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Abstract

Composing various powerset functors with the term monad gives rise to the concept
of generalised terms. This in turn provides a technique for handling many-valued
sets of terms in a framework of variable substitutions, thus being the prerequisite for
categorical unification in many-valued logic programming using an extended notion
of terms. As constructions of monads involve complicated calculations with natural
transformations, proofs are supported by a graphical approach that provides a useful
tool for handling various conditions, such as those well-known for distributive laws.
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1 Introduction

A monad can be seen as the abstraction of the concept of adjoint functors and
in a sense an abstraction of universal algebra. It is interesting to note that
monads are useful not only in universal algebra, but it is also an important
tool in topology when handling regularity, iteratedness and compactifications,
and also in the study of toposes and related topics.

Monads have shown to be useful in different fields related to computer science.
In functional programming monad compositions are applied to structuring of
functional programs [18]. In particular, in functional programs like parsers
or type checkers the monad needed is often a composed monad [21]. In logic

∗ Corresponding author.
1 Partially supported by Spanish DGI project TIC2003-09001-C02-01.

Preprint submitted to Elsevier Science 10 May 2006



programming, unification has been identified as the provision of co-equalisers
in Kleisli categories of term monads [19].

This paper is motivated by the use of categorical methods in many-valued
logic programming, our long term goal being the generalisation of the cate-
gorical unification algorithm given by Rydeheard and Burstall in [19], in which
variable substitutions are viewed as morphisms in the corresponding Kleisli
categories of term monads.

Several heuristic approaches have been suggested to extend many-valued logic
programming. However, the lack of a foundational base, is an obstacle for a
wider acceptance of these models, and further, formal approaches typically
build upon conventional terms. In particular, the generalisation of terms can
be achieved by composing monads, so that generalised terms can be seen as
variables assigned e.g. to (many-valued) sets of terms.

Composite monads and their algebras, together with required distributive laws
were introduced and studied in [4]. However, it is not evident how to provide
composite monads in general. As pointed out in [14], distributive laws between
doctrines [13] are rare. Street [20], providing a formal theory of monads with
respect to 2-categories [13], inspires to investigations on simplified distributive
laws [16,17].

Even if the foundational understanding of monads has been well-known for
decades, proof techniques, especially related to monad compositions have not
been developed. As monad compositions are basically built upon operations of
corresponding natural transformations, proof techniques require an adequate
handling of the basic combinatorial properties of functors and natural trans-
formations (Godement rules). In [5,10] it was discovered that these combinato-
rial properties can be represented more visually, in that the basic observation
relates to distributivity of the star product of natural transformation with
respect to composition of natural transformations.

In [9] it was shown how set functors can be composed to providing monads, in
particular, many-valued set monads [15] were composed with the conventional
term monad.

In this paper we step towards the concept of generalised terms, for the purpose
of unification aspects, by providing alternative results on constructing new
monads from given ones. We also present a graphical approach that supports
proving properties involving, in the end, monad compositions.

The rest of the paper is organised as follows:

In Section 2, the graphical notation for composing natural transformations is
presented. We stress the usefulness of this notation, based on the Interchange
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Law, which allows to perform calculations with natural transformations in an
easy manner.

In Section 3, the concept of monad and Kleisli category of a monad are revis-
ited. In Section 4, a first example of generalised terms is given as the composite
of the powerset and the term monads. Later, in Section 5 the ad hoc result
in the previous section is generalised categorically to apply to any pair of
monads; the powerset and the term monads are shown to satisfy these new
conditions, which are also proven equivalent to those of a distributive law [4].
A partially converse result is given later in Section 6, which is also related to
distributive laws.

In Section 7, we provide more general results on constructing new monads
from given ones. In particular, in the case of a composition of two monads,
the composition of submonads of respective original monads again provide
monads under a rather general condition. Finally, in Section 8, the conclusions
are presented.

2 Graphical approach to natural transformations

In this section we introduce the graphical notation we will use in the rest of
the paper. It was introduced in [5,10] as a means of rapid calculation with
natural transformations.

Let Φ and Ψ be (covariant) endofunctors in a category C. A natural transfor-
mation σ from Φ to Ψ is usually written as σ : Φ =⇒ Ψ; the graphical notation
uses a different representation which, somehow, resembles the vertical writing
of natural transformations as a basic building block

Φ

σ

Ψ

Φ

σ

Ψ

Φ

σ

Ψ CC

C C

In addition, since functors are always oriented right to left and natural trans-
formations are oriented top-down we can also omit the head arrows.

The interchange law, to be considered later, together with the box representa-
tion leads to a better management of operations with natural transformations
which is not, at least directly, possible with the usual representation.

Consider endofunctors Φ, Ψ, Υ, . . . in C, together with natural transformations
τ, σ, . . . between such endofunctors. For τ : Φ =⇒ Ψ and σ : Ψ =⇒ Υ, let σ ◦
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τ : Φ =⇒ Υ be the usual composition of natural transformations, represented
by the vertical stacking of boxes

Φ

τ

Ψ

σ

Υ

def
=

Φ

σ ◦ τ

Υ

For τ ′ : Φ′ =⇒ Ψ′, the star product τ ′ � τ : Φ′ ◦ Φ =⇒ Ψ′ ◦ Ψ is defined by

τ ′ � τ = τ ′Ψ ◦ Φ′τ = Ψ′τ ◦ τ ′Φ (1)

and its box representation will be the following

Φ′ Φ

τ ′ τ

Ψ′ Ψ

def
=

Φ′ Φ

τ ′ � τ

Ψ′ Ψ

Note how the associativity of the product and composition is implicit in the
representation.

In the sequel we show how this representation is helpful in order to prove
several well-known results regarding composition and star product.

For the identity transformation idΦ : Φ =⇒ Φ, also written as 1Φ or 1, note
that 1Φ � 1Ψ = 1Φ◦Ψ. For a natural transformation τ : Φ =⇒ Ψ, and a functor
Υ, it is possible to define its composition (Υτ)X = ΥτX and (τΥ)X = τΥX ,
or equivalently, Υτ = 1Υ � τ and τΥ = τ � 1Υ, which allows us to pictorially
represent equation (1) by

Φ′ Φ

τ ′ � τ

Ψ′ Ψ

=

Φ′ Φ

1Φ′ � τ

Φ′ Ψ

τ ′ � 1Ψ

Ψ′ Ψ

=

Φ′ Φ

τ ′ � 1Φ

Ψ′ Φ

1Ψ′ � τ

Ψ′ Ψ

It will be useful to recall the following distributivity laws together with its
box representation:

1 � (σ ◦ τ) = (1 � σ) ◦ (1 � τ), (2)

(σ ◦ τ) � 1 = (σ � 1) ◦ (τ � 1). (3)
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Equation (2) can be written as

Γ Φ

1 σ ◦ τ

Γ Υ

=

Γ Φ

1 � τ

Γ Ψ

1 � σ

Γ Υ

i.e., in this case building blocks can be applied in any order. The same holds
for equation (3).

