A Tabulation Proof Procedure
for First-Order Residuated Logic Programs:
Soundness, Completeness and Optimisations

C.V. Damasio, J. Medina, and M. Ojeda-Aciego

Abstract— Residuated logic programs have shown to be a on the one hand, there exists a bottom-up neural-like im-
generalisation of a number of approaches to logic programntig plementation of the fixed-point semantics which calculates

under uncertain or vague information, including fuzzy or he gyccessive iterations of the immediate consequences
annotated or probabilistic or similarity-based logic program-

ming frameworks. Various computational approaches have ben operator [13]; on_ the other hand, a goal-oriented tc_)p-down
developed for propositional residuated logic programs: onthe @pproach tabulation procedure has been presented in [7], [8
one hand, there exists a bottom-up neural-like implementabn In this paper we maintain our interest on the use of tabuiatio

of the fixed-point semantics which calculates the successiv (tabling, or memoizing) methods.

iterations of the immediate consequences operator; on the * Tapjation is a technique which is receiving increasing
other hand, a goal-oriented top-down tabulation procedurehas S . . .
recently been introduced. In this paper, we introduce a soud attent'on_'_n the logic programming and dedu‘?t've_datapase
and complete tabulation-based proof procedure for the first communities [3], [4], [19], [20]. The underlying idea is,
order extension of residuated logic programs. essentially, that atoms of selected tabled predicates #s we
as their answers are stored in a table. When an identical
)) o atom is recursively called, the selected atom is not resolve

~ The development of logics for dealing with imperfectygainst program clauses; instead, all corresponding asswe
information (ie uncertain, vague, imprecise) has been cogpmputed so far are looked up in the table and the associated
sidered an interesting research topic in the recent yeaggswer substitutions are applied to the atom. The process is

Regarding extension of logic programming in this contextepeated for all subsequent computed answer substitutions
several different approaches to the so-called inexactzmyfu cqrresponding to the atom.

or approximate reasoning have been proposed. In the specifiq, this work, we provide a tabulation goal-oriented query
topic of logic programming under uncertainty, we can findyrocedure for first-order monotone and residuated logie pro
approaches involving either fuzzy or annotated or prok&@bil grams, the main contribution being the proofs of soundness
tic or similarity-based logic programming [1], [2], [9]-1). and completeness.
[17]-[19], [21], [22]. o _ The structure of the paper is as follows: in Section 2,
Residuated and monotonic logic programs [5] and multihe syntax and semantics of our logic programs are sum-
adjoint logic programs [14] were introduced as genergharized; Section 3 introduces a non-deterministic proeedu
frameworks which abstract out the particular details of thg) tapulation. The soundness and completeness of thapbli
different approaches cited above, and focus only on thgocedure appear in Section 4. Then, an example illustratin
computational mechanism of inference. This higher levghe procedure is extensively discussed in Section 5. Therpap

of abstraction makes possible the development of geneggiishes with some conclusions and pointers to future work.
results about the behaviour of several of the previousidcit

approaches. [I. SYNTAX AND SEMANTICS

We will focus here on the particular framework of resid- |n this section the essentials of first order residuatectlogi
uated logic programming. The semantics of monotone argtogramming are reviewed. The reader might consult [5]
residuated logic program is characterised, as usual, by th& the propositional version or [16] for a first-order (mult
post-fixpoints of the immediate consequence operdtor adjoint) language.
which is proved to be monotonic and continuous under The mathematical structure underlying residuated logic
very general hypotheses, see [14]. Following traditiongrograms is that of residuated lattice, which provides an
techniques of logic programming, a procedural semantiggstraction of the usual conjunction and implication arel th
was given in [15], in which non-determinism was discarde¢éhodus ponens inference rule. The formal definition is given
by using reductants. Various computational approaches haye|ow:
been developed for propositional residuated logic program Definition 1: A residuated lattice is a tuple(L, <, &)
satisfying the following items:

I. INTRODUCTION

C.V. Damasio is with the Centro Inteligéncia Artificial,niy. Nova de

Lisboa, Portugal. (email: cd@di.fct.unl.pt). 1) (L, =) is a bounded lattice, i.e. it has bottom and top
J. Medina is with the Dept. Matematica Aplicada, Univ. daldfa, Spain. elements, denoted 0 and 1:

(email: jmedina@ctima.uma.es). 2) L. &.1) is a commutative monoid:
M. Ojeda-Aciego is with the Dept. Matematica Aplicada, Wnie () 68y))

Malaga, Spain. (email: aciego@ctima.uma.es). 3) (&, <) is anadjoint pairin (L, =<); i.e.

a) Operation& is increasing in both arguments, whereG(PP) denotes the grounding df.
b) Operation— is increasing in the first argument The semantics of a residuated logic program can be

and decreasing in the second, characterised, as usual, by the post-fixpoint&gfthat is, an
c) For anyz,y,z € P, we have interpretation/ is a model of a residuated logic program
. . if and only if Tp(I)(A) < I(A) for all ground atomA.

¢ = (y—=2) fandonlyif (z&z)=y (1) TheTp operat(or)i(s pzrovefj t<>3 be monotonic and continuous

The first two conditions for adjoint pairs specify theunder very general hypotheses, see [14], and it is remazkabl
usual properties of “conjunction” and “implication”. The that these results are true even for non-commutative and non
adjoint condition (1) is more interesting and allows us t@ssociative conjunctors. In particular, by continuity thast
use many-valued versions ofiodus ponensThe valuexz model can be reached in at most countably many iterations
can be understood as the weight associated to the rules, &idlk on the least interpretation, denot&d 1 “. In what
therefore condition (1) expresses that in order to satiséy t follows, we will assume this behaviour for all our programs,
rule the value of the consequent (head) must be larger thantegether with finite dependency (this requirement ensias t
equal to the value of the rule weight conjoined to the valuthere is at most finitely many rules matching a goal, hence
of the body. Dropping any of the sides of the equivalence igenerating finitely many branches after the applications of
condition (1) destroys the expected properties of models @fles R1 and R2 below).
our programs (see [6]). This is the basic inference rule used
in residuated logic programs.

Now, we can introduce residuated logic programs as thoseln this section we describe a simple version of the first-
constructed from a signature of monotone operators amdder tabling proof procedure for residuated logic proggam

IlIl. THE TABLING PROCEDURE

interpreted on a complete residuated lattice: which allows to obtain more directly the proofs of soundness
Definition 2: A residuated programover a residuated and completeness.

complete lattice(L, —, ®) is a finite set of rulesd — B The procedure generates a set of trees, each one computing

satisfying: answers for a given subgoal. The answers computed for any
1) Theheadof the rule 4 is an atom. subgoal are stored in a list (tl@swer lis}, which is denoted

2) Thebodyformula B is a formula built from atoms or Ppictorially as a label of the root node of each tree.
elements of the lattic®,, ..., B,, (with n > 0) by the]
use of arbitrary monotonic operators, also denoted b@l' Create New Tree.

B[Bu...., By
A queryis a propositional symbol intended as a questign Given an atom4, let P(A) be the finite set of rule¢C’; —
prompting the system. B;) of P, with variables renamed apart, such that there exists
An interpretationis a mappingl from the Herbrand base & Mgud; satisfyingC;6; = Af;, wherej =1,...,m.

of the program taL. Note that each of these interpretations Construct the following tree with root
can be uniquely extended via the adjoint condition to the

whole set of formulas, in this case it is denotéd The A: {A:0}

ordering < on the underlying lattice can also be easily

extended to the set of interpretations, inheriting a stmact Aby — B0y ... Ab,, <~ B,.0n

of complete lattice. and append it to the current forest. If the forest does not

The definition of satisfiability, as stated above, reliegyjst then create a new forest containing this single tree.
heavily in the adjoint condition, and is the following:

Definition 3: R2: New Subgoal.

