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Abstract

Generalisation of the foundational basis for many-valued logic programming builds
upon generalised terms in form of powersets of terms. A categorical approach involv-
ing set and term functors as monads allows for a study of monad compositions that
provide variable substitutions, and compositions thereof. In this paper, substitutions
and unifiers appear as constructs in Kleisli categories related to particular composed
powerset term monads. Specifically, we show that a frequently used similarity-based
approach to fuzzy unification is compatible with the categorical approach, and can
be adequately extended in this setting; also some examples are included in order to
illuminate the definitions.

1 Introduction

Many-valued and possibilistic extensions of logic programming involve lattice-
theoretic considerations with respect to sets of truth values, and proper han-
dling of many-valued sets of terms to allow for an appropriate theory for
unification. Much work has been done focusing only on generalisations of
truth values. For a survey on many-valued extensions of propositional cal-
culi, see [13]. Restricting to finitely many truth values, using the framework
suggested in [21], a many-valued predicate calculus using conventional terms
was proposed in [16]. Recent years show an emerging development allowing
also for the use of generalised terms; for instance, an application of fuzzy uni-
fication to possibilistic logic can be found in [6]. Achievements seen so far,
however, have restricted to constants to be used in various term sets [2,11].

1 This work has been developed as a cooperation organised within COST 274.
2 Partially supported by MCyT Project BFM-1054-C02-02.
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In this paper we propose to use powersets of terms in their full range, i.e. allow-
ing also to use functions in the operator domain. In order to allow for this, we
propose the study of monads and monad compositions that can categorically
mimic composition of variable substitutions involving variable assignments us-
ing powersets of terms rather than just terms. A categorical approach provides
a well-founded formalism but also reveals properties of powersets of terms re-
quired for such compositions of variable substitutions. Generalised terms based
on monad compositions, and used in a unification framework, require inven-
tiveness concerning the provision of monad compositions [8]. Further, new
monads can be constructed e.g. by using techniques given by submonads [10].

In the classical situation, a substitution of variables can be considered as a
mapping σ : X → TΩY , from a set of variables X to a set of terms over an
operator domain Ω, using variables in Y . Given two substitutions ν1 : X →
TΩY and ν2 : Y → TΩZ its composition ν2 ? ν1 : X → TΩZ cannot be the
composition of the mappings. However, the ‘composite’ ν2 ? ν1 can be defined
by the composition

X
ν1−→ TΩY

TΩν2−→ TΩTΩZ
µZ−→ TΩZ

if we can justify the mapping µ. The TΩν2 mapping comes from the functori-
ality of the term constructor. The ‘flattening’ µZ mapping could be obtained
if the functor TΩ is provided with a ‘multiplication’. Later in the paper we will
make these notions precise. Moving from conventional terms to a categorical
framework involving powersets of terms calls for a level of formalism required
to fully make use of the categorical machinery.

It is not an easy task to identify situations in which the underlying behaviour
corresponds to a precise categorical concept. For instance, note that in the
classical case, terms over terms are flattened to terms. This is possible due to
a flattening operator which embeds terms over terms into terms. There exists a
categorical construction involving operators comprising the properties above,
namely the monad. The existence of such flattening operators is not obvious,
and usually not credited to the term monad.

Continuing the discussion about composition, it is easy to see that the ex-
pression above corresponds to that of the Kleisli category of a monad T , and
this, in fact, is one of the key reasons that makes the categorical unification a
success. In [24], it is shown how unification may be considered as an instance
of a colimit in a suitable category, and how general constructions of colimits
provide recursive procedures for computing the unification of terms.

Approaching the generalisation of terms means also to consider a generalised
concept of substitutions, when variables are not replaced by terms but by
many-valued sets of terms. Consider a substitution of a variable by a (crisp)
set of terms, for instance [x/{t1, t3, t6}, y/{t2, t3}]. In this case, a variable sub-
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stitution, should be ν : X → PTΩY where P denotes the powerset functor.
The flattening µZ : PTΩPTΩZ → PTΩZ is now far from obvious. However, as
the composed functor PTΩ can indeed be extended to a monad, the technique
to be used is to consider the corresponding Kleisli category of this monad,
which enables to compose respective substitutions in a proper way.

Regarding other recent approaches to fuzzy or many-valued unification, there
are several references which include concepts as either fuzzy equality relation,
or fuzzy equivalence relation, or similarity relation. For a formal treatment of
similarities and equalities used in many-valued predicate logics, see [13]. In
this paper, we generalise a similarity frequently used between terms, that is,
in the image of the functor T , to a similarity between standard sets of terms
and between terms on sets of variables, interpreting the construction in the
image of the functors PT and TP , respectively; this approach gives us the
possibility of defining unifiers between generalised terms.

The paper is organised as follows. In Section 2, we provide required definitions
and notations of the categorical framework. Section 3 introduces the concept
of similarity, and some examples are developed for selected functors: the term
functor, the powerset term functor and the term powerset functor. Later, in
Section 4 the definitions of variable substitutions and unifier are given for
generalised terms. Section 5 includes some illuminating examples. Finally, in
Section 6 some conclusions and pointers to related work are presented.

2 Powerset and term monads

A monad can be seen as the abstraction of the concept of adjoint functors and,
in a sense, an abstraction of universal algebra. It is interesting to note that
monads are useful not only in universal algebra, but they are also an important
tool in topology when handling regularity, iteratedness and compactifications,
and also in the study of toposes and related topics. See [1,3] for category
theoretic notions.

As remarked in [3], the naming and identification of monads, in particular as
associated with adjoints, can be seen as initiated around 1958. Godement was
at that time one of the very first authors to use monads, even if then only
named “standard constructions”. Huber in 1961 showed that adjoint pairs give
rise to monads. Kleisli [18] and Eilenberg and Moore [7] proved the converse
in 1965. The construct of a Kleisli category was thus made explicit in those
contributions. Lawvere [19] introduced universal algebra into category theory.
This can be seen as the birth of the term monad. These developments then
contain all categorical elements for substitution theories. The exploitation of
terms and unifications within logic programming is formally described in [22]
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as early as in 1965. It is therefore somewhat surprising that the categorical
connection to unification was not found until twenty years later by Rydeheard
and Burstall in [24].

In the following subsections we will provide definitions and notations for mon-
ads and Kleisli categories. Further, we will present those set functors that can
be extended