Proposition 1 (Interchange Law) Let Φ
τ

=⇒ Ψ
σ

=⇒ Υ and Φ′ τ ′
=⇒ Ψ′ σ′

=⇒
Υ′ be natural transformations. Then we have

(σ′ � σ) ◦ (τ ′ � τ) = (σ′ ◦ τ ′) � (σ ◦ τ) (4)

PROOF.

Φ′ Φ

τ ′ � τ

Ψ′ Ψ

σ′ � σ

Υ′ Υ

(1)
=

Φ′ Φ

τ ′ � 1Φ

Ψ′ Φ

1Ψ′ � τ

Ψ′ Ψ

1Ψ′ � σ

Ψ′ Υ

σ′ � 1Υ

Υ′ Υ

(2)
=

Φ′ Φ

τ ′ � 1Φ

Ψ′ Φ

1Ψ′ � (σ ◦ τ)

Ψ′ Υ

σ′ � 1Υ

Υ′ Υ

(1)
=

Φ′ Φ

τ ′ � 1Φ

Ψ′ Φ

σ′ � 1Φ

Υ′ Φ

1Υ′ � (σ ◦ τ)

Υ′ Υ

(3)
=

Φ′ Φ

(σ′ ◦ τ ′) � 1Φ

Υ′ Φ

1Υ′ � (σ ◦ τ)

Υ′ Υ

(1)
=

Φ′ Φ

σ′ ◦ τ ′ σ ◦ τ

Υ′ Υ

The graphical representation of the Interchange Law leads to the following
rule

Φ′ Φ

τ ′ τ

Ψ′ Ψ

σ′ σ

Υ′ Υ

=

Φ′ Φ

σ′ ◦ τ ′ σ ◦ τ

Υ′ Υ

=

Φ′ Φ

τ ′ � τ

Ψ′ Ψ

σ′ � σ

Υ′ Υ

which allows to rearrange a stack of blocks as desired, showing how blocks
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with particular positions generally can be attached vertically and horizontally
in any order without changing the resulting transformation.

Note in the transformation

Φ Φ Φ

τ σ

Φ Φ Φ

σ τ

Φ Φ Φ

that the composition (σ � τ) ◦ (τ � σ) indeed exists, but neither τ ◦ σ nor σ ◦ τ
do. This indicates how the applicability of the Interchange Law is more easily
seen in the pictorial representation of the transformation.

In order to further improve readability of transformation expressions, identity
transformations 1Φ : Φ =⇒ Φ as blocks within transformation expressions are
depicted as

Φ

or
Φ

or
Φ

This choice for the representation of identity transformations will allow the
use of asymmetric stacking of boxes.

3 Monads and Kleisli categories

Let C be a category. A monad (or triple, or algebraic theory) over C is written
as Φ = (Φ, η, μ), where Φ: C → C is a covariant functor, and η : id =⇒ Φ and
μ : Φ ◦ Φ =⇒ Φ are natural transformations for which μ ◦ Φμ = μ ◦ μΦ and
μ ◦ Φη = μ ◦ ηΦ = idΦ hold. Pictorially,
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Associativity:

Φ Φ Φ

μ

Φ

μ

Φ

=

Φ Φ Φ

μ

Φ

μ

Φ

Units:

1 Φ

ηΦ

Φ

μ

Φ

=

Φ

Φ

Φ 1

ηΦ

Φ

μ

Φ

=

Φ

Φ

It is useful to write ηΦ and μΦ if we need to distinguish between natural
transformations in different monads. For notations and results within general
category theory and universal algebra, we refer to [1,3,15].

A Kleisli category CΦ for a monad Φ over a category C is defined as fol-
lows: Objects in CΦ are the same as in C, and the morphisms are defined as
homCΦ(X, Y ) = homC(X, ΦY ), that is morphisms f : X ⇁ Y in CΦ are simply
morphisms f : X → ΦY in C, with ηΦ

X : X → ΦX being the identity morphism.

Composition of morphisms is defined as

(X
f
⇁ Y ) ◦ (Y

g
⇁ Z) = X

μΦ
Z◦Φg◦f−→ ΦZ.

The Kleisli category is equivalent to the full subcategory of free Φ-algebras of
the monad, and its definition makes it clear that the arrows are substitutions.
Indeed, the categorical unification algorithm in [19] is based on the Kleisli
category of the term monad.

A monad (Φ, η, μ) written as (Φ, η, ◦), where ◦ is the composition of morphisms
in the corresponding Kleisli category, is said to be a monad in clone form. In
fact, there is a one-to-one correspondence between monads, respectively, in
monoid and clone forms [15].
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4 Composing powerset and term monads: an example

4.1 The powerset monad

Let L be a completely distributive lattice. For L = {0, 1} we will write L = 2.
The covariant powerset functor Lid is obtained by LidX = LX , i.e. L-fuzzy
sets A : X → L, and following [12], for a morphism f : X → Y in Set, by
defining

Lidf(A)(y) =
∨

f(x)=y

A(x)

In [15] it is proved that Lid = (Lid, η, μ) is a monad with the following identity
and multiplication: ηX : X → LidX is defined by

ηX(x)(x′) =

⎧⎨
⎩

1 if x = x′

0 otherwise
(5)

and μX : LidLidX → LidX is defined by

μX(A)(x) =
∨

A∈LidX

A(x) ∧ A(A). (6)

Note that 2id is the usual covariant powerset monad P = (P, η, μ), where PX
is the set of subsets of X, ηX(x) = {x} and μX(B) =

⋃B.

The problem of extending a functor to a monad is not a trivial one, and some
strange situations may well arise as shown below. Note that the id2 functor
can be extended to a monad with ηX(x) = (x, x) and μX((x1, x2), (x3, x4)) =
(x1, x4). Similarly, idn can be extended to a monad. In addition, the proper
powerset functor P0, where P0X = PX \ {∅}, as well as id2 ◦ P0 can, respec-
tively, be extended to a monad in a unique way. However, P0 ◦ id2 cannot be
made to a monad [6].

