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Abstract

We present a logic approach to reason with moving objects under fuzzy qual-
itative representation. This way, we can deal both with qualitative and quan-
titative information, and consequently, to obtain more accurate results. The
proposed logic system is introduced as an extension of Propositional Dynamic
Logic: this choice, on the one hand, simplifies the theoretical study concern-
ing soundness, completeness and decidability; on the other hand, provides the
possibility of constructing complex relations from simpler ones and the use of a
language very close to programming languages.
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1. Introduction

Qualitative Reasoning is an interesting tool in order to deal with incomplete
information which sometimes happens when we are dealing with moving ob-
jects. Some papers have been published which study and develop qualitative
kinematics models [8, 21, 19, 37], following the ideas presented in [12, 26, 11].
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Burrieza), aciego@ctima.uma.es (M. Ojeda-Aciego)

Preprint submitted to Elsevier May 6, 2013



Different approaches have been used in order to face the problem of the relative
movement of one physical object with respect to another [10, 36, 9]. However,
to the best of our knowledge, the only paper which introduces a logic framework
to manage qualitative velocity is [5].

Sometimes, using just qualitative reasoning is not precise enough, especially
when we have to take into account precise absolute locations that may be known
in advance in some applications [22]. In particular, this can be a problem in
specific tasks related to moving objects, such as collision avoidance, catching
an object, etc. As a consequence, a combination of qualitative and quantitative
data would be required, and it seems that Fuzzy Qualitative Reasoning (FQR)
can be a good choice for that purpose [34]. FQR uses fuzzy numbers in order
to represent qualitative classes and can be applied to robot kinematics [19] by
using fuzzy qualitative trigonometry [20]. Several recently published papers
develop different applications of FQR to human motion [6], dynamic systems
[7], geographical systems [16], Fuzzy Spatial Reasoning [31, 30, 32].

On the other hand, fuzzy logic controllers have been designed and used
to improve navigation in mobile robots, presenting a set of IF-THEN rules
to formulate the attributes of human reasoning and decision-making [27, 28].
Furthermore, a fuzzy control system for reactive navigation of mobile robots
has been presented recently in [25].

In this paper, we continue the line of [5] by presenting a logic approach
to deal with moving objects with fuzzy qualitative representation. We exploit
the advantages of using fuzzy numbers in qualitative reasoning for simplifying
the tables of compositions of movements. In some sense, this choice allows for
using both qualitative and quantitative information, and consequently, obtain
more accurate results. The use of logic improves also the capability of formal
representation of problems and provides insights into their most suitable solv-
ing methods. As examples of logics for qualitative reasoning see, for example
[29, 23]. Our logic approach is based on Propositional Dynamic Logic (PDL) be-
cause it provides the possibility of constructing complex relations from simpler
ones and the use of a language very close to programming languages. We will
exploit these advantages of PDL by giving specific axioms for collision avoid-
ance. We choose PDL which is a decidable logic and, as a consequence, we
have the advantage that reasoning can be performed by theorem proving. Some
applications of PDL in AI can be seen in [35, 4, 3].

The present approach focuses on the movement of objects with respect to
others with or without obstacles. Our aim is to develop a formalism capable
of indicating any relative position of an object with respect to another one, in
such a way that allows us to calculate different movements and represent cer-
tain actions in the chosen scenarios. We are specially interested in representing
specific actions such as collision avoidance and intercepting an object. In or-
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der to establish a sufficiently detailed and accurate calculus, this formalism is
integrated into the logic PDL. This choice is highly pertinent because PDL is
an excellent tool for managing operations on these vectors and represent the
dynamism of actions.

We represent the movement of an object with respect to another by a tuple
whose components include information about objects, velocity, orientation, rela-
tive movement, allowed movements, qualitative latitude and longitude. Some of
these components were inspired by previous works in the literature whereas oth-
ers have been included in order to increase the expressive power of our approach.
For instance, [10] uses two components, for velocity and orientation, which are
considered as relative magnitudes; our approach considers velocity and orienta-
tion as absolute magnitudes, because so are the values obtained from devices
such as velocimeters, GPS, etc. On the other hand, [9] considers two compo-
nents as well, but their interpretation is different: the relative movement and
the relative velocity of one object with respect to another; the former is included
in our approach.

The advantages of our approach are two-fold: on the one hand, it subsumes
in some sense several previous approaches, and the formalization provided by
the logic allows reasoning without using too many case-based tables; on the
other hand, our approach is flexible enough so that the number and/or the
specifications of the components of a movement can be modified without altering
much the general framework: for instance, the components of relative position
and cardinal direction could be enriched in the line of [33, 24].

The paper is organized as follows: Section 2 introduces the preliminary
definitions and notations to be used in the rest of the paper; Section 3 is devoted
to present our approach in different scenarios used in the literature; in Section 4,
we introduce our logic approach to reasoning with moving objects with fuzzy
qualitative data; then, in Section 5, we present our logic approach and provide
a set of specific axioms for collision avoidance; the soundness, completeness and
decidability of the proposed logic are studied in Section 6; finally, we draw some
conclusions and prospects of future work.

2. Preliminary definitions

We represent the movement of an object with respect to another with differ-
ent labels such as velocity, orientation, relative movement, possible directions
and relative position. The values of these labels are given by different qualita-
tive classes, and the granularity can be changed depending on the problem in
question. To be more precise, we represent the movement of an object Ai with
respect to Aj by (x1; . . . ;x7) ∈ L, being L = L1 × . . . × L7 defined as follows.
As some of the sets Li are defined also by a cartesian product, for an easy
reading we will eliminate some parentheses by using “; ” to indicate the seven
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components of our label, while we will use “, ” for the components of each Li.
In this case, we will use superscripts to each element of this cartesian product.
For example x7 = (x1

7, x
2
7).

The set L1 defined on A = {A1, . . . ,Ak} with k ∈ N, consisting of all pairs
(Ai,Aj) with i 6= j, representing the movement of object Ai with respect to ob-
ject Aj.

The set of qualitative velocities L2 = 2{v0,v1,v2,v3} r ∅, where v0, v1, v2, v3

represent zero, slow, normal and quick velocity, respectively.1

The set of qualitative orientations is L3 = 2{o0,o1,o2,o3,o4} r ∅, where the
labels o0, o1, o2, o3, o4 represent, respectively, none, North, South, East and West
orientations.2

We consider the set L4 = (2{0,−,+}r∅)×(2{0,−,+}r∅) in order to represent
relative movements , where 0,−,+ mean, respectively, stable, moving towards,
moving away from (following [9]). For short, we will denote the subset {−,+}
by ±, to represent the object is moving (but it is not determined either towards
or away from).

The set L5 = 2{o0,o1,o2,o3,o4} represents the possible directions that object Ai

can follow, this is suited for movements in a network, as presented in [9]. In this
case, we do not eliminate the empty list ∅, because the complete list o0o1o2o3o4

means that the object can follow every possible direction, while the empty set
means that there is lack of information about the possible directions.

The sets L6 and L7 are used for representing the qualitative latitude and
longitude of Ai with respect to Aj. Namely:

L6 = (2{o1,o2} r ∅) × (2{d0,d1,d2,d3} r ∅) means the North-South position
and the distance (this is the qualitative latitude), where d0, d1, d2, d3 mean zero,
close, normal, distant.