1) An interpretation/ satisfiesA < B if and only if Select a non-tabulated atofhoccurring in a leaf of some
f(Bn) < I(An) tree (note that non—tabulgtgd means that there is no tree in
- the forest with root containing a variant 6f), then create a
for all grounding substitution. new tree as indicated in Rule 1, and append it to the forest.
2) An interpretation/ is a modelof P iff all its rules are
satisfied byl.
The immediate consequences operator, given by van Em-Select in any non-root node an atarhwhich is tabulated
den and Kowalski, can be easily generalised to the framewofke. there is a tree with roat” which is a variant of”). Let
of residuated logic programs. C'0": r be an element of the answer list ©f, which unifies
Definition 4: Let P be a residuated program over a comwith C, and was not consumed before. L€ = C'6'0©
plete lattice L. The immediate consequences operafBr be their most general unifier. Then, add a new successor node
maps interpretations to interpretations and, for an imegtgp A0 — B[...,C,...]
tion I and a ground atoral, Tp(I)(A) is defined as |

R3: Answer Return.

sup{I(Bn) | Cn — By € G(P) and 4 = Cn} A0O — B[...,r,...]1©

R4: Value Update. 2’) (0,9) is a correct answer for in P if for every

Consider a leaf in the tree for an atafh having the form grounding substitutiom we have that

CO « Blsi,...,sm]0, whereB does not contain atoms, then 9 < To1%(Afn)
evaluate the corresponding arithmetic formula in the bddy o -
the ruleB[sy, ..., s»,], assume that is value is, say,If there Theorem 1 (Soundness Theorerhgt P be a program

is a variant ofCf with same values in the answer list of and a tabling forest for a given query. Then, every computed
C then we do nothing, otherwise we add the new answeihswer for a tabulated atorhin the forest is a correct answer
Co: s. for Ain P.
Proof: Let (6,9) be a computed answer fot. The

result is shown by induction in the number of rules applied

Let A;: s and Ay: s be two instances in an an- by the tabling procedure.
swer list, which unify with mgud. Then, add the answer Induction Baseif it is applied only one rule, this must be
A10: sup{s1, s2} wheneverd,0: sup{si, s2} is not in the Rule 1. The following tree is constructed :
answer list (modulo renaming of variables). A: {A: 0}

Remarks: /\
1) Note that a list of “computed” answers is attached

to the root of each tree in the forest, in terms of a Al =By ... Al — Byl

substitution and a value ih. The answer list of a root Si th list is the singlet oY th
C is denoted by2l£(C). ince the answer list is the singletofid: 0}, then we

2) Recall that the only rules which change the values igaveo < M(An) for any Herbrand modeb/, and we are

R5: Answer merging.

. . one.
the answer list of the roots of the trees in the fores .
Induction Step:Assume that the result holds after the
are R4 and R5. o)
application ofrn tabling rules.
A Non-Deterministic Procedure for Tabulation If we apply Rule 2, the proof is like in the previous case.

Now, we can state the general non-deterministic procedureRUIe 3 does not modify the answer list, hence there is

: . . othing to prove.
for calculating the answer to a given query by using] .
tabulation technique in terms of the previous rules. For Rule 4, assume we have a leaf for a tree with ot

Initial step Ao — Bls1,...,8n]0
Create the initial forest with the application of R1
to the query. In this case we have a leaf where RBis1, ..., s,] there
Next steps are no atoms, and the answer substitution.ig&valuate the
Non-deterministically select an atom and apply on€orresponding arithmetic formula, assume that its valye is
of the rules R2, R3, R4 or R5. say, s. We have two possibilities:

There are several improvements that can be made to thel) If Ao: s is a variant of an answer in th£(A), then
basic tabulation proof procedure, for instance, by comside we do not change the answer list. Therefore, we finish
subsumption-based tabulation instead of variants, butrere a by the induction hypothesis.
not concerned with efficiency in this paper, but in showing 2) If Ao: s is not a variant then it is added to the answer
soundness and completeness of the basic procedure. list.

It remains to be shown that, given a grounding substitution
the inequality below holds

We start by considering the soundness proof of the tabling
proof procedure. In intuitive terms, it is shown that every
answer in the answer list in a tree for some atom is a correct

IV. SOUNDNESS ANDCOMPLETENESS

s <Tp1“(Aon) (2

Without loss of generality, we assume that there are

answer. | just two atoms in the bodys and we haveB;p;: s; and
Definition 5: Bsypo: s9 in the corresponding answer lists, which satisfy
1) Given a prograni® and a queryd, acomputed answer
for Ain P is a pair(6,) whered is a substitution and s; <Tp1¥(Bipin) fori=1,2 3)

¥ a value inL such that46: ¢ belongs to the answer
list of the tree forA.