Remark 1 Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Ψ, ηΨ, μΨ) be monads over Set.
The composition Φ ◦ Ψ cannot always be extended to a monad as seen in the
case of P0 ◦ id2.

4.2 The term monad

Regarding the set of terms it is useful to adopt a more functorial presenta-
tion of it, as opposed to using the conventional inductive definition of terms,
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where we bind ourselves to certain styles of proofs. Even if a purely functorial
presentation might seem complicated, there are advantages when we define
corresponding monads, and, further, a functorial presentation simplifies ef-
forts to prove results concerning compositions of monads. This completely
categorical approach was given in [11].

Let Ω =
∐∞

n=0 Ωn be an operator domain, where each Ωn is intended to contain
operators of arity n. Then, the definition of the term functor TΩ : Set → Set

can be intuitively given as TΩ(X) =
⋃∞

k=0 T k
Ω(X), where T 0

Ω(X) = X and
T k+1

Ω (X) is intended to represent

{ω(x1, . . . , xn) | ω ∈ Ωn, xi ∈ T k
Ω(X)}

The formal categorical definition of the term monad requires some previous
notation and definitions:

Definition 1 (1) For a set A, the constant set functor ASet is the covariant
set functor for which:

ASet(X) = A ASet(f) = idA

for all set X and morphism f in the category Set.
We will usually drop out the subscript Set whenever no confusion arise.

(2) The sum (coproduct)
∐

i∈I Φi of covariant set functors Φi is defined for
each set X and for each morphism f : X → Y in Set as follows:

( ∐
i∈I

Φi

)
X =

⋃
i∈I

({i} × ΦiX)
( ∐

i∈I

Φi

)
f(i, m) = (i, Φif(m))

where (i, m) ∈ (
∐

i∈I Φi)X.

The term functor can now be defined by transfinite induction as stated in the
following definition:

Definition 2 Let κ be a cardinal number and (Ωn)n≤κ be a family of sets, and
Ω =

∐
n≤κ Ωn. The term functor is given by transfinite induction considering

T 0
Ω = id

and defining

Tα
Ω =

( ∐
n≤κ

(Ωn × idn)
)
◦ ⋃

β<α

T β
Ω

for each positive ordinal α. Finally, let

TΩ =
⋃

α<κ̄

Tα
Ω

where κ̄ is the least cardinal greater than κ and ℵ0.
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Note that the elements in Tα
ΩX, with α 	= 0, have the form (n, ω, (mi)i≤n) with

mi ∈ T βi
Ω X for βi < α, and were represented as ω(m1, . . . , mn) in the intuitive

approach to the definition of the term monad.

The interest of Ω being the sum of the Ωn lies in the fact that it builds Ω-
algebras. Note that in the definition of the term functor, the sum structure of
Ω is not used.

Definition 3 (1) Let κ be a cardinal number and (Ωn)n≤κ be a family of sets.
The sum Ω =

∐
n≤κ Ωn is called an operator domain.

(2) An Ω-algebra is a pair (X, (snω)(n,ω)∈Ω) where snω : Xn → X are n-ary
operations.

(3) The category of Ω-algebras consists of Ω-algebras as objects, and mor-
phisms between (X, (snω)(n,ω)∈Ω) and (Y, (tnω)(n,ω)∈Ω) as mappings f : X →
Y satisfying

f(snω(mi)i≤n) = tnω((f(mi))i≤n)

The sets TΩX can be interpreted as an Ω-algebra, (TΩX, (σnω)(n,ω)∈Ω), just
defining σnω((mi)i≤n) = (n, ω, (mi)i≤n) for ω ∈ Ωn and mi ∈ TΩX. Actually,
this algebra is a freely generated algebra in the category of Ω-algebras, that is,
for an Ω-algebra B = (Y, (tnω)(n,ω)∈Ω), a morphism f : X → Y in Set can be
extended to an Ω-homomorphism f ∗ : (TΩX, (σnω)(n,ω)∈Ω) → (Y, (tnω)(n,ω)∈Ω),
called the Ω-extension of f associated to B, given by f ∗

|T 0
ΩX = f and

f ∗(n, ω, (mi)i≤n) = tnω((f ∗(mi))i≤n)

for all n ∈ N and (n, ω, (mi)i≤n) ∈ Tα
ΩX.

A morphism f : X→Y in Set can also be extended to the corresponding Ω-
homomorphism

(TΩX, (σnω)(n,ω)∈Ω)
TΩf−→ (TΩY, (τnω)(n,ω)∈Ω)

where TΩf is defined to be the Ω-extension of X
f→ Y ↪→ TΩY associated to

(TΩY, (τnω)(n,ω)∈Ω).

In [15] it was shown that TΩ can be extended to a monad T Ω = (TΩ, ηTΩ , μTΩ)
with the following definition for the unit ηTΩ

X (x) = x and, regarding the
multiplication, μTΩ

X = id∗
TΩX is the Ω-extension of idTΩX with respect to

(TΩX, (σnω)(n,ω)∈Ω).
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5 On the composition of monads

Regarding the composition of monads we are interested in the following gen-
eral problem: Given monads Φ and Ψ, we consider the composition of the
corresponding functors, Φ ◦ Ψ: Is it possible to extend this composition to a
monad? Is this extension compatible with the monad structure in the initial
monads? Does there exist a natural definition of the unit and multiplication
in the composed functor which uses the units and multiplication in Φ and Ψ?
Is this extension, in some sense, unique?

A first approach to the study of the structure of monad of the composition of
powerset monads and term monads was presented in [9], where it was shown
how set functors can be composed to providing monads, and some motivation
to investigate techniques for constructing new monads from given ones was
presented. Specifically, it was shown that the composition Lid ◦ TΩ could be
extended to a monad.

As we have already pointed out, it is not clear to what extent ‘monads com-
posed as functors are extendable to monads’ is a rule rather than exception.
In the case of complicated functors it is rather tempting intuitively to believe
that monad compositions are not common simply by observing how the use of
distributivity laws in proofs makes diagrams grow to sizes extremely difficult
to overlook. On the other hand Beck says that proofs involving the distributiv-
ity law ‘are just long naturality calculations.’ It is the latter view that inspires
us to provide a calculus for computing with natural transformations.

By using the graphical calculus it is easy to obtain a set of equations which
are sufficient conditions for defining a monad structure on the composition of
two monads.