Finally, L7 = (2{o3,o4} r ∅)× (2{d0,d1,d2,d3} r ∅) means the qualitative longi-
tude, that is, a pair East-West position, together with the distance.

Notice that we assume an underlying external reference system for some
of the attributes, such as velocity L2, orientation L3, and allowed orientations
for the movements L5. On the other hand, we use an object as the reference
in the representation of relative movement L4 and qualitative latitude L6 and
longitude L7. This choice fits both the examples in the literature and our
purposes; however it could be changed depending on the problem in question
since it does not substantially change our logic-based approach.

The following table summarizes the definitions of every component presented

1As usual, 2X denotes the set of subsets of X, for any set X. The use of the power set

2X allows us consider lists as components of the qualitative label. We exclude ∅ because it

means that the object can move at any velocity v0v1v2v3.
2We use subscripts instead of the usual abbreviations N, S, E, W, in order to give a more

general and modular approach. We do the same to represent velocities, distances, etc
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above.

Li Description Example
L1 objects ( Ai, Aj, . . .) (a)
L2 velocity (zero vo, slow v1, normal v2, quick v3) (b)
L3 orientation (none o0, North o1, South o2, East o3, West o4) (c)
L4 relative movement (stable 0, moving towards −, moving

away from +)
(d)

L5 allowed orientations (lack of information ∅, none o0, North
o1, South o2, East o3, West o4)

(e)

L6 qualitative latitude ((oi, dj), where the orientations are
North o1, and South o2 and the distances are zero d0, close
d1, normal d1 and distant d3)

(f)

L7 qualitative longitude ((oi, dj), where the orientations are
East o3, and West o4 and the distances are zero d0, close
d1, normal d1 and distant d3)

(g)

The examples (a) . . . (g) referred to in the previous table are the following:

(a) (Ai,Aj; . . .) object Ai is moving with respect to Aj. . .

(b) (Ai,Aj; v2v3; . . .) object Ai is moving with respect to Aj with a normal or
quick velocity . . .

(c) (Ai,Aj; v2v3; o3; . . .) object Ai is moving with respect to Aj with a normal
or quick velocity towards the East . . .

(d) (Ai,Aj; v2v3; o3; +,−; . . .) object Ai will be moving with respect to Aj with
a normal or quick velocity towards the East. Ai is moving away from Aj,
and Aj is moving towards Ai . . .

(e) (Ai,Aj; v2v3; o3; +,−; o1o2o3; . . .) object Ai will be moving with respect to
Aj with a normal or quick velocity towards the East. Ai is moving away
from Aj, and Aj is moving towards Ai. Ai can move only to the North,
South or East . . .

(f) (Ai,Aj; v2v3; o3; +,−; o1o2o3; o1, d1d2; . . .) object Ai will be moving with re-
spect to Aj with a normal or quick velocity towards the East. Ai is moving
away from Aj, and Aj is moving towards Ai. Ai can move only to the North,
South or East. The qualitative latitude of Ai with respect to Aj is that Ai

is to the North at a close or normal distance with respect to Aj . . .

(g) (Ai,Aj; v2v3; o3; +,−; o1o2o3; o1, d1d2; o3, d0) object Ai is moving with re-
spect to Aj with a normal or quick velocity towards the East. Ai is moving
away from Aj, and Aj is moving towards Ai. Ai can move only to the North,
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South or East. The qualitative latitude of Ai with respect to Aj is that
Ai is to the North at a close or normal distance with respect to Aj. The
qualitative longitude of Ai with respect to Aj is that Ai neither to the East
nor to the West with respect to Aj.

The composition of a movement of Ai with respect to Aj and a movement
of Aj with respect to Ak provides information about the movement of Ai with
respect to Ak. Notice that, as some of the information about the movement of
Ai with respect to Aj is independent from Aj, those components (namely L3, L4

and L6) are directly inherited by the movement of Ai with respect to Ak for
any k.

The components of relative movement L4 and qualitative latitude L6 and
longitude L7 need information about the movement of Aj with respect to Ak. For
the composition of component L5 we have to consider different cases depending
on the qualitative latitude and longitude of the objects in question.

Aj

•

Ak

•

(∗,−)

Ai
•

(−, ∗)

Figure 1: One of the cases for composition of L4

Table 1: Composition of components of L4.

AiAj\AjAk ∗ 0 ∗− ∗+
0 ∗ 0 0 0± 0±
−∗ − 0 −± −±
+ ∗ − 0 +± +±

For instance, we show in Table 1 the composition for the case given in
Figure 1 (the rest of cases are similar) where ∗ ∈ {0,−,+}. The occurrence of
(−, ∗) in the component L4 of the movement of Ai with respect to Aj determines
a certain range in the angle of possible movements of Ai, as indicated in Figure 1.
Similarly, for Ak.

The occurrence of (−, ∗) in the component L4 of the movement of Ai with
respect to Aj determines a certain range in the angle of possible movements of

6



Ai, as indicated in Figure 1. Similarly for Ak, if the movement of Aj with respect
to Ak is represented by (∗,−).

Finally, Table 2 gives information about how to get both the components L6

(and similarly L7) of a composition of a movement of Ai with respect to Aj

and a movement of Aj with respect to Ak. In Table 2, we assume the following
constraints: s, u, r, t 6= 0, r 6= t; moreover, if s < u we write du′ = du−s . . . du,
and if u < s we write ds′ = ds−u . . . ds. In addition, for m = max{s, u}, we write

dm′ =
{

dmdm+1 if m < 3

dm if m = 3

Notation: We will denote hereafter the complete list in the component l as Cl.
For instance, C2 = v0v1v2v3. In the case of qualitative latitude and longitude,
we will write, for example, C61 = o1o2 to represent the complete list for the first
component of the qualitative latitude and, C6 = (C61 , C62), being C62 = d0d1d2d3.

Table 2: Composition of components of L6.

AiAj\AjAk ord0 ordu otdu

ord0 ord0 ordu otdu

ords ords ordm′


otdu′ if s < u

C61d0d1 if s = u 6= 3

C6 if s = u = 3

ords′ if s > u

For instance, in Figure 2 we compose a movement Ai with respect to Aj

with qualitative latitude o1ds, with a movement of Aj with respect to Ak with
qualitative latitude o2du. The following possibilities hold for the qualitative
latitude of the movement of Ai with respect to Ak:

• If s = 1 and u = 3, the composition is o2d2d3.

• If s = 1 and u = 2 the composition is o2d1d2.

• If s = 2 and u = 3 the composition is o2d1d2d3.

• s = u 6= 3, then the composition is C61d0d1.

• s = u = 3, then the composition is C6.

• If s = 3 and u = 1, the composition is o1d2d3.

• If s = 2 and u = 1 the composition is o1d1d2.

• If s = 3 and u = 2 the composition is o1d1d2d3.
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Ai•

Aj

•

d1 . . . du

ds

du

Ak•

Figure 2: Composition of latitudes o1ds with o2du (s < u)

The cases in which component L6 (or L7) is given by a list, Table 2 above is
used to consider all the corresponding compositions. For instance, to compose
o1d0d1 with o2d2, we use the previous table to compose o1d0 and o1d1, with
o2d2. The result in this case is o2d1d2.