2) Given a progran® and a queryA, a correct answer
for Ain P is a pair(8,) whered is a substitution and
9 a value inL such that} < M (A#n) for all Herbrand A — B[Bi, By
modelsM of P and grounding substitution. ’

An equivalent definition of correct answer in terms of the INote that, for the argument, it is irrelevant whether it isiastance of

Tr operator can be given as follows: arule inP or not.

for all grounding substitutiom).
Again w.l.o.g. the “value”B[s1, s2] has been generated
from (an instance of) a rule

by successive applications of Rule 3:

A — B[Bl,BQ]
A@l — B[Sl,B2]®1
A®1®2 — B[Sl, 82]@1@2
WhereBl®1 = Blp1®1 anng®1®2 = ngggleg. In this

case, we would have = ©,0, in Eq (2).
Now,

Tp 1% (Aon) = Tp1%(B[C1, Coon)
Tp 1% (B[C1on, Caon))

B[Tp 1 (Bip1n'), Te 1“ (Bap2n”))
Bls1,s2] = s

V

Finally, for Rule 5, assumed;: s; and A;: sy in an
answer list, which unify under mgd. The rule adds the
answer A,0: sup{si,s2}. By induction, for: = 1,2 we
haves; < Tp1“(Ao.m,n), thus trivially we obtain that

sup{s1,s2} < Tp1“(Aomn)

In order to prove completeness, we need a suitable exte
sion of the well-known lifting lemma. In its statement, we

Q:{Q: 0}
/\
Q991 — 8191 Qoem — Bmom

Note that R1 might introduce more branches sinreould
be unifiable with the heads of more rules th@f, and we
would have a proper super-foregt

For the inductive case, assume that we have a f@dst
which the statement of the lemma holds; and consider the
application of a further rule.

Note that we only need to focus on the application of R4,
since for the rest of cases the result can be checked easily.

For R4, we have a leaf in the forest f@9 of the form

Ao — Bsq,. ..

, Smlo

We have two possibilities:

1) If Ao: s or avariant is in the answer list, then there is
nothing to prove, since the answer list is not modified.

2) If Ao: sis not a variant then it is added to the answer
list.

In this case, by the induction hypothesis, we have a more
%e_neral leaf in the forest faR

An' — Bls1,...,sm]n

need to introduce the notion stiper-forestand some other

technical concepts.
Definition 6:
o We say thaty’ is a super-forestof a given foresty if
every tree in§ is subsumed by another treeghwhich,

moreover, whose nodes are labelled by formulas moRe

general than those if.

« In addition, we say that computed values preserved
by the super-foresif for every elementQén: s in the
answer list ofQ6 in § there exists a substitutiaji such
thatQn': s is the answer list foQQ in §'.

Lemma 1 (Lifting lemma)Let P be a program,Q an
atom and a substitution. Given a finite tabling fore§tfor
Q0, there exists a tabling super-forest fgrwhich preserves
computed answers i§.

in which ¢’ is such thair < ¢’.

For this leaf, an application of R4 either a variant of the
corresponding computed answer is already in the answer list
or it is included, satisfying in any case what we want to
rove. [|
Definition 7: Given a prograni?, a terminated forest for
P and a query, and a grounding substitutipna computed
answer for A relative ton in a tree forA, denotedr, (A),
is the supremum of

{ri | A0;: r; € AL(A) where Af;, An unify}

Note that, by repeated application of Rule 5 and assuming
finite termination of the forest construction, there mussex
some answerd: r in the tree forA which unifies with the
ground atomAn.

Proof: The idea is to show that it is possible to mimic Theorem 2:Consider a prograr and a finite terminated

the construction of a forest fapd by a forest forQ) such

forest for a ground atoml. Then

that the computed values of the atoms in the answer lists are

preserved.