Proposition 2 Given monads Φ = (Φ, ηΦ, μΦ) and Ψ = (Ψ, ηΨ, μΨ), let
σ : Ψ ◦ Φ → Φ ◦ Ψ be a natural transformation, then the composition can
be provided with a multiplication μ(σ) : ΦΨΦΨ → ΦΨ defined by μ(σ) =
(μΦ ∗ μΨ) ◦ ΦσΨ which makes Φ • Ψ = (Φ ◦ Ψ, ηΦ ∗ ηΨ, μ(σ)) to be a monad
if the following properties hold:

(1σ) μΦΨ ◦ Φσ ◦ ΦμΨΦ ◦ σΨΦ = ΦμΨ ◦ σΨ ◦ ΨμΦΨ ◦ ΨΦσ
(2σ) σ ◦ ηΨΦ = ΦηΨ

(3σ) σ ◦ ΨηΦ = ηΦΨ

Note that

• (1σ) states the independence of the swapper from the order of application.
• By (2σ) the swapper extracts Φ from ηΨ.
• By (3σ) the swapper introduces Ψ in ηΦ.
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PROOF.

We introduce firstly the pictorial representations for the conditions. The nat-
ural transformations μ(σ) and ηΦ ∗ ηΨ are

ηΦ•Ψ =

1 1

ηΦ ηΨ

Φ Ψ

μΦ•Ψ =

Φ Ψ Φ Ψ

σ

Φ Ψ

μΦ μΨ

Φ Ψ

The condition (1σ) is:

Ψ Φ Ψ Φ

σ

Φ Ψ

μΨ

Ψ

σ

Φ Ψ

μΦ

Φ

=

Ψ Φ Ψ Φ

σ

Φ Ψ

μΦ

Φ

σ

Φ Ψ

μΨ

Ψ

And the conditions (2σ) and (3σ) are:

1 Φ

ηΨ

Ψ

σ

Φ Ψ

=

Φ 1

ηΨ

Φ Ψ

Ψ 1

ηΦ

Φ

σ

Φ Ψ

=

1 Ψ

ηΦ

Φ Ψ

By definition, μ(σ) is clearly a natural transformation. We have only to prove
that it is associative and that it also satisfies the right and left identities.

The associativity of the multiplication is straightforward, for we have that
μ(σ) ◦ μ(σ)ΦΨ can be pictorially represented as the first diagram in Figure 1:
the first equality follows from the associativity of μΦ, and the second one by
condition (1σ). An additional application of the associativity of μΨ gives the
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Φ Ψ Φ Ψ Φ Ψ

μ

Φ Ψ

μ

Φ Ψ

=

Φ Ψ Φ Ψ Φ Ψ
σ

Φ Ψ

μΦ μΨ

Φ Ψ
σ

Φ Ψ

μΦ μΨ

Φ Ψ

=

Φ Ψ Φ Ψ Φ Ψ
σ

Φ Ψ

μΨ

Ψ
σ

Φ Ψ

μΦ

Φ μΨ

μΦ

Φ Ψ

=

Φ Ψ Φ Ψ Φ Ψ
σ

Φ Ψ

μΦ

Φ
σ
Φ Ψ

μΨ

μΦ Ψ

μΨ

Φ Ψ

=

Φ Ψ Φ Ψ Φ Ψ

σ
Φ Ψ

μΦ μΨ

Φ Ψ

σ
Φ Ψ

μΦ μΨ

Φ Ψ

=

Φ Ψ Φ Ψ Φ Ψ

μ

Φ Ψ

μ

Φ Ψ

(1σ)

Fig. 1. Proof of the associativity of the multiplication.

1 Φ Ψ

η
ΦΨ

μ

ΦΨ

=

1 1 Φ Ψ

ηΦ ηΨ

Φ Ψ
σ

Φ Ψ

μΦ μΨ

Φ Ψ

=

1 Φ Ψ

ηΨ

Ψ
σ

Φ Ψ

μΨ

Ψ

=

Φ 1 Ψ

ηΨ

Φ Ψ

μΨ

Ψ

=

ΦΨ

ΦΨ

Fig. 2. Proof of left and right identities.

diagram of μ(σ) ◦ ΦΨμ(σ).

For the left and right identity, just consider the diagrams in Figure 2, in which
the first and third equalities in any row hold from the fact that both Φ and
Ψ are monads, and the second equality follows from condition (2σ) and (3σ),
respectively.

The conditions given by the previous result can be proven equivalent to Beck’s
conditions on a distributive law as an easy application of the graphical calculus
of natural transformations. Firstly, let us recall the definition of a distributive
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law [4]:

Definition 4 (Beck) Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Ψ, ηΨ, μΨ) be two mon-
ads, a distributive law of Φ over Ψ is a natural transformation σ : Ψ ◦ Φ →
Φ ◦ Ψ such that conditions (2σ) and (3σ) are satisfied, together with the two
additional conditions below

Ψ Φ Φ

σ

Φ Ψ

σ

Φ Ψ

μΦ

Φ

=

Ψ Φ Φ

μΦ

Φ

σ

Φ Ψ

Ψ Ψ Φ

σ

Φ Ψ

σ

Φ Ψ

μΨ

Ψ

=

Ψ Ψ Φ

μΨ

Ψ

σ

Φ Ψ

Specifically, we have the following theorem establishing the correspondence
between Proposition 2 and distributive laws.

Theorem 1 Given monads Φ = (Φ, ηΦ, μΦ) and Ψ = (Ψ, ηΨ, μΨ), let σ : Ψ ◦
Φ → Φ ◦ Ψ be a natural transformation, then σ is a distributive law if and
only if conditions (1σ), (2σ) and (3σ) are satisfied.

PROOF.

It is easy to show that Beck’s conditions imply (1σ), (2σ) and (3σ) (actually
(2σ) and (3σ) are shared).

The proof of Beck’s condition on μΦ is shown in Figure 3, the one respect to
μΨ is similar. In the proof above equalities tagged with (1) follow from the
addition or supression of identities (represented as dashed boxes); equalities
(2) and (3) follow, respectively, from application of (1σ) and (2σ) to the bold
framed box.

It is interesting to note that Proposition 2 applies the particular case of the
definition of many-valued powerset monad 2 L = Φ and the term monad
T = Ψ, and the swapper σ defined as a natural transformation with mappings
σX : TLX → LTX as follows:

2 In the following we will write L instead of Lid and T instead of TΩ.
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(1)

(2) (3) (1)

Fig. 3.

For the base case σX |T 0LX
= idLX . Further, for l = (n, ω, (li)i≤n) ∈ T kLX,

k > 0, li ∈ T niLX, ni < k, let σX(l)((n′, ω′, (mi)i≤n′)) be defined as

⎧⎪⎪⎨
⎪⎪⎩

∧
i≤n σX(li)(mi) if n = n′ and ω = ω′

0 otherwise

It is not difficult to show that the swapper just defined is actually a distributive
law.