3. Our approach in different scenarios

In this section we use some real applications in the literature, and explain
how our approach works on them. Some of these cases will be used as running
examples on which the logic approach (to be introduced later) will be applied.
In this section, we focus only on the specific notation introduced above; to begin
with, we introduce the example below, which is inspired by those given in [9].

3.1. A chasing situation

Consider the situation of Figure 3, where two policemen A1 and A2 are
chasing a gangster A3. Suppose that A1 and A2 know their relative position
with respect to each other, whereas only A2 has information about the movement
of A3. Label

(A3,A2; v3; o3; +,−; o2o3o4; o1, d1; o3, d0)

represents that A3 is moving with respect to A2 with a quick velocity (v3) towards
East (o3), being A3 moving away from A2 (+), while A2 is moving towards
A3 (−). Moreover, A3 can move only towards South, East and West (o2o3o4),
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•

•

•

A3

A2

A1

Figure 3: A1 and A2 chasing A3

because the North street is a dead-end. A3 is close to the North from A2 (o1, d1),
and it is neither to the East nor to the West from A2 (o3, d0). Analogously, label

(A2,A1; v3; o1;−, 0; o1o4; o2, d2; o4, d2)

represents that A2 is moving with respect to A1 with a quick velocity towards
North, being A2 moving towards A1, whereas A1 is stable with respect to A2.
Moreover, A2 can move only towards North, East and West. A2 is at a normal
distance to the South, and at a normal distance to the West with respect to A1.
In this case, using the notion of composition given above, the result is

(A3,A1; v3; o3;−, 0; o2o3o4; o2, d1d2; o4, d2).

As A1 is chasing A3, and the street to the South of A1 is a dead-end, the
movement of A1 with respect to A3 will be

(A1,A3; v3; o4;−,−; o1o3o4; o1, d1d2; o3, d2),

that is, a quick velocity towards the West, A1 and A3 moving towards each
other, A1 can move towards the North, East and West, A1 is at a close or at a
normal distance and to the North, and at a normal distance to the East with
respect to A3.

3.2. Collision avoidance
We focus on the example about collision avoidance given in [9, pp. 15–16].

In Figure 4, we can see two situations (a) and (b) without real collision danger
but which could trigger some collision detection systems. Firstly, let us focus
on case (a) which, in our system, is specified by

(k, l; v3; o3;−,−; o3o4; C61 , d0; o4, d1) and (l, k; v3; o4;−,−; o3o4; C61 , d0; o3, d1)
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In this case, as k and l are moving towards each other, one can predict a future
collision. Yet, if we consider that in the future both k and l will change their
direction, the representation would be

(k, l; v3; o2; C41 , C42 ; o1o2; C61 , d0; o4, d1) and (l, k; v3; o2; C41 , C42 ; o1o2; C61 , d0; o3, d1)

The fact that both objects will move to the South and they are at different
longitude (k is to the West from l) shows that there is no real collision danger
because both objects will be moving in parallel directions.

On the other hand, situation (b) does not produce any collision provided
that k is moving slower than l. This can be expressed by

(k, l; v2; o3;−,+; o3o4; C61 , d0; o4, d1), and (l, k; v3; o3; +,−; o3o4; C61 , d0; o3, d1)

In this case, the key information to detect that there is not real collision danger
is the fact that the velocity of k is v2 and the velocity of l is v3, that is, the
former is moving slower than the latter.

Analogously, it can be proven that the QTCN relations {(+ + 0), (+ + !), (+ 0 +), (0 + !)} can be converted into the RTCN

relation (+).

Theorem 3. A QTCN relation (! + !) between the objects k and l at time point t can be transformed into an RTCN relation (+), such
that the RTCN relation is true whenever the QTCN relation is true.

Proof. By definition, the third character of (! + !) implies:

mk < ml ð37Þ

() @xk
@t

<
@xl
@t

ð38Þ

() d kjt!; kjtþð Þ
@t

<
d ljt!; ljtþð Þ

@t
ð39Þ

) dðkjt!; kjtÞ þ dðkjt; kjtþÞ < dðljt!; ljtÞ þ dðljt; ljtþÞ ð40Þ
() dðkjt!; kjtÞ þ dðkjt; ljtÞ þ dðkjt; kjtþÞ ð41Þ

< dðljt!; ljtÞ þ dðkjt; ljtÞ þ dðljt; ljtþÞ
() dðkjt!; kjtÞ þ dðkjt; ljtÞ ! dðljt!; ljtÞ ð42Þ

< dðljtþ; ljtÞ þ dðkjt; ljtÞ ! dðkjt; kjtþÞ
) dðkjt!; ljt!Þ < dðkjtþ; ljtþÞ ð43Þ

which is by definition equal to the RTCN relation (+). h

Analogously, it can be proven that the QTCN relation (! + +) can be converted into the RTCN relation (+), that the QTCN

relations {(+ ! !), (+ ! +)} can be converted into the RTCN relation (!), and that the QTCN relations {(! + 0), (+ ! 0), (0 0
0)} can be converted into the RTCN relation (0).

Fig. 10. Two scenes without collision danger for two moving objects.

Table 5
Transformations from QTCN into RTCN relations.

QTCN-label RTCN-label QTCN-label RTCN-label QTCN-label RTCN-label

! ! ! ) ! 0 ! ! ) ! + ! ! ) !
! ! 0 ) ! 0 ! ! 0 ) 0 + ! 0 ) 0
! ! + ) ! 0 ! + ) 0 + ! + ) +
! 0 ! ) 0 0 0 ! ) 0 + 0 ! ) 0
! 0 0 ) 0 0 0 0 ) 0 + 0 0 ) 0
! 0 + ) ! 0 0 + ) 0 + 0 + ) +
! + ! ) + 0 + ! ) + + + ! ) +
! + 0 ) 0 0 + 0 ) 0 + + 0 ) +
! + + ) ! 0 + + ) 0 + + + ) +

Table 6
Composition results inferred over [t1, t3] due to spatial and temporal constraints.

Time Known relations Results inferred from temporal constraints Results inferred spatial constraints

t1 R(p1,p2) = (0 !), R(p1,p3) = (0 0),
R(p2,p3) = (! 0), R(p2,g) = (! +)

R(p1,g) = (0 !) _ (0 +),
R(p3,g) = (0 !) _ (0 +)

R(p1,g) = (0 !), R(p3,g) = (! 0)

]t1, t2[ R(p1,p2) = (! !), R(p1,p3) = (! +),
R(p2,p3) = (! !), R(p2,g) = (! +)

R(p1,g) = (! !) _ (! +) _ (+ !) _ (+ +),
R(p3,g) = (! !) _ (! +) _ (+ !) _ (+ +)

R(p1,g) = z (! !), R(p3,g) = (! !)

t2 R(p1,p2) = (0 !), R(p1,p3) = (0 0),
R(p2,p3) = (! 0), R(p2,g) = (! +)

None possible None possible

]t2, t3[ R(p1,p2) = (0!), R(p1,p3) = (0 0),
R(p2,p3) = (! 0), R(p2,g) = (! +)

R(p1,g) = (! !) _ (! +) _ (+ !) _ (+ +),
R(p3,g) = (!!) _ (! +) _ (+ !) _ (+ +)

R(p3,g) = (! !)

t3 R(p1,p2) = (0 !), R(p1,p3) = (0 0),
R(p2,p3) = (! 0), R(p2,g) = (! +)

R(p1,g) = (! !) _ (! +) _ (+ !) _ (+ +), 3
R(p3,g) = (! !) _ (! +) _ (+ !) _ (+ +)

R(p3,g) = (! !)