The proof is by structural induction, comparing the gen-

eration of tabling forests fof)0 and Q.

In the initial caseg is started by an application of R1 to

the atom@#@, we would obtain

QO: {QH: 0}

/\

Q06, — B16, Q00,,, — B0,
whereas foy’ we apply R1 to the ator®y, obtaining at least
the following branches

2Here we are taking advantage of the variables in the rulegyrenamed
apart.

Tp1"(A) <r(A) foralln e N
Proof: As A is ground, obviously we havg = An and
the relative computed values do not depend on the grounding
substitutions.
By induction onn € N.
Induction Baselt is straightforward because

Tp1°(An) =0 for all atom A,

and by application of Rules 1 and 2.

Induction StepAssume as induction hypothesis that
Tp1"™(B) < r(B) for all ground atomB.

We will show that given a terminated forest faf, we
have that als@; 1"+ (A) < r(A).

Recalling the definition off, consider any rule, say Proof: On the one hand, from the definition of correct
answer, we have that
(Cj — Bj[Bl, ey Bm])Ca

9 <TpT¥(A4 4

in the grounding ofP whose head isA. < Tp 1 (An))

It is clear that a corresponding more general On the other hand, the previous theorem states that
C; «— Bj[B1,...,Bp]o Tp1"(An) <r forallneN,

should appear in the tree far. Rules 1 and 2, combined with then:
Rule 4, guarantee that a tree for eaBho (1 < k < m) Tp 1% (An) < ry(A) ()

will be created in the forest. Thus, for every ground aton-.
i . e result follows from (4) and (5 [|
B¢ we will have a treeByo for it in the forest.))
By application of induction hypothesis, we have that V. A WORKED EXAMPLE
Tp1™(ByC) < #(BiC) _ We now |ntr(_)duce an example of the procedure which
illustrates how it handles mutual recursion.
and there is an answer B, with computed value (B.() Example 1:Consider the following residuated logic pro-

(we will denote its;, for brevity) which unifies with3,¢. By gram:
consumption of these answers by Rule 3, we have a leaf in

the tree forA with body B;[s1, ..., s,»] Whose head unifies Pz1) — Qa2) &g R(x)
with A. P(a) <« 0.6
The choice of the rule if? for A was completely arbitrary, Qf(b) « 0.7
therefore for each ground rulg; — B,[Bs,...,By,|¢ we R(zs) — Plas) & 0.7
have
R(a) < 0.7

Bil....,Tp 1" (B <
o TeT(BRC), -] = where the underlying residuated complete lattice is thé uni

Bjl-- o sps-] interval, the symbols:,b denote constantsy;,xs,z3 are
ry(A) forall n variables,f is a unitary function symbolP, Q, R are predi-
cate symbols and: is Godel conjunction (the minimum).

Let us describe the execution of the non-deterministic
tabling procedure for the initial quer¥(y), a possible forest
B;l....,Tp 1™ (Bk(), . . .] generated by the procedure is presented in Figure 1. All the
. . , nodes are annotated by a possible order of creation, and the
of every rule in the grounded version Bfwith headA. = selected nodes by R2 are underlined.

Theprt_am 3LetP be, a progra_n’iP’, Iet17 be a grounding he forest is started by applying R1 #(y), and nodes
substitution and consider a finite terminated forest for a@) (i) and (iii) are created with substitutions

atom A. Then
and
Tp 17(A) < 1y(A) for all n € N tv/a} ty/m}

Proof: Let r be the maximum computed value the An application of R4 to node(ii) results in adding
tree for An, and let S be the set of values consideredP(a): 0.6 to the answer list, since there is not a variant of
for calculating the computed value fot relative to the P(a) with value0.6 (these updates of the answer lists are
substitutionn, this is: denoted in the picture by using the arrew).

Now, R2 selects the ato)(z2) at node(iii) and creates
S={s|Ab: s € AL(A), Oy =n} the new tree with rootiv) and leaf(v), with mgu{z2/f(b)}.
Applying the Lifting Lemma to the computed answer!N€ computation proceeds and R4 adylgf(b)): 0.7 to the
associated ta, there is a substitution more general than answer list forQ(zs).

