure.

IV. SOUNDNESS ANDCOMPLETENESS

We start by considering the soundness proof of the tabling
proof procedure. In intuitive terms, it is shown that every
answer in the answer list in a tree for some atom is a correct
answer.

Definition 5:

1) Given a programP and a queryA, a computed answer
for A in P is a pair(θ, ϑ) whereθ is a substitution and
ϑ a value inL such thatAθ : ϑ belongs to the answer
list of the tree forA.

2) Given a programP and a queryA, a correct answer
for A in P is a pair(θ, ϑ) whereθ is a substitution and
ϑ a value inL such thatϑ ≤M(Aθη) for all Herbrand
modelsM of P and grounding substitutionη.

An equivalent definition of correct answer in terms of the
TP operator can be given as follows:

2’) (θ, ϑ) is a correct answer forA in P if for every
grounding substitutionη we have that

ϑ ≤ TP ↑
ω(Aθη)

Theorem 1 (Soundness Theorem):Let P be a program
and a tabling forest for a given query. Then, every computed
answer for a tabulated atomA in the forest is a correct answer
for A in P.

Proof: Let (θ, ϑ) be a computed answer forA. The
result is shown by induction in the number of rules applied
by the tabling procedure.

Induction Base:If it is applied only one rule, this must be
Rule 1. The following tree is constructed :

A : {A : 0}

Aθ1 ← B1θ1 . . . Aθk ← Bkθk

Since the answer list is the singleton,{A : 0}, then we
have0 ≤ M(Aη) for any Herbrand modelM , and we are
done.

Induction Step:Assume that the result holds after the
application ofn tabling rules.

If we apply Rule 2, the proof is like in the previous case.
Rule 3 does not modify the answer list, hence there is

nothing to prove.
For Rule 4, assume we have a leaf for a tree with rootA:

Aσ ← B[s1, . . . , sn]σ

In this case we have a leaf where inB[s1, . . . , sn] there
are no atoms, and the answer substitution isσ. Evaluate the
corresponding arithmetic formula, assume that its value is,
say,s. We have two possibilities:

1) If Aσ : s is a variant of an answer in theAL(A), then
we do not change the answer list. Therefore, we finish
by the induction hypothesis.

2) If Aσ : s is not a variant then it is added to the answer
list.

It remains to be shown that, given a grounding substitutionη,
the inequality below holds

s ≤ TP ↑
ω(Aση) (2)

Without loss of generality, we assume that there are
just two atoms in the bodyB and we haveB1ρ1 : s1 and
B2ρ2 : s2 in the corresponding answer lists, which satisfy

si ≤ TP ↑
ω(Biρiη) for i = 1, 2 (3)

for all grounding substitutionη.
Again w.l.o.g. the “value”B[s1, s2] has been generated

from (an instance of) a rule1

A← B[B1, B2]

1Note that, for the argument, it is irrelevant whether it is aninstance of
a rule inP or not.

3



by successive applications of Rule 3:

A ← B[B1, B2]

AΘ1 ← B[s1, B2]Θ1

AΘ1Θ2 ← B[s1, s2]Θ1Θ2

whereB1Θ1 = B1ρ1Θ1 andB2Θ1Θ2 = B2ρ2Θ1Θ2. In this
case, we would haveσ = Θ1Θ2 in Eq (2).

Now,

TP ↑
ω(Aση) ≥ TP ↑

ω(B[C1, C2]ση)

= TP ↑
ω(B[C1ση, C2ση])

= B[TP ↑
ω(B1ρ1η

′), TP ↑
ω(B2ρ2η

′′)]

≥ B[s1, s2] = s

Finally, for Rule 5, assumeA1 : s1 and A2 : s2 in an
answer list, which unify under mguθ. The rule adds the
answerA1θ : sup{s1, s2}. By induction, for i = 1, 2 we
havesi ≤ TP ↑

ω(Aσmη), thus trivially we obtain that

sup{s1, s2} ≤ TP ↑
ω(Aσmη)

In order to prove completeness, we need a suitable exten-
sion of the well-known lifting lemma. In its statement, we
need to introduce the notion ofsuper-forestand some other
technical concepts.

Definition 6:

• We say thatF′ is a super-forestof a given forestF if
every tree inF is subsumed by another tree inF′ which,
moreover, whose nodes are labelled by formulas more
general than those inF.

• In addition, we say that computed values arepreserved
by the super-forestif for every elementQθη : s in the
answer list ofQθ in F there exists a substitutionη′ such
that Qη′ : s is the answer list forQ in F′.

Lemma 1 (Lifting lemma):Let P be a program,Q an
atom andθ a substitution. Given a finite tabling forestF for
Qθ, there exists a tabling super-forest forQ which preserves
computed answers inF.