14 M. Delafontaine et al. / Information Sciences xxx (2011) xxx–xxx

Please cite this article in press as: M. Delafontaine et al., Inferring additional knowledge from QTCN relations, Inform. Sci. (2011),
doi:10.1016/j.ins.2010.12.021

Figure 4: Two examples without collision danger

Let us consider now a different example, in which the situation is that of
predicting collisions from an egocentric point of view, using the terminology
of [15]. This means that all the information we have is about movements of
objects relative to x, whereas the aim is to detect any possible collision: either
collisions of x with other objects, or collisions among other objects.

In Figure 5, the movements of y and z with respect to x can be represented,
respectively, by

φ1 = (y, x; v2; o4;−,+; C5; o2, d1; o3, d1), and

φ2 = (x, z; v2; o1;−,−; C5; o2, d1; o3, d1).

Notice that φ2 suggests a collision danger between x and z. By using the cor-
responding composition table, as introduced in the previous section, we obtain
information about the movement of y with respect to z, that is

φ3 = (y, z; v2; o4;−,−; C5; o2, d1d2; o3, d1d2)
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which indicates also ad collision danger between y and z, because (−,−) means
that y and z are moving towards each other, and they have the same velocity v2.
We can deduce also the following information about the movement of z with
respect to y

φ4 = (z, y; v1v2v3; o2o3;−,−; C5; o1, d1d2; o4, d1d2)

Notice that, from the information given in φ1 and φ2, we can only say that
velocity of z is not zero and that z is moving to the South or to the East,
because, as stated by φ2, z is moving towards x.

conclusion. For this purpose, x observes y and z (as noted above,
considering simultaneously position and orientation of y with re-
spect to x we write xy = Φφ, the top-index denoting the orien-
tation of y with respect to x, the rest including the bottom-index
denoting the position of y with respect to x):

xy = DF
l ∧ xz = Br

r (1)

y✻ x
✻

z✲

Figure 6: x observers a scene with two further objects (y, z)

Aiming to recognise whether y and z are heading for a collision,
the relation between y and z is to be derived (regarding both posi-
tion and orientation). That is, we are interested in the relation of z
with respect to y and vice versa. If neither yz ∈ C nor its converse,
zy , we conclude that y and z are safe. In order to be able to derive
yz from the point of view of x we have to consider the converse
relation of xy:

x̆y = yx (2)

= D̆F
l

= CF
r

After that we are able to derive yz by composition:

yz = yx ◦ xz (3)
= CF

r ◦Br
r

= Br
r (23th row, 12th column in CT )

We proceed equally for zy:

zy = zx ◦ xy (4)
= x̆z ◦ xy

= B̆r
r ◦DF

l

= Bl
l ◦DF

l

= (F r
r ◦DF

l )−1

= (F r
r )−1

= Bl
l

This result can be confirmed by the previous composition result,
yz , which is converse to zy:

zy = y̆z (5)
= B̆r

r

= Bl
l

Since it holds that

zy /∈ C ∧ yz /∈ C (6)

we conclude that y and z are safe, which we can directly read off
Fig. 6.

3.3.2 Example 2
As a second example consider Fig. 7. From the point of view of

x it holds that

xy = Bl
r ∧ xz = FOBr

l (7)

We obtain yz by composition:

yz = yx ◦ xz (8)
= x̆y ◦ xz

= B̆l
r ◦ FOBr

l

= F r
r ◦ FOBr

l

= F Bl
r

Since it holds that

yz ∈ C (9)

we conclude that y and z are probably heading for a problem. It is
not necessary to test whether zy ∈ C, i.e. whether zy is contained
in the set of dangerous situations, as yz already is contained in C.

z❅❅❘
x

✻

y✛

Figure 7: x observers a scene with two further objects (y, z)

Certainly, the examples presume that it is possible to derive from
an egocentric point of view both the position of another vehicle
and its direction of movement. While the position can easily be
determined since only obvious distinctions are to be made, for ex-
ample, left versus right, or front versus back, more sophisticated
techniques are required to derive the direction of movement. For
this purpose, two methods are obvious: either the other vehicle is
observed for a time interval, deriving its change in position and
as such its direction of movement, or visual recognition techniques
are employed in order to determine where the front of the vehicle is.
A useful approach of the former kind has been developed by [12]
who allow the prediction of future locations of moving objects. Es-
pecially, even long time horizons between 10 and 100 seconds are
considered for position predictions. Then, two position predictions
can be used for deriving the direction of movement. However, if
position and orientation cannot be determined regarding the dis-
tinguished relations, x can choose as many relations from BA as
necessary in order to describe its perceptual situation appropriately.
That is, x is capable of dealing with uncertainty by considering sets
of possible relations.
Clearly, the information x has to acquire is related to the rel-

evance principle which we have mentioned at the beginning: the
proposed technique stipulates a number of requirements about sen-
sory information (positions and orientations regarding BA are to
be distinguished) which are relevant regarding the detection of col-
lisions. By contrast, each bottom-up driven approach would be at
a loss for explanation for which purposes specific sensory informa-
tion is obtained.

12

Figure 5: Collision detection among objects

It is remarkable that our approach has very important advantages with re-
spect to [15]. In both cases above, the collision warning could be false, for
example, depending on the velocities. This information is taken into account
by our system; for example, in the case of Figure 5, if the velocity of y is quick
enough and the velocity of z is slow, then the collision warning could be avoided.
In this context, we could add also predictions of future locations of objects, in
the line of [18]. Specific axioms for reasoning with collision avoidance will be
presented in Section 5.4.

3.3. Catching a ball

We now consider the problem of intercepting a ball as presented in [2]. As-
sume the situation of Figure 6, where two robots R1,R2 are chasing a ball B.
The movement of the robot R1 with respect to the robot R2 is represented by

(R1,R2; v2; o3;−,+; C5; o1, d1; o4, d1)

the movement of robot R2 with respect to the ball B is represented by

(R2,B; v2; o1;−,−; C5; o2, d2; o4, d1)

11



Following the tables presented above, we can compose both movements in order
to obtain the movement of the robot R1 with respect to the ball B, by

(R1,B; v2; o3;±,−; C5; o2, d1d2; o4, d1d2)

In order to catch the ball, robots R1 and R2 could need to modify its velocity
and orientation, as we will see in Example 1, after introducing the syntax and
semantics of our proposed logic.

R1

R2

B

Figure 6: Catching a ball

4. Fuzzy qualitative representation of moving objects

In this section, we extend our previous approach [5], following the line of
[34, 20]. As stated above, the consideration of fuzzy numbers allows us to
combine both numerical (if any) and qualitative data.