Proposition 3 Monads L and T , and the swapper σ defined above satisfy
properties (1σ), (2σ) and (3σ) in Proposition 2. Thus, L ◦ T can be extended
to a monad.

For the proof of this proposition the following technical lemma is needed:

Lemma 1 Consider the composition LTLX
LσX−→ LLTX

μL
TX−→ LTX, and R ∈

LTLX and m ∈ TX, then

(μL
TX(LσX(R)))(m) =

∨
r∈TLX

R(r) ∧ (σX(r))(m)

PROOF.

15



(μL
TX(LσX(R)))(m)

Def. of μL

=
∨

A∈LTX

(LσX(R))(A) ∧ A(m)

Def. of L
=

∨
A∈LTX

( ∨
σX(r)=A

R(r)
)
∧ A(m)

Distr.
=

∨
A∈LTX

∨
σX(r)=A

(R(r) ∧ A(m))

=
∨

r∈TLX

(R(r) ∧ σx(r)(m))

In the last equality we use the fact that the elements in A ∈ LTX for which
an element r exists such that σX(r) = A are exactly those in the image of σX .

Proof of Proposition 3

Condition (1σ): Let us prove that the swapper σ satisfies

LμT ◦ σT ◦ TμL
T ◦ TLσ = μL

T ◦ Lσ ◦ LμT
L ◦ σTL

Given d ∈ TLTLX and m ∈ TX, we will inductively show that

σTX((T (μL
TX ◦ Lσ))(d))(m) = (μL

TX ◦ LσX)(σTLX(d))(m)

• If d ∈ LTLX and m ∈ X the equality is trivial.
• By induction, assume that d = (n, ω, (di)i≤n) and m = (n, ω, (mi)i≤n), (oth-

erwise, the right hand side equals 0):

σTX((T (μL
TX ◦ Lσ))(d))(m) =
Def. of σ

=
∧
i≤n

σTX((T (μL
TX ◦ Lσ))(di))(mi)

Induc.
=

∧
i≤n

(μL
TX ◦ LσX)(σTLX(di))(mi)

Lemma
=

∧
i≤n

∨
r∈TTLX

σTLX(di)(r) ∧ (σX)(r)(mi)

Distr.
=

∨
(n,ω,(ri)i≤n)∈TTLX

∧
i≤n

σTLX(di)(ri) ∧ (σX)(ri)(mi)

=
∨

r∈TTLX

σTLX(d)(r) ∧ (σX)(r)(m)

=
∨

r∈TLX

σTLX(d)(r) ∧ (σX)(r)(m)

Lemma
= (μL

TX ◦ LσX)(σTLX(d))(m)

16



Condition (2σ): Let us prove that the swapper σ satisfies

σ ◦ ηT
L = LηT

By the definitions ηT
X = T 0X = X, ηT

LX = T 0LX = LX and σX on LX is
LX; therefore the equality holds.

Condition (3σ): Let us prove that the swapper σ satisfies

σ ◦ TηL = ηL
T

For all X we have σX ◦ TηL
X : TX → TLX → LTX, therefore we will induc-

tively show that if m ∈ TX, then σX(TηL
X(m)) = ηL

TX(m).

• If m ∈ X, then σX(TηL
X(m)) = σX(ηL

X(m)) = ηL
X(m) = ηL

TX(m).
• If m = (n, ω, (mi)i≤n), then σX(TηL

X(m)) : TX → L. Consider m′ ∈ TX,
the only case in which σX(TηL

X(m))(m′) can be nonzero is when m′ =
(n, ω, (m′

i)i≤n):

σX(TηL
X(m))(m′)

Def of Tf
= σX(n, ω, (TηL

X(mi))i≤n)(m′)
Def of σ

=
∧
i≤n

σX(TηL
X(mi))(m

′
i)

Induc.
=

∧
i≤n

ηL
TX(mi)(m

′
i)

= ηL
TX(m)(m′)

6 Reverse engineering of monads

In this section we will, again using our graphical tool, re-establish the well-
known converse result to Proposition 2. See e.g. [2] for original proofs.

Theorem 2 (Beck) Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Φ, ηΨ, μΨ) be two mon-
ads. If Φ • Ψ = (Φ ◦ Ψ, ηΦ ∗ ηΨ, μ) is a monad such that:

(R1) ΦηΨ : Φ ⇒ ΦΨ is a morphism of monads.
(R2) ηΦΨ: Ψ ⇒ ΦΨ is a morphism of monads.

17



(R3) The middle unitary law, given below, is satisfied.

Φ Ψ

Φ 1 1 Ψ

ηΨ ηΦ

Ψ Φ

μ

ΦΨ

=

ΦΨ

ΦΨ

Then the natural transformation σ(μ) : ΨΦ ⇒ ΦΨ defined as

σ(μ) = μ ◦ ΦΨΦηΨ ◦ ηΦΨΦ

is a distributive law.

Theorem 3 Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Φ, ηΨ, μΨ) be two monads. If
Φ •Ψ = (Φ ◦Ψ, ηΦ ∗ ηΨ, μ) is a monad such that equalities (A) and (B) below
are satisfied:

Φ Φ Ψ Φ Ψ

μ

Φ Ψ

μΦ

Φ

(A)
=

Φ Φ Ψ Φ Ψ

μΦ

Φ

μ

Φ Ψ

Φ Ψ Φ Ψ Ψ

μ

Φ Ψ

μΨ

Ψ

(B)
=

Φ Ψ Φ Ψ Ψ

μΨ

Ψ

μ

Φ Ψ

then the natural transformation σ(μ) : ΨΦ ⇒ ΦΨ defined below is a distributive
law:

ΨΦ

σ(μ)

ΦΨ

=

Ψ Φ

1 Ψ Φ 1

ηΦ ηΨ

Φ Ψ

μ

Φ Ψ
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PROOF. Conditions (2σ) and (3σ) are trivially satisfied, as shown in Fig-
ure 4, just note that the unit transformation of the composed monad is the
composition of the units of Φ and Ψ and the dashed box is the identity.

1 Φ

ηΨ

Ψ
σ(μ)
Φ Ψ

=

1 1 Φ 1

ηΦ ηΨ ηΨ

Φ Ψ Ψ
μ

Φ Ψ

=

Φ 1

ηΨ

Φ Ψ

Ψ 1

ηΦ

Φ
σ(μ)

Φ Ψ

=

1 Ψ 1 1

ηΦ ηΦ ηΨ

Φ Φ Ψ
μ

Φ Ψ

=

1 Ψ

ηΦ

Φ Ψ

Fig. 4.