Proof: The idea is to show that it is possible to mimic
the construction of a forest forQθ by a forest forQ such
that the computed values of the atoms in the answer lists are
preserved.

The proof is by structural induction, comparing the gen-
eration of tabling forests forQθ andQ.

In the initial case,F is started by an application of R1 to
the atomQθ, we would obtain

Qθ : {Qθ : 0}

Qθθ1 ← B1θ1 . . . Qθθm ← Bmθm

whereas forF′ we apply R1 to the atomQ, obtaining at least
the following branches2

2Here we are taking advantage of the variables in the rules being renamed
apart.

Q : {Q : 0}

Qθθ1 ← B1θ1 . . . Qθθm ← Bmθm

Note that R1 might introduce more branches sinceQ could
be unifiable with the heads of more rules thanQθ, and we
would have a proper super-forestF′.

For the inductive case, assume that we have a forestF for
which the statement of the lemma holds; and consider the
application of a further rule.

Note that we only need to focus on the application of R4,
since for the rest of cases the result can be checked easily.

For R4, we have a leaf in the forest forQθ of the form

Aσ ← B[s1, . . . , sm]σ

We have two possibilities:

1) If Aσ : s or a variant is in the answer list, then there is
nothing to prove, since the answer list is not modified.

2) If Aσ : s is not a variant then it is added to the answer
list.

In this case, by the induction hypothesis, we have a more
general leaf in the forest forQ

Aη′ ← B[s1, . . . , sm]η′

in which σ′ is such thatσ ≤ σ′.
For this leaf, an application of R4 either a variant of the

corresponding computed answer is already in the answer list
or it is included, satisfying in any case what we want to
prove.

Definition 7: Given a programP, a terminated forest for
P and a query, and a grounding substitutionη, a computed
answer forA relative to η in a tree forA, denotedrη(A),
is the supremum of

{ri | Aθi : ri ∈ AL(A) whereAθi, Aη unify}
Note that, by repeated application of Rule 5 and assuming

finite termination of the forest construction, there must exist
some answerAθ : r in the tree forA which unifies with the
ground atomAη.

Theorem 2:Consider a programP and a finite terminated
forest for a ground atomA. Then

TP ↑
n(A) ≤ r(A) for all n ∈ N

Proof: As A is ground, obviously we haveA = Aη and
the relative computed values do not depend on the grounding
substitutionη.

By induction onn ∈ N.
Induction Base:It is straightforward because

TP ↑
0(Aη) = 0 for all atomA,

and by application of Rules 1 and 2.
Induction Step:Assume as induction hypothesis that

TP ↑
n(B) ≤ r(B) for all ground atomB.

We will show that given a terminated forest forA, we
have that alsoTP ↑

n+1(A) ≤ r(A).

4



Recalling the definition ofTP, consider any rule, say

(Cj ← Bj [B1, . . . , Bm])ζ,

in the grounding ofP whose head isA.
It is clear that a corresponding more general

Cj ← Bj[B1, . . . , Bm]σ

should appear in the tree forA. Rules 1 and 2, combined with
Rule 4, guarantee that a tree for eachBkσ (1 ≤ k ≤ m)
will be created in the forest. Thus, for every ground atom
Bkζ we will have a treeBkσ for it in the forest.

By application of induction hypothesis, we have that

TP ↑
n(Bkζ) ≤ r(Bkζ)

and there is an answer inBkσ with computed valuer(Bkζ)
(we will denote itsk for brevity) which unifies withBkζ. By
consumption of these answers by Rule 3, we have a leaf in
the tree forA with bodyBj [s1, . . . , sm] whose head unifies
with A.

The choice of the rule inP for A was completely arbitrary,
therefore for each ground ruleCj ← Bj [B1, . . . , Bm]ζ we
have

Bj[. . . , TP ↑
n(Bkζ), . . . ] ≤

≤ Bj[. . . , sk, . . . ]

≤ rη(A) for all η

ThereforeTP ↑
n+1(A) ≤ rη(A) by definition of TP, since

TP ↑
n+1(A) is the supremum of all the bodies

Bj[. . . , TP ↑
n(Bkζ), . . . ]

of every rule in the grounded version ofP with headA.
Theorem 3:Let P be a programP, let η be a grounding

substitution and consider a finite terminated forest for an
atomA. Then

TP ↑
n(Aη) ≤ rη(A) for all n ∈ N

Proof: Let r be the maximum computed valuein the
tree for Aη, and let S be the set of values considered
for calculating the computed value forA relative to the
substitutionη, this is:

S = {s | Aθ : s ∈ AL(A), θγ = η}

Applying the Lifting Lemma to the computed answer
associated tor, there is a substitutionσ more general than
η such thatAσ : r ∈ AL(A), thereforer ∈ S and we have

r ≤ supS = rη(A)

We finish the proof from the following chain of inequali-
ties:

TP ↑
n(Aη) ≤ r ≤ sup S = rη(A)

Corollary 1 (Completeness):Let P be a program, a ter-
minated forest for a given query and a tabulated atomA in
the forest. For every correct answer(η, ϑ) for A, whereη is
grounding, the inequalityϑ ≤ rη(A) holds.