Moreover, we apply fuzzy arithmetic operations [34] in order to obtain the
composition of the movements. First, we consider fuzzy numbers in order to
represent the each component of the movement. Recall that a fuzzy number A
is defined as a set

A = {(x, µA(x)) | x ∈ R, µA(x) ∈ [0, 1]}

where R is the set of real numbers. We use the membership distribution of a
trapezoidal fuzzy number given by the 4-tuple [a, b, α, β], where a ≤ b and a ·b ≥
0, see Figure 7. We impose the restriction a · b ≥ 0 because we want to clearly
distinguish between positive and negative fuzzy numbers, as this is essential for
interpreting the direction of the movements. Note that the restriction above
allows considering “degenerated” cases such as a = b = 0 = α = β.

In our case, the values of a and b will represent the milestones which deter-
mine each qualitative class.

12
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Fig. 1. A trapezoidal fuzzy number.

The quantity space which is built from fuzzy numbers must be closed, contin-
uous, finite and cover all values which a variable can take. An example of such a
quantity space is shown in Fig. 2. It is also possible to turn a trapeziodal fuzzy
interval into a crisp interval by means of α-cuts.1 Here a particular membership
value (α) is chosen as representing typicality with respect to the fuzzy quantity, or
quantity space, of interest; and then these typical values can be used in the reason-
ing process as was done in FuSim, and carried over into Morven. What constitutes
typical can be altered by selecting different values for α. Changing the α value
will alter the number of predicted values for the variables, and hence the size of
the envisionment graph (the higher the value of α the fewer states generated). In
fuzzy qualitative simulation, unlike QSIM, the quantity space for the derivatives of
a variable may also be dense (that is, can have any number of divisions consistent
with the definition of a quantity space).

Fig. 2. A fuzzy quantity space.

As an example consider the quantity space depicted in Fig. 2. This normalised
quantity space can be enumerated as shown in Table 1. The first column of QF in
Table 1 contains the linguistic labels of the quantities (the second column is simply
a short form for ease of reference); the third column contains the four tuple values.
The simulation proceeds on the basis of α-cuts which we will arbitrarily choose to
be 0.5 (the resulting α-cut intervals are shown in the last column of the quantity
space above).

Figure 7: A trapezoidal fuzzy number.

o

µo

1

o1 o4 o2 o3

3π
2 2π

π
2

π0

Figure 8: The fuzzy qualitative classes for orientation

For example, if we consider for the module of the velocity the qualitative
classes v0, v1, v2, v3, and its values are normalised to the numeric range [0, 1],
then they could be represented as follows:

v0 = [0, 0, 0, 0]; v1 = [0, 0.2, 0, 0.2]; v2 = [0.4, 0.7, 0.1, 0.2]; v3 = [0.9, 1, 0.1, 0]

The fuzzy qualitative classes for orientation (none, E, N, W, S) are repre-
sented by:

o0 = [0, 0, 0, 0]; o1 = [0,
π

2
, 0.1, 0.1]; o4 = [

π

2
+ 0.1, π, 0.1, 0.1]

o2 = [π + 0.1,
3π
2
, 0.1, 0.1]; o3 = [

3π
2

+ 0.1, 2π, 0.1, 0]

The arithmetic operations between fuzzy numbers introduced in Table 3 will
be used on the components of movements defined above. For example, we can
consider either the sum or difference of fuzzy orientations, in order to obtain
some information about the composition of movements.

13



Table 3: Arithmetic operations with fuzzy numbers
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Table 2. Arithmetic primitives used in FuSim and Morven.

Operation Result Conditions

−n (−d,−c, δ,γ) all n

1

n

(

1

d
,
1

c
,

δ

d(d + δ)
,

γ

c(c− γ)

)

n >0 0, n <0 0

m + n (a + c, b + d, τ + γ, β + δ) all m, n

m− n (a− d, b− c, τ + δ,β + γ) all m, n

m× n (ac, bd, aγ + cτ − τγ, bδ + dβ + βδ) m >0 0, n >0 0

(ad, bc, dτ − aδ + τδ,−bγ + cβ − βγ) m <0 0, n >0 0

(bc, ad, bγ − cβ + βγ,−dτ + aδ − τδ) m >0 0, n <0 0

bd, ac,−bδ − dβ − βδ,−aγ − cτ + τγ) m <0 0, n <0 0

m = [a, b, τ, β], n = [c, d, γ, δ]

2.2.1. Qualitative analysis

In the QA phase the constraints of the system model are solved and qualitative
states generated. This is achieved by means of a set of arithmetic and functional
primitives which are common to all constraint based reasoners. The basic operations
utilised in Morven are as shown in Table 2. (Division is not explicitly included as
it is equivalent to m × 1

n .) Following FuSim, Morven can incorporate empirical
relations in a model in the form of a fuzzy rule base; in both these systems this is
instantiated as a set of degenerate fuzzy relations.

As has already been noted variables may be assigned typical values by means
of α-cuts. In such a case the arithmetic operations reduce to those of interval
arithmetic.12

To understand the relation between the arithmetic operations and the qualita-
tive states generated in a simulation/envisionment we present two kinds of value
arising in the simulation: the propagated value and the predicted value.13 The former
is the value a constrained variable obtains after the application of a constraint. The
latter is a qualitative value from the quantity space of the constrained variable that
is consistent with the application of that constraint.

Consider a system consisting of the following three place constraint:

a = b + c (1)

If the constraining variables, b and c have the α-cut interval values [1, 4] and
[5, 8] respectively, then the propagated value for a will be [6, 12], as shown in Fig. 4.

It is possible that the predicted and propagated values are identical; however,
it is usually the case that a propagated value will intersect with several predicted
values that may be taken as an approximation to it, as shown in Fig. 4. Thus one can
treat each predicted value that intersects with the propagated value as a possible

We will consider the usual partial ordering <α in the set of fuzzy numbers
defined as follows. Given two fuzzy numbers A,B, we write A <α B iff x < y,
for every x ∈ Aα, y ∈ Bα, where

Aα = {x ∈ R | µA(x) > α}

In particular, we will use <0, which corresponds to the relation Before between
intervals [1].

The approximation of a fuzzy number A′ to a qualitative value A can be
determined by choosing A such that d(A,A′) is the smallest among all the
distances between the fuzzy number A and all the fuzzy qualitative classes.
There is a number of defuzzification methods in the literature that serve well
for this purpose.

The main advantage of our fuzzy qualitative approach is that it allows us
to use fuzzy arithmetic operations in order to obtain the composition of move-
ments. Hence, Table 2 for composition of components L6 and L7 can be sim-
plified as can be seen in Table 4.

Moreover, we will use the fuzzy partial ordering defined above to compare
velocities, which will be useful, for example, for avoiding collisions.

Let us consider the example about collision avoidance in Figure 4(b), a real
collision danger depends on the velocities of both k and l. There is indeed a
real collision danger whenever l is moving slower than k. We represent both
movements as follows:

(k, l; v; o3;−,+; o3o4; C61 , d0; o4, d1), and (l, k; v′; o3; +,−; o3o4; C61 , d0; o3, d1)

14



Table 4: Using fuzzy operations for composition of L6 and L7.