For (1σ) consider the picture in Figures 5,6, in which the bold lines represent
the boxes on which properties (A) and (B) will be applied, and the dashed
boxes are equivalent to the identity.

1 1 1

1
=

1

=

1 1 1

1 1

Fig. 5. Conditions (A) and (B) imply (1σ), part I.
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1 Ψ Φ 1 Ψ Φ 1

ηΦ ηΦ ηΨ

Φ Φ Ψ
μ

Φ Ψ

μΦ

Φ

Φ 1

ηΨ

Ψ
μ

Φ Ψ

μΨ

Ψ

=

1 Ψ Φ 1 Ψ Φ 1

ηΦ ηΦ ηΨ

Φ Φ Ψ

Ψ

μΦ

Φ μ

Φ

Φ 1

ηΨ

Ψ
μΨ

Φ Ψ
μ

Ψ

=

1 Ψ Φ Ψ Φ 1

ηΦ ηΦ

Φ Φ
μ

Φ Ψ
μ

Φ Ψ

Fig. 6. Conditions (A) and (B) imply (1σ), part II.

The theorem below shows that the two conditions (A) and (B) are equivalent
to the three conditions given in Beck’s Theorem 2. Once again, the graphical
representation permits us to give a straightforward proof which avoids the
naturality calculations.

Theorem 4 Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Φ, ηΨ, μΨ) be two monads. If
Φ •Ψ = (Φ ◦Ψ, ηΦ ∗ ηΨ, μ) is a monad, then conditions (R1), (R2) and (R3)
hold if and only if conditions (A) and (B) hold.

PROOF. Firstly, in Figure 7 we show that (A) and (B) imply the middle
unitary law (R3), where equalities tagged with (1) follow from the addition or
supression of identities (represented as dashed boxes); equality (2) follows from
application of (A) to the bold framed box; and equality (3) follows similarly
from application of (B).

The proof of ‘(A) and (B) imply (R1)’ is given in Figure 8, where for equali-
ties (1) and (3) the dashed parts correspond to identities; equality (2) is the
application of (A) on the bold box; the proof for (R2) is similar.

Finally, in Figure 9 it is proved that (R1), (R2) and (R3) imply (A). The proof
of (B) is similar.

In practical cases it is convenient to have a set of weak conditions which are
simpler to check than the general necessary and suficient ones. For the converse
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Φ Ψ

Φ 1 1 Φ
ηΨ ηΦ

Ψ Φ

μ

Φ Ψ

(1)
=

Φ Ψ

Φ 1 1 Ψ
ηΨ ηΦ

Φ 1 Ψ Φ
ηΦ

Φ
μΦ

Φ
μ

Φ Ψ

(2)
=

Φ Ψ

Φ 1 1 Ψ
ηΨ ηΦ

Φ 1 Ψ Φ
ηΦ

Φ
μ

Φ Ψ
μΦ

Φ

(3)
=

Φ Ψ

Φ 1 1 Ψ
ηΨ ηΦ

Φ 1 Ψ Φ 1 Ψ
ηΦ ηΨ

Φ Ψ
μ

Φ Ψ
μΦ μΨ

Φ Ψ

(1)
=

ΦΨ

ΦΨ

Fig. 7. (A) and (B) imply the middle unitary law.

Φ 1 Φ 1

η ηΨ

Ψ

Ψ

Ψ

μ

Φ Φ

(1)
=

Φ 1 Φ 1

Φ 1 1 ηΨ

ηΦ ηΨ

Φ Ψ Ψ
μΦ

Φ
μ

Φ Φ

(2)
=

Φ 1 Φ 1

Φ 1 1 ηΨ

ηΦ ηΨ

Φ Ψ Ψ
μ

Φ Φ
μΦ

Φ Ψ

(3)
=

Φ 1 Φ 1

Φ 1 1 ηΨ

Ψ

Φ Φ
μΦ

Φ Ψ

(1)
=

Φ 1 Φ 1

Φ
μΦ

Φ Ψ

Fig. 8. (A) and (B) imply (R1).

theorem we are dealing with in this section, the following proposition gives as
two easy simpler conditions.

Proposition 4 Let Φ = (Φ, ηΦ, μΦ) and Ψ = (Φ, ηΨ, μΨ) be two monads. If
Φ • Ψ = (Φ ◦ Ψ, ηΦ ∗ ηΨ, μ) is a monad, then conditions (A) and (B) are
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Φ 1 Φ Ψ

Φ Φ

μ
Φ Ψ

(1)
=

Φ 1 Φ Ψ

Φ Φ 1

μΦ

Φ

Φ Ψ

Φ 1 1 Ψ

ηΨ ηΦ

Ψ Φ
μ

ΦΨ

(2)
=

Φ 1 Φ Ψ

Φ Φ 1 1 Ψ
μΦ ηΨ ηΦ

Φ Ψ Φ

μ

ΦΨ

(3)
=

Φ 1 Φ Ψ
ηΨ

Ψ Φ 1 1 Ψ
ηΨ ηΦ

Ψ Φ
μ

ΦΨ
μ

ΦΨ

(4)
=

Φ 1 Φ Ψ
ηΨ

Ψ Φ 1 1 Ψ
ηΨ ηΦ

Ψ Φ
μ

ΦΨ
μ

ΦΨ

(5)
=

Φ 1 Φ Ψ
ηΨ

Ψ

μ
ΦΨ

Φ Φ Ψ Φ Ψ
μ

Φ Ψ

μΦ

Φ

(1)
=

Φ Φ Ψ Φ Ψ
μ

Φ 1 Φ Ψ

Φ

μΦ

Φ Ψ

(2)
=

Φ Φ Ψ Φ Ψ
μ

Φ 1 Φ Ψ
ηΨ

Ψ

μ

ΦΨ

(3)
=

Φ Φ Ψ Φ Ψ

Φ 1

ηΨ

Ψ
μ

ΦΨ

μ
ΦΨ

(4)
=

Φ Φ Ψ Φ Ψ

Φ 1

Φ Φ

μΦ

Φ Ψ

μ
ΦΨ

(5)
=

Φ Φ Ψ Φ Ψ

μΦ

Φ

μ
ΦΨ

Fig. 9. (R1), (R2) and (R3) imply (A).

implied by the two conditions below

Φ 1

ηΦ

Φ Φ

=

1 Φ

ηΦ

Φ Φ

Ψ 1

ηΨ

Ψ Ψ

=

1 Ψ

ηΨ

Ψ Ψ
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PROOF.