<
<

ThereforeTy T "*1(A) < r,(A) by definition of Tp, since
T 1™ 1(A) is the supremum of all the bodies

1 such thatAo: r € AL(A), thereforer € S and we have The new value ingluded in the answer lists enak_)les an
application of R3, which generates the new n¢d® using
r <supS = r,(A) the mgu{xz/f(b)}.

A new application of R2 selects atoR(z,) at node(vi)
and generates a new tree in the forest consisting of nodes
n vit), (viii) and (iz). Note that nod€wviii) can be selected
TeT™(An) < 7 < sup S = ry(4) 1£or ;n(app?icatio(n o>f R4, dealing toqan u)pdate of the answer
B list, including R(a): 0.7.
Corollary 1 (Completeness).et P be a program, a ter- The new value inserted in the answer list f8fx;) can
minated forest for a given query and a tabulated atbim now be used by R3 to generate nqde, where the mgu is
the forest. For every correct answey, @) for A, wheren is the substitution{«;/a}. Now, a new application of R4 up-
grounding, the inequality < r,(A) holds. dates the answer list d?(y) by adding the valué’(a): 0.7.

We finish the proof from the following chain of inequali-
ties:

(i) P(y): {P(y): 0} ~ {P(y): 0; P(a): 0.6} ~ {P(y): 0; P(a): 0.6; P(a): 0.7}

/\

(i) P(a) — 0.6 (iii) P(z1) — Q(x2) &¢ R(z1)

(vi) P(z1) <« 0.7 &g R(z1)

/\

() P(a) < 0.7&c 0.7 (ziii) P(a) < 0.7&¢ 0.6

(iv) Q(z2): {Q(x2): 0} ~ {Q(x2): 0;Q(f(b)): 0.7}

(v) Qf(b)) — 0.7

(vii) R(z1): {R(z1): 0} ~ {R(z1): 0; R(a): 0.7} ~ {R(z1): 0; R(a): 0.7; R(a): 0.6}

(viii) R(a) < 0.7 (iz) R(x3) <« P(a) &g 0.7

/\

(zi) R(z3) « 0.6&¢ 0.7 (xii) R(z3)«— 0.7&g 0.7
Fig. 1. A forest for Example 1.

Note that R5 does not apply here, sifég:): sup{0.7,0.6} [7]. After introducing a non-deterministic procedure for
is already in the answer list (essentially, this rule isvaig¢ tabulation, we prove the corresponding soundness and com-
when the underlying truth-value set is not totally ordered) pleteness theorems.

The non-consumed answelga): 0.6 and P(a): 0.7 are It is worth to note that the basic tabling procedure pro-
used for two applications of R3 in order to generate nodgssed admits a number of possible improvements:
(zi) and(xii). Both nodes trigger R4, an application @) To begin with, a interesting issue from a practical point

updates the answer list by includitiR{a): 0.6, whereas the of view is related to the efficiency of the method. The basic
application on(xii) does not modify the answer list, for procedure presented here should be improved by means of

R(a): 0.7 is already in the list. some modifications to the rules (subsumption instead of
Finally, the recently obtained valug(a): 0.6 is consumed variants, updating values instead of simply copying newspne
by R3 on node(vi); as a result, nodéziii) is generated, ...). Subsequently, new forms of rules will be considered

which triggers R4 with substitutiofx;/a} but does not whose behaviour should be proved equivalent to the basic
update the answer list aP(y), since P(a): 0.6 is already ones.

there. On the other hand, note that termination of the procedure
The computation terminates since the forest does not geds been assumed in the statement of the completeness
changed by any rule. O theorems. This problem is not an easy one even in the propo-

Note that the answers labeled with 0 have not beesnltlonal case, as shown in [8]. Even for continuous opesator

consumed for the sake of simplicity of the picture. Moregver’ the_ bod|es,_t_he tabling procgdure might not terminate.
. . fficient conditions for termination of the procedure aue o

note that the previous example also illustrates a numbt ret for continuing research on these topics

of superfluous computations which should be avoided in ;"9 9 PICS.