AiAj\AjAk ord0 ordu otdu

ord0 ord0 ordu otdu

ords ords or(ds + du)
{

ot(du − ds) if s ≤ u

or(ds − du) if s ≥ u

In this case, we can take advantage of the partial ordering between fuzzy num-
bers <0, and state that there is a real collision danger whenever v′ <0 v.

5. The logic PDLF
M

5.1. Syntax

The language of logic PDLF
M consists of a set of formulas Φ and a set of pro-

grams Π, which are defined recursively on disjoint sets Φ0 and Π0, respectively.
Φ0 is called the set of atomic formulas which can be thought of as abstractions
of properties of states. Similarly, Π0 is called the set of atomic programs which
are intended to represent basic instructions.

Formulas:

• Φ0 = V ∪ L, where V is a denumerable set consisting of propositional
variables and L = L1 × . . .× L7, intended to represent atomic labels.

• If ϕ and ψ are formulas and a is a program, then ϕ→ ψ (propositional im-
plication), ⊥ (propositional falsity) and [a]ϕ (program necessity) are also
formulas. As usual, ∨ and ∧ represent logical disjunction and conjunction,
respectively; whereas 〈a〉 represents program possibility.

An atomic label x = (x1;x2;x3; (x1
4, x

2
4);x5; (x1

6, x
2
6); (x1

7, x
2
7)) ∈ L is said to

be simple if components x2, x3, x
1
4, x

2
4, x

1
6, x

2
6, x

1
7, x

2
7 are singletons.

An non-simple atomic label will be seen disjunctively in terms of its simple
components. For example, x = (Ai,Aj; v1; o2;−,+; o2o3; o1d1d2d3; o3d1) can be
decomposed as the disjunction of the following simple atomic labels

(Ai,Aj; v1; o2;−,+; o2o3; o1d1; o3d1)

(Ai,Aj; v1; o2;−,+; o2o3; o1d2; o3d1)

(Ai,Aj; v1; o2;−,+; o2o3; o1d3; o3d1)

The set of resulting disjuncts for an atomic label x will be denoted as decomp(x).

Programs:
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• The set Π0 of specific programs is defined as follows:

Π0 = {revx | x ∈ L} ∪ {⊗x,y | x, y ∈ L} ∪
∪ {Decs

x, Man
s
x, Inc

s
x | s ∈ {0, 1, 2, 3, 4}, x ∈ L}

• If a and b are programs and ϕ is a formula, then (a; b) (“do a followed
by b”), a ∪ b (“do either a or b, nondeterministically”), a∗ (“repeat a a
nondeterministically chosen finite number of times”) and ϕ? (“proceed if
ϕ is true, else fail”) are also programs.

The intuitive meaning of programs revx is considered to be the reverse of
the movement x, that is, if x represents a movement of Ai with respect to Aj,
then revx is the movement of Aj with respect to Ai. In addition, ⊗x,y is com-
pose the movement labeled by x, with the movement labeled by y. Moreover,
programs Decs

x, Mans
x, and Incs

x for s ∈ {0, 1, 2, 3, 4} have the intuitive mean-
ing of modifying the velocity and orientation of the movement labeled by x,
specifically:

• Decs
x means decrease the velocity and modify the orientation towards os.

That is, Dec0
s means decrease the velocity and maintain the orientation of

the movement while, for example, Dec3
i means decrease the velocity and

modify the orientation towards o3, that is, towards the East.

• Similarly, Mans
x means maintain the velocity and modify the orientation

according to s.

• Finally, Incs
x means increase the velocity and modify the orientation ac-

cording to s.

5.2. Semantics

The semantics of PDLF
M is defined as follows. A model M is a tuple (W,m)

where W is a nonempty set of states. Each element u ∈W is to be understood
as a state of an object moving with respect to another object and is labeled by
elements of L.

The meaning function m is required to fulfill the following:

• m(p) ⊆W , for every propositional variable,

• If x is an atomic label, then m(x) =
⋃

y∈decomp(x)

m(y) ⊆W

• for all u ∈W , there exists x ∈ L such that u ∈ m(x).

• m(x) ⊆ (W r m(y)), where x = (x1; . . . ;x7) and y = (y1; . . . ; y7) with
x1 6= y1.
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• m(a) ⊆W ×W , for all atomic program a.

We define now the semantics of the specific programs in Π0.

• If x represents a movement of Ai with respect to Aj, then

m(revx)(m(x)) ⊆ m(y), where y represents a movement of Aj with respect
to Ai.

• m(⊗x,y)(m(x)) ⊆ m(z)

where3 x = (Ai,Aj;x2;x3;x4;x5;x6;x7), y = (Aj,Ak; y2; y3; y4; y5; y6; y7)
and z = (Ai,Ak;x2;x3;xτ4 ;x5;xτ6 ;xτ7), where xτl for l = 4, 6, 7 is defined by
the composition Tables 1 and 4.

For every s ∈ {0, 1, 2, 3, 4}, and an atomic label x = (x1; . . . ;x7):

• m(Decs
x)(m(x)) ⊆ m(y), where y = (y1; . . . ; y7), being y1 = x1,

y2 =
{

vk1−1 . . . vks−1 if x2 = vk1 . . . vks , k1 > 0
v0vk1−1 . . . vks−1 if x2 = v0vk1 . . . vks

and y3 = os.

In this case we say that y is x-decreasing.

• m(Mans
x)(m(x)) ⊆ m(y), where y = (y1; . . . ; y7), being y1 = x1, y2 = x2

and y3 = os.

• m(Incs
x)(m(x)) ⊆ m(y), where y = (y1; . . . ; y7), being y1 = x1,

y2 =
{

vk1+1 . . . vks+1 if x2 = vk1 . . . vks , ks < 3
vk1+1 . . . vks+1v3 if x2 = vk1 . . . vksv3

and y3 = os

In this case we say that y is x-increasing.

Notice that the previous definition formalizes the intuitive meaning of Decs
x

as a binary relation such that u is related to v iff v gives the description of a
movement obtained by decreasing the velocity and modifying the orientation
towards os. Similarly for Mans

x and Incs
x.

Finally, if ϕ and ψ are formulas and a, b are programs, then we have the
following:

• m(ϕ→ ψ) = (W rm(ϕ)) ∪m(ψ)

• m(⊥) = ∅

• m([a]ϕ) = {w ∈W : for all v ∈W, if (w, v) ∈ m(a) then v ∈ m(ϕ)}

3Note that the left part of the inclusion represents a relation, m(⊗x,y), applied to a set,

m(x), with the usual meaning of the set of all the elements which are related to some element

in m(x).
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• m(a ∪ b) = m(a) ∪m(b)

• m(a; b) = m(a);m(b)

• m(a∗) = m(a)∗ (reflexive and transitive closure of relation m(a)).

• m(ϕ?) = {(w,w) | w ∈ m(ϕ)}

Given a model M = (W,m), a formula ϕ is true in u ∈ W whenever we
have that u ∈ m(ϕ). We say that ϕ is satisfiable if there exists u ∈ W such as
ϕ is true in u. Moreover, ϕ is valid in a model M = (W,m) if ϕ is true in all
u ∈W , that is, if m(ϕ) = W . Finally, ϕ is valid if ϕ is valid in all models.