Proof: On the one hand, from the definition of correct
answer, we have that

ϑ ≤ TP ↑
ω(Aη) (4)

On the other hand, the previous theorem states that

TP ↑
n(Aη) ≤ r for all n ∈ N,

then:
TP ↑

ω(Aη) ≤ rη(A) (5)

The result follows from (4) and (5)

V. A WORKED EXAMPLE

We now introduce an example of the procedure which
illustrates how it handles mutual recursion.

Example 1:Consider the following residuated logic pro-
gram:

P (x1) ← Q(x2) &G R(x1)

P (a) ← 0.6

Q(f(b)) ← 0.7

R(x3) ← P (x3) &G 0.7

R(a) ← 0.7

where the underlying residuated complete lattice is the unit
interval, the symbolsa, b denote constants,x1, x2, x3 are
variables,f is a unitary function symbol,P, Q, R are predi-
cate symbols and&G is Gödel conjunction (the minimum).

Let us describe the execution of the non-deterministic
tabling procedure for the initial queryP (y), a possible forest
generated by the procedure is presented in Figure 1. All the
nodes are annotated by a possible order of creation, and the
selected nodes by R2 are underlined.

The forest is started by applying R1 toA(y), and nodes
(i), (ii) and (iii) are created with substitutions

{y/a} and {y/x1}

An application of R4 to node(ii) results in adding
P (a) : 0.6 to the answer list, since there is not a variant of
P (a) with value 0.6 (these updates of the answer lists are
denoted in the picture by using the arrow;).

Now, R2 selects the atomQ(x2) at node(iii) and creates
the new tree with root(iv) and leaf(v), with mgu{x2/f(b)}.
The computation proceeds and R4 addsQ(f(b)) : 0.7 to the
answer list forQ(x2).

The new value included in the answer lists enables an
application of R3, which generates the new node(vi) using
the mgu{x2/f(b)}.

A new application of R2 selects atomR(x1) at node(vi)
and generates a new tree in the forest consisting of nodes
(vii), (viii) and(ix). Note that node(viii) can be selected
for an application of R4, dealing to an update of the answer
list, includingR(a) : 0.7.

The new value inserted in the answer list forR(x1) can
now be used by R3 to generate node(x), where the mgu is
the substitution{x1/a}. Now, a new application of R4 up-
dates the answer list ofP (y) by adding the valueP (a) : 0.7.

5



(i) P (y) : {P (y) : 0}; {P (y) : 0; P (a) : 0.6}; {P (y) : 0; P (a) : 0.6; P (a) : 0.7}

(ii) P (a)← 0.6 (iii) P (x1)← Q(x2) &G R(x1)

(vi) P (x1)← 0.7 &G R(x1)

(x) P (a)← 0.7 &G 0.7 (xiii) P (a)← 0.7 &G 0.6

(iv) Q(x2) : {Q(x2) : 0}; {Q(x2) : 0; Q(f(b)) : 0.7}

(v) Q(f(b))← 0.7

(vii) R(x1) : {R(x1) : 0}; {R(x1) : 0; R(a) : 0.7}; {R(x1) : 0; R(a) : 0.7; R(a) : 0.6}

(viii) R(a) ← 0.7 (ix) R(x3)← P (a) &G 0.7

(xi) R(x3)← 0.6 &G 0.7 (xii) R(x3)← 0.7 &G 0.7

Fig. 1. A forest for Example 1.

Note that R5 does not apply here, sinceP (a) : sup{0.7, 0.6}
is already in the answer list (essentially, this rule is relevant
when the underlying truth-value set is not totally ordered).

The non-consumed answersP (a) : 0.6 andP (a) : 0.7 are
used for two applications of R3 in order to generate nodes
(xi) and(xii). Both nodes trigger R4, an application on(xi)
updates the answer list by includingR(a) : 0.6, whereas the
application on(xii) does not modify the answer list, for
R(a) : 0.7 is already in the list.

Finally, the recently obtained valueR(a) : 0.6 is consumed
by R3 on node(vi); as a result, node(xiii) is generated,
which triggers R4 with substitution{x1/a} but does not
update the answer list ofP (y), sinceP (a) : 0.6 is already
there.