Let us prove (A), the case of (B) is similar

Φ Φ Ψ Φ Ψ

μ

Φ Ψ

μΦ

Φ

=

Φ Φ Ψ Φ Ψ

Φ 1 Φ

ηΦ

Φ Φ
μ
Φ

μ
Φ Ψ

μΦ

Φ

Φ

=

Φ Φ Ψ Φ Ψ

1 Φ Φ

ηΦ

Φ Φ
μ
Φ

μ
Φ Ψ

μΦ

Φ

=

Φ Φ Ψ Φ Ψ

μΦ

Φ

Φ
μ

Φ Ψ

(1)

(2) (3)

Example 1 It is not difficult to check that the covariant powerset monad L
and the term monad T satisfy Theorem 3. Actually, conditions in Proposition 4
are trivially satisfied since LηL = ηLL and TηT = ηT T .

7 Composing submonads

In this section we provide more general results on constructing new monads
from given ones. In particular, in the case of a composition of two monads,
the composition of submonads of respective original monads again provide
monads under a rather general condition.

Definition 5 Let Φ and Φ′ be set functors. Functor Φ′ is a subfunctor of Φ,
written Φ′ ≤ Φ, if there is a natural transformation e : Φ′ → Φ, called the
inclusion transformation, such that eX : Φ′X → ΦX are inclusion maps, i.e.,
Φ′X ⊆ ΦX.

The conditions on the subfunctor imply that Φf|Φ′X = Φ′f for all mappings

f : X → Y . Further, ≤ is a partial ordering.
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Definition 6 Let Φ = (Φ, η, μ) be a monad over Set, and consider a sub-
functor Φ′ of Φ, with the corresponding inclusion transformation e : Φ′ → Φ,
together with natural transformations η′ : id → Φ′ and μ′ : Φ′Φ′ → Φ′ satisfying
the conditions

e ◦ η′ = η, (7)

e ◦ μ′ = μ ◦ (e � e). (8)

Then Φ′ = (Φ′, η′, μ′) is called the submonad of Φ defined by the subfunctor
Φ′, written Φ′ � Φ.

This definition actually defines a monad, as shown below.

Proposition 5 A submonad Φ′ of a monad Φ is a monad.

PROOF. The pictorial representation of equations (7) and (8) respectively
is given below

1

η′

Φ′

e

Φ

=

1

η

Φ

Φ′ Φ′

μ′

Φ′

e

Φ

=

Φ′ Φ′

e e

Φ Φ

μ

Φ

Let Φ′ = (Φ′, η′, μ′) be a submonad of the monad Φ = (Φ, η, μ), Φ′ � Φ. Let
us verify that Φ′ indeed is a monad.

Φ′ 1

η′

Φ′

μ′

Φ′

e
Φ

=

Φ′ 1

η′

e Φ′

e
Φ Φ

μ
Φ

=

Φ′ 1

e η

Φ Φ

μ
Φ

=

Φ′

e

Φ

i.e. μ′
X ◦ Φ′η′

X = idΦ′X .

The proof of the other unit is similar, just to stress the usefulness of the
pictorial approach we will prove it equationally:
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e ◦ μ′ ◦ η′Φ′ = μ ◦ Φe ◦ eΦ′ ◦ η′Φ′

= μ ◦ Φe ◦ (e ◦ η′)Φ′

(7)
= μ ◦ Φe ◦ ηΦ′

= μ ◦ ηΦ ◦ e

= e,

which shows, μ′
X ◦ η′

Φ′X = idΦ′X .

Finally, the associativity of the multiplication is also shown graphically:

Φ′ Φ′ Φ′

μ′

Φ′

μ′

Φ′

e

Φ

=

Φ′ Φ′ Φ′

μ′

Φ′ e

e
Φ Φ

μ

Φ

=

Φ′ Φ′ Φ′

e e
Φ Φ e

μ
Φ Φ

μ

Φ

=

Φ′ Φ′ Φ′

e e
Φ Φ e

Φ
μ
Φ

μ
Φ

=

Φ′ Φ′ Φ′

e μ′

Φ Φ′

e

Φ
μ
Φ

=

Φ′ Φ′ Φ′

μ′

Φ′

μ′

Φ′

μ
Φ

and therefore, μ′
X ◦ Φ′μ′

X = μ′
X ◦ μ′

Φ′X .

Proposition 6 � is a partial ordering.

PROOF. Reflexivity is obvious.

For antisymmetry, if Φ′ � Φ and Φ � Φ′, then Φ = Φ′, and corresponding
inclusion transformations are identities, and in fact equal. Therefore, it follows
that η = η′ and μ = μ′. Thus, Φ′ = Φ.

For transitivity, let Φ′′ � Φ′ and Φ′ � Φ. Consider e∗ = eΦ ◦ eΦ′
: Φ′′ → Φ,

where eΦ : Φ′ → Φ, and eΦ′
: Φ′′ → Φ′ are the transformations given by the

subfunctor conditions. Then, Φ′′ ≤ Φ, with e∗ as the inclusion transformation.
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Obviously, e∗ ◦ η′′ = η, therefore

Φ′′ Φ′′

μ′′

Φ′′

eΦ′

Φ′

eΦ

Φ

=

Φ′′ Φ′′

eΦ′
eΦ′

Φ′ Φ′

μ′

Φ′

eΦ

Φ

=

Φ′′ Φ′′

eΦ′
eΦ′

Φ′ Φ′

eΦ eΦ

Φ Φ

μ

Φ

that is, e∗ ◦ μ′′ = μ ◦ Φe∗ ◦ e∗Φ′′. Therefore, Φ′′ � Φ.

Given Φ′ � Φ and Ψ′ � Ψ, we will now provide conditions under which
compositions of the functors Φ′ ◦ Ψ, Φ ◦ Ψ′ and Φ′ ◦ Ψ′ can be extended to
submonads of Φ ◦ Ψ.