The informal meaning of some formulas is given as follows. Let p be any
propositional formula, then 〈x?〉 p is true in u iff u represents a movement labeled
by x, and p is true in u. Formula [⊗x,y;⊗y,z] p is true in u iff for every movement
u′ obtained by composing u (labeled by x) with a movement labeled by y,
followed by a composition with a movement labeled by z, p is true in u′.

Example 1. In order to emphasize the expressivity of our logic, we consider
again the example Catching a ball presented in Section 3.3. The movement of
robot R2 with respect to the ball B (see Figure 9) can be represented by:

ϕ1 = (R2,B; v2; o1;−,−; C5; o2, d2; o4, d1)

In order to catch the ball, the following formula has to be true: (ϕ1?; Man3
ϕ1

)∗;¬ϕ1?.
The meaning of this formula is: while the movement of the ball with respect to
the robot is given by ϕ1, do Man3

ϕ1
that is, maintain the velocity and modify the

orientation towards the East.

R1

R2

B

Figure 9: Catching a ball. Correction of the movement towards the East

Consider now the situation of Figure 10, where there is a real collision danger
between robots R1 and R2, while they are trying to catch the ball B. Let us denote
by ϕ2 the movement of R2 with respect to R1, then the following formula has to
be true (ϕ2?; Inc3

ϕ2
). The previous formula means that if the movement R2 with

respect to R1 is represented by ϕ2, then Inc3
ϕ2

, that is, increase the velocity and
modify the orientation towards the East in order to catch the ball.
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R1

R2

B

Figure 10: Catching a ball and collision avoidance

Notice that, in the previous example, we use the advantages of PDL for
expressing programming commands such as while . . . do is an improvement with
respect to the IF-THEN rules used in [27, 28].

From a syntactical point of view, the conditions reflecting the required prop-
erties have to be included as axioms of our system. This situation is considered
in the following section.

5.3. Axiom system

The following axiom system is intended to deal with the required properties
presented in the previous section.

Specific axiom schemata:

For every x, y, z ∈ L:

E:
∨
x∈L

x

where x is a simple atomic label.

U: x→ ¬y
where x = (x1; . . . ;x7) and y = (y1; . . . ; y7) with x1 6= y1, and both x, y

are simple.

D: x↔
∨

y∈decomp(x)

y

Rev x→ [revx]y

where x = (Ai,Aj;x2;x3; (x1
4, x

2
4);x5; (x1

6, x
2
6); (x1

7, x
2
7)), and

y = (Aj,Ai; C2; C3; (x2
4, x

1
4); ∅; (−x1

6, x
2
6); (−x1

7, x
2
7))

where −x1
l is the opposite orientation of x1

l .
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Comp: x→ [⊗x,y]z

where x = (Ai,Aj;x2;x3;x4;x5;x6;x7), y = (Aj,Ak; y2; y3; y4; y5; y6; y7),
z = (Ai,Ak;x2;x3;xτ4 ;x5;xτ6 ;xτ7), and xτl for l = 4, 6, 7 is defined by the
composition tables.

For every s ∈ {0, 1, 2, 3, 4}, we define:

Dec x→ [Decs
x]y

where y is x-decreasing.

Man x→ [Mans
x]y

where y = (y1; . . . ; y7), being y1 = x1, y2 = x2, and y3 = os.

Inc x→ [Incs
x]y

where y is x-increasing.

The previous axioms have the following intuitive meaning:

• E means that every state is labeled by some element of L.

• U means that every state represents the movement of a specific object
with respect to another specific object.

• D represents the disjunctive nature of our labels.

• Rev collects information about the movement of Aj with respect to Ai

from the information of the movement of Ai with respect to Aj.

• Comp gives the information about the composition of a movement of Ai

with respect to Aj, with a movement of Aj with respect to Ak, collecting
this information from the composition tables.

• Dec, Man and Inc describe the modification of a movement in order
to either decreasing, maintaining or increasing its velocity and towards a
fixed orientation.

The rest of axioms are those specific to PDL.

Axiom schemata for PDL:

A1 All instances of tautologies of the propositional calculus.

A2 [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)

A3 [a](ϕ ∧ ψ)→ ([a]ϕ ∧ [a]ψ)

A4 [a ∪ b]ϕ→ ([a]ϕ ∨ [b]ϕ)
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A5 [a; b]ϕ→ [a][b]ϕ

A6 [ϕ?]ψ → (ϕ→ ψ)

A7 (ϕ ∧ [a][a∗]ϕ)→ [a∗]ϕ

A8 (ϕ ∧ [a∗](ϕ→ [a]ϕ))→ [a∗]ϕ (induction axiom)

Inference Rules:
(MP) ϕ,ϕ→ ψ ` ψ (Modus Ponens) (G) ϕ ` [a]ϕ (generalization)

5.4. Specific axioms for collision avoidance

We use here the expressiveness of our approach in order to introduce some
specific axioms for collision avoidance. Let us consider the case where the move-
ment of Ai with respect to Aj is given by

x = (Ai,Aj; C2; C3;−,−; C5; C61 , d0d1; C71 , d0d1)

that is, Ai,Aj are moving towards each other, Ai is allowed to move in any
direction, and both objects are at zero or close latitude and longitude. This
situation represents a collision danger.

To ensure the collision avoidance, if we denote by y = y1 ∨ y2 ∨ y3, for

y1 = (Ai,Aj; C2; C3; +,−; C5; C61 , d0d1; C71 , d0d1)

y2 = (Ai,Aj; C2; C3;−,+; C5; C61 , d0d1; C71 , d0d1)

y3 = (Ai,Aj; C2; C3; +,+; C5; C61 , d0d1; C71 , d0d1)

the following family of formulas, for s ∈ {0, 1, 2, 3, 4}, has to be an axiom schema
for collision avoidance:

x?; (Decs
x; (¬y?; Decs

x)∗; y?)

which means if there is a collision danger (for the movement represented by x),
then decrease the velocity and modify the orientation of the movement (repre-
sented by Decs

x) until the collision danger disappears because either one of the
objects is moving away from the other one, or both objects are moving away
form the other one (represented by y).

The full set of specific axioms for collision avoidance can be obtained depend-
ing on the relative position of Ai with respect to Aj, which would allow us to
choose the specific value of s in y, that is, the direction given to the modification
of the orientation. For instance, if

x = (Ai,Aj; C2; C3;−,−; C5; o1, d0d1; o4, d0d1)
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then the value of s in the previous formula would be 1, because, as Ai is to
the North o1 and to the West o4 from Aj. In order to avoid the collision, we
decrease the velocity and change the orientation of the movement to the North
(represented by Dec1

x). Similarly, we obtain each specific axiom depending on
this position.

6. Soundness, Completeness and Decidability

In order to prove the soundness of our system, we give the following result.

Lemma 1. All the axioms are valid formulas and all the inference rules pre-
serve validity.

Proof. The proofs of validity of the axiom schemata A1, . . . , A8 are standard
in PDL. The proofs of validity of the specific axiom schemata are very similar.
As a way of example, let us consider axioms D and Dec.