practical implementation, but recall that our aim in thisrkwo

was obtaining a tabulation procedure with a reasonablefproo REFERENCES
of completeness. [1] T. Alsinet and L. Godo. Towards an automated deduction
system for first-order possibilistic logic programming Hwit
VI. CONCLUSIONS ANDFUTURE WORK fuzzy constantsinternational Journal of Intelligent Systems

. . . . 17(9), 2002.
In this paper we have introduced a tabulation goal-orlentetjz] J. (F.) Baldwin. T. P. Martin. and B. W. Pilsworth. Fril

query procedure for first-order residuated logic programs, = - Fuzzy and Evidential Reasoning in Artificial Intelligence
which generalises that given for the propositional case in Res. Studies Press, 1995.

(3]

[4]

[5]

(6]

[7]

(8]

9]

R. Bol and L. Degerstedt. The underlying search for magi¢15] J. Medina, M. Ojeda-Aciego, and P. \VojtaS. A procedur
templates and tabulation. Proc. of ICLP93 pages 793-811, semantics for multi-adjoint logic programmingect. Notes in
1993. Artificial Intelligence2258:290-297, 2001.

W. Chen, T. Swift, and D. S. Warren. Efficient top-down[16] J. Medina, M. Ojeda-Aciego, P. \Vojtas. Similaritaded
computation of queries under the well-founded semantics. unification: a multi-adjoint approachzuzzy sets and systems

Journal of Logic Programming24(3):161-199, 1995. 146:43-62, 2004.

C. V. Damasio and L. M. Pereira. Monotonic and residdate[17] P. Rhodes and S. Merad-Menani. Towards a fuzzy logic
logic programsLect. Notes in Artificial Intelligenc2143, pp. programming system: a clausal form fuzzy logiknowledge-
748-759, 2001. Based System$(4):174-182, 1995.

C. V. Damasio and L. M. Pereira. Sorted monotonic logid18] M. Sessa. Approximate reasoning by similarity-basédD S
programs and their embeddings.liffiormation Processing and resolution. Theoretical Computer Scienc275(1-2):389-426,
Management of Uncertainty for Knowledge-Based Systems, 2002.

IPMU'04, pages 807-814, 2004. [19] T. Swift. Tabling for non-monotonic programmingAnnals

C.V. Damasio, J. Medina, and M. Ojeda-Aciego. A tabula- of Mathematics and Artificial Intelligence?25(3-4):201-240,
tion proof procedure for residuated logic programming. In 1999.
European Conference on Atrtificial Intelligenceolume 110 [20] H. Tamaki and T. Sato. OLD resolution with tabulatiom |

of Frontiers in Artificial Intelligence and Applicationgpages Proc. of ICLP’'86 pages 84-98, 1986.

808-812, 2004. [21] M. H. van Emden. Quantitative deduction and its fixpoint
C.V. Damasio, J. Medina and M. Ojeda-Aciego. Sortedtinul theory. Journal of Logic Programming3(1):37-53, 1986.
adjoint logic programs: termination results and applwagi [22] P. VojtaS. Fuzzy logic programmindzuzzy sets and systems
Journal of Applied Logic2006. To appear 124(3):361-370, 2001.

A. Dekhtyar and V. S. Subrahmanian. Hybrid probabitisti
programs.J. of Logic Programming43:187-250, 2000.

[10] S. Guadarrama, S. Mufioz, and C. Vaucheret. Fuzzy grolo

A new approach using soft constraints propagatkumezy Sets
and Systemd44(1):127-150, 2004.

[11] M. Kifer and V. S. Subrahmanian. Theory of generalized

annotated logic programming and its applicatiodsof Logic
Programming 12:335-367, 1992.

[12] J.W. Lloyd. Foundations of Logic Programmingdspringer

Verlag 1987.

[13] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciedo

neural implementation of multi-adjoint logic programiour-
nal of Applied Logic2(3):301-324, 2004.

[14] J. Medina, M. Ojeda-Aciego, and P. \ojtas. Multi-aidit

logic programming with continuous semanticiect. Notes
in Artificial Intelligence2173, pp. 351-364, 2001.