Theorem 5 Let Φ•Ψ = (Φ◦Ψ, ηΦ �ηΨ, (μΦ �μΨ)◦ΦσΨ) be the monad given
by Proposition 2 and let Φ′ and Ψ′ be submonads of Φ and Ψ, respectively. If
there exists a natural transformation σ∗ : Ψ′Φ′ → Φ′Ψ′ such that (eΦ�eΨ)◦σ∗ =
σ ◦ (eΨ � eΦ), that is

Ψ′ Φ′

σ∗

Φ′ Ψ′

eΦ eΨ

Φ Ψ

=

Ψ′ Φ′

eΨ eΦ

Ψ Φ

σ

Φ′ Ψ′

where eΦ and eΨ are the mappings given by the submonad condition of Φ′ and
Ψ′, respectively, then Φ′ • Ψ′ = (Φ′ ◦ Ψ′, ηΦ′

� ηΨ′
, (μΦ′

� μΨ′
) ◦ Φ′σ∗Ψ′) is a

submonad of Φ • Ψ.

PROOF. Consider Φ •Ψ = (Φ ◦Ψ, η, μ) = (Φ ◦Ψ, ηΦ � ηΨ, (μΦ � μΨ) ◦ΦσΨ)
and Φ′ • Ψ′ = (Φ′ ◦ Ψ′, η∗, μ∗) = (Φ′ ◦ Ψ′, ηΦ′

� ηΨ′
, (μΦ′

� μΨ′
) ◦ Φ′σ∗Ψ′).

Clearly Φ′◦Ψ′ ≤ Φ◦Ψ since the inclusion transformation e∗ : Φ′◦Ψ′ → Φ◦Ψ is
given by the star composition of the corresponding inclusion transformations
for Φ′ and Ψ′ respectively, i.e., e∗ = eΦ � eΨ.
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In the following we will verify the submonad conditions. Using the submonad
conditions for Φ′ and Ψ′ we get,

e∗ ◦ η∗ =

1 1

ηΦ′
ηΨ′

Φ′ Ψ′

eΦ eΨ

Φ Ψ

=

1 1

ηΦ ηΨ

Φ Ψ

= η

and by the condition of σ∗ and the naturality property, we get

e∗ ◦ μ∗ =

Φ′ Ψ′ Φ′ Ψ′

σ∗

Φ′ Ψ′

μΦ′
μΨ′

Φ′ Ψ′

eΦ eΨ

Φ Ψ

(1)
=

Φ′ Ψ′ Φ′ Ψ′

σ∗

eΦ Φ′ Ψ′ eΨ

eΦ eΨ

Φ Φ Ψ Ψ

μΦ μΨ

Φ Ψ

(2)
=

Φ′ Ψ′ Φ′ Ψ′

eΨ eΦ

eΦ Ψ Φ eΨ

σ
Φ Φ Ψ Ψ

μΦ μΨ

Φ Ψ

(3)
= μ ◦ (e∗ � e∗)

Remark 2 Under the conditions of Theorem 5, in the particular case that
Ψ′ = Ψ, if there exists a natural transformation σ′ : ΨΦ′ → Φ′Ψ, such that
eΦΨ ◦ σ′ = σ ◦ ΨeΦ, where eΦ is given by the submonad condition of Φ′, then
Φ′ • Ψ = (Φ′ ◦ Ψ, ηΦ′

� ηΨ, (μΦ′
� μΨ) ◦ Φ′σ′Ψ) is a submonad of Φ • Ψ. A

similar observation can be made in the case of Φ′ = Φ.

Example 2 Let K and L be completely distributive lattices. Assume K to be
a sublattice of L, with ι : K → L being the inclusion homomorphism. Further,
assume ι(0) = 0 and ι(1) = 1, and additionally, that ι(∨ixi) = ∨iι(xi) also in
the non-finite case.

Define (ιid)X : KidX → LidX by (ιid)X(A) = ι ◦ A, A : X → K. It is easily
checked that ιid : Kid → Lid becomes a natural transformation, and that Kid

is a submonad of Lid.

Further, by Remark 2, it is straightforward to show that Kid•T Ω is a submonad
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of Lid • T Ω.

Example 3 In [7] we defined functors for α-upper L-fuzzy sets and α-lower
L-fuzzy sets, denoted Lα and Lα, respectively, given as follows:

LαX = {A ∈ LidX | A(x) ≥ α or A(x) = 0, for all x ∈ X}
LαX = {A ∈ LidX | A(x) ≤ α or A(x) = 1, for all x ∈ X}.

For mappings f : X → Y , we could obtain Lαf and Lαf , respectively, as
Lidf|LαX

and Lidf|LαX
. Thus, Lα and Lα become subfunctors of Lid.

Further, Lα and Lα were extended to monads with ηLα and ηLα
defined using

(5), and additionally μLα and μLα
defined using (6). It is now not difficult to

show that Lα = (Lα, ηLα , μLα) and Lα = (Lα, ηLα
, μLα

) are submonads of Lid.

By Remark 2, it follows that Lα •T Ω and Lα •T Ω are submonads of Lid •T Ω.

Example 4 Let Ω′ and Ω be operator domains with Ω′ ⊆ Ω, and let ε : Ω′ → Ω
be the inclusion mapping.

Define νX : TΩ′X → TΩX by νX(x) = x, x ∈ X, and

νX((n, ω′, (t′i)i≤n)) = (n, ε(ω′), (νX(t′i))i≤n)

for t′i ∈ TΩ′X. It is easily seen that ν : TΩ′ → TΩ is a natural transformation
(actually, it is an inclusion) and that T Ω′ is a submonad of T Ω.

Again, by Remark 2, it is easy to verify that Lid•T Ω′ is a submonad of Lid•T Ω.

8 Conclusions

It is important to stress the non-triviality of providing monad compositions.
An apparently useful composition of functors in corresponding monads can
turn out not to be extendable to a monad. In fact, as there are no general
methods on how to provide monad compositions, it is not clear if extendability
of such compositions of functors to a monad composition is more a rule than
an exception. Further, proofs of compliance with composability conditions,
e.g. in connection with distributive laws, tend to be rather complicated as the
complexity of the functors increase. A graphical proof technique to proving
compliance with composability conditions has shown to provide a more mech-
anised approach to handling complicated constructions involving calculations
with natural transformations.
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For applications, our focus is on composing powerset monads with the term
monad, in order to develop a concept for generalised terms. A first step to-
wards similarities between powersets of terms was done in [8] involving fuzzy
relations for crisp powersets of terms. Using proof techniques presented in this
paper, a range of interesting powerset functors can be further investigated.
It is expected that this approach provides an appropriate formal framework
for useful developments of generalised terms as a basis for many-valued logic
programming involving an extended notion of terms. Within the scope of
many-valued logic programming, this opens up for further work on using cat-
egorical approaches to unification. The theoretical treatment will in addition
benefit from a presentation and investigation within a 2-category framework.
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