The computation terminates since the forest does not get
changed by any rule. 2

Note that the answers labeled with 0 have not been
consumed for the sake of simplicity of the picture. Moreover,
note that the previous example also illustrates a number
of superfluous computations which should be avoided in a
practical implementation, but recall that our aim in this work
was obtaining a tabulation procedure with a reasonable proof
of completeness.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have introduced a tabulation goal-oriented
query procedure for first-order residuated logic programs,
which generalises that given for the propositional case in

[7]. After introducing a non-deterministic procedure for
tabulation, we prove the corresponding soundness and com-
pleteness theorems.

It is worth to note that the basic tabling procedure pro-
posed admits a number of possible improvements:

To begin with, a interesting issue from a practical point
of view is related to the efficiency of the method. The basic
procedure presented here should be improved by means of
some modifications to the rules (subsumption instead of
variants, updating values instead of simply copying new ones,
. . . ). Subsequently, new forms of rules will be considered
whose behaviour should be proved equivalent to the basic
ones.

On the other hand, note that termination of the procedure
has been assumed in the statement of the completeness
theorems. This problem is not an easy one even in the propo-
sitional case, as shown in [8]. Even for continuous operators
in the bodies, the tabling procedure might not terminate.
Sufficient conditions for termination of the procedure are our
target for continuing research on these topics.

REFERENCES

[1] T. Alsinet and L. Godo. Towards an automated deduction
system for first-order possibilistic logic programming with
fuzzy constants.International Journal of Intelligent Systems,
17(9), 2002.

[2] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril
- Fuzzy and Evidential Reasoning in Artificial Intelligence.
Res. Studies Press, 1995.

6



[3] R. Bol and L. Degerstedt. The underlying search for magic
templates and tabulation. InProc. of ICLP93, pages 793–811,
1993.

[4] W. Chen, T. Swift, and D. S. Warren. Efficient top-down
computation of queries under the well-founded semantics.
Journal of Logic Programming, 24(3):161–199, 1995.

[5] C. V. Damásio and L. M. Pereira. Monotonic and residuated
logic programs.Lect. Notes in Artificial Intelligence2143, pp.
748–759, 2001.

[6] C. V. Damásio and L. M. Pereira. Sorted monotonic logic
programs and their embeddings. InInformation Processing and
Management of Uncertainty for Knowledge-Based Systems,
IPMU’04, pages 807–814, 2004.

[7] C.V. Damásio, J. Medina, and M. Ojeda-Aciego. A tabula-
tion proof procedure for residuated logic programming. In
European Conference on Artificial Intelligence, volume 110
of Frontiers in Artificial Intelligence and Applications, pages
808-812, 2004.

[8] C.V. Damásio, J. Medina and M. Ojeda-Aciego. Sorted multi-
adjoint logic programs: termination results and applications.
Journal of Applied Logic, 2006. To appear

[9] A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic
programs.J. of Logic Programming, 43:187–250, 2000.

[10] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy prolog:
A new approach using soft constraints propagation.Fuzzy Sets
and Systems144(1):127–150, 2004.

[11] M. Kifer and V. S. Subrahmanian. Theory of generalized
annotated logic programming and its applications.J. of Logic
Programming, 12:335–367, 1992.

[12] J.W. Lloyd. Foundations of Logic Programming,Springer
Verlag, 1987.

[13] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. A
neural implementation of multi-adjoint logic programs.Jour-
nal of Applied Logic2(3):301–324, 2004.

[14] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint
logic programming with continuous semantics.Lect. Notes
in Artificial Intelligence2173, pp. 351–364, 2001.

[15] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural
semantics for multi-adjoint logic programming.Lect. Notes in
Artificial Intelligence2258:290–297, 2001.

[16] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Similarity-based
unification: a multi-adjoint approach.Fuzzy sets and systems,
146:43–62, 2004.

[17] P. Rhodes and S. Merad-Menani. Towards a fuzzy logic
programming system: a clausal form fuzzy logic.Knowledge-
Based Systems, 8(4):174–182, 1995.

[18] M. Sessa. Approximate reasoning by similarity-based SLD
resolution.Theoretical Computer Science, 275(1–2):389–426,
2002.

[19] T. Swift. Tabling for non-monotonic programming.Annals
of Mathematics and Artificial Intelligence, 25(3-4):201–240,
1999.

[20] H. Tamaki and T. Sato. OLD resolution with tabulation. In
Proc. of ICLP’86, pages 84–98, 1986.

[21] M. H. van Emden. Quantitative deduction and its fixpoint
theory. Journal of Logic Programming, 3(1):37–53, 1986.

[22] P. Vojtáš. Fuzzy logic programming.Fuzzy sets and systems,
124(3):361–370, 2001.

7