The validity of axiom D is proved as follows: Given any model (W,m), we
have

m(x) =
⋃

y∈decomp(x)

m(y)

Therefore
m(x) = m(

∨
y∈decomp(x)

y)

which proves the validity of axiom D. For proving Dec: x → [Decs
x]y, where y

is x-decreasing, take any model (W,m). Consider u ∈ W such that u ∈ m(x),
we have to prove that u ∈ m([Decs

x]y). For this, consider any v ∈ W such that
(u, v) ∈ m(Decs

x), that is, v ∈ m(Decs
x)(m(x)). From the semantic condition

m(Decs
x)(m(x)) ⊆ m(y) stated in Section 5.2, we have that v ∈ m(y), and this

proves that u ∈ m([Decs
x]y) and, as a consequence, the validity of axiom Dec.

On the other hand, it is a trivial task to check that rules (MP) and (G)
preserve validity.

As a consequence, we have the soundness of our system as follows.

Theorem 1. For every formula ϕ, if ϕ is a theorem then ϕ is a valid formula.

For a solution of the satisfiability problem for our logic we can prove the
small model property following the pattern established in [17]. Modifications of
Fisher-Lander Closure in order to get a finite filtration of a model are trivial
and for details of the filtration technique we refer to that work. So we have the
following result.
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Theorem 2. Let ϕ a satisfiable formula, then ϕ is satisfied in a model with no
more than 2|ϕ| states, where |ϕ| is the length of the formula ϕ.

Now we are concerned with the Completeness of our logic. To this end,
we build a nonstandard model from maximal consistent sets of formulas [17].
Then the Filtration Lemma for non standard models, can be used to collapse
this model into a finite standard model. A nonstandard model is any structure
N = (N,mN ) such as it is a model as defined previously in every respect, except
that, for every program a, mN (a∗) needs not be the reflexive and transitive
closure of mN (a), but only a reflexive and transitive relation which contains
mN (a).

We define a nonstandard model (N,mN ) as follows: N contains all the
maximal consistent sets of formulas of our logic and mN is defined, for every
formula ϕ and every program a, by:

mN (ϕ) = {u | ϕ ∈ u}; mN (a) = {(u, v) | for all ϕ, if [a]ϕ ∈ u then ϕ ∈ v}

Using the previous definition, all the properties for nonstandard models are
satisfied, even the ones for our specific atomic programs, as we can see in the
following result.

Lemma 2. (N,mN ) verifies the required properties for non-standard models.

Proof. As a way of example, let us prove some of the specific properties of
models presented in Section 5.2.

Let us prove firstly that if x is an atomic label, then

mN (x) =
⋃

y∈decomp(x)

mN (y)

For every u ∈ W , we have that u ∈ mN (x), which implies, by definition of
mN , that x ∈ u. By axiom schema D, it holds

∨
y∈decomp(x)

y ∈ u, that is,

u ∈ mN
( ∨
y∈decomp(x)

y
)
. The other implication is similar.

Let us prove now the specific property mN (Decs
x)(mN (x)) ⊆ mN (y), where

y is x-decreasing. Suppose u ∈ mN (Decs
x)(mN (x)), which means that there

exists v ∈ mN (x) such that (v, u) ∈ mN (Decs
x). Notice that v ∈ mN (x) means

that x ∈ v, and using now the axiom schema Dec, we obtain [Decs
x]y ∈ v. From

(v, u) ∈ mN (Decs
x), and using the definition of mN , we get u ∈ mN (y), which

ends the proof of this specific property.
The proof of the rest of properties, can be done similarly.

Now, we can give the following completeness result.

Theorem 3. For every formula ϕ, if ϕ is valid then ϕ is a theorem.
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Proof. We need to prove that if ϕ is consistent, then it is satisfied. If ϕ is
consistent, it is contained in a maximal consistent set u, which is a state of
the nonstandard model constructed above. By the Filtration Lemma for non-
standard models, ϕ is satisfied in a state corresponding to u of the filtration
model.

From Theorems 1, 2 and 3, we have the following result.

Theorem 4. The logic PDLF
M is sound, complete and decidable.

2 3

1

Figure 11: Parking 1

We conclude this section with one more example of application of our ap-
proach, this time to model a method for parallel parking. In this example,
we could see the expresivity of PDL for using programming commands as
IF...THEN, DO...UNTIL, etc.

Suppose car 1 is parking between cars 2 and 3, and our reference system is in
the back end of car 2, see Figure 11. To begin with, car 1 has to move parallel
to car 2 until both back ends coincide, that is, until the qualitative latitude
East-West of car 1 with respect to car 2 is represented by x7 = (o1, d0). Hence,
if the movement of 1 with respect to 2 is represented by

ϕ1 = (A1,A2; v1; o3;−, 0; o3o4; o1, d1; o4, d1)

the following formula has to be true ϕ2?; (¬ϕ3?;ϕ2?)∗;ϕ3?, being

ϕ2 = (A1,A2; v1; o3;−, 0; o3o4; o1, d1; o4, d1)

ϕ3 = (A1,A2; v1; o3;−, 0; o3o4; o1, d1; o3, d0)
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which means repeat ϕ2? until ϕ3, that is, car 1 has to maintain its movement
until its back end coincides with the back end of car 2. In this moment, the car
has to change abruptly its direction totally to the West, as shown in Figure 11.
This situation can be represented by the formula ϕ4?; ∆o4 , which means that if
ψP then ∆o4 , being

ϕ4 = (A1,A2; v1; o3;−, 0; o3o4; o1, d1; o3, d0)

and ∆oj , j ∈ {1, . . . 4} new programs representing and abrupt and complete
change of direction towards oj. After that, car 1 has to continue moving slowly
until its position is close to and angle of π/4 radians with respect to car 2, see
Figure 12. Now, car 2 has to change its direction again, but now completely
to the East, and continue slowly until either car 2 is totally parallel to the
pavement or it is very close to car 3. After that, car 1 would be perfectly parked
between cars 2 and 3. The previous statements imply the truth of the following
three formulas: Man0

1; (¬χ?; Man0
1)∗;χ?, meaning that maintain the velocity and

orientation until the angle of car 2 with respect to car 1 is π/4; formula χ?; ∆o3

means that if the angle of car 2 with respect to car 1 is π/4 then change totally
the direction towards the East; and Man0

1; (¬(ν ∨ µ)?; Man0
1)∗; (ν ∨ µ)?, meaning

maintain the velocity and orientation until either car 1 is parallel to car 2 or car
1 is very close to car 3, being:

χ = (A1,A2; v1; o3;−, 0; C5; o2, d1; o3, d1)

similarly to χ, and

ν = (A1,A2; v1; o3;−, 0; C5; C61 , d0d1; o3, d1)

µ = (A1,A3; v1; o3;−, 0; C5; C61 , d0d1; o4, d0d1)

7. Conclusions and Future Work

We presented a PDL framework for reasoning with fuzzy qualitative move-
ment which entitles us to manage both qualitative and quantitative information,
and consequently, to obtain more accurate results. Some of the advantages of
PDL have been exploited and explained on the basis of some real examples from
the literature, such as the use of programming commands as while . . . do and
repeat . . . until, which enrich the expressivity or our approach.

As a future work, we consider the application of our approach to more real
situations such a moving robots or the design of automatic driving systems for
cars. Last, but not least, we consider the construction of a theorem prover for
our logic and the study of its complexity, in the line of [13, 14].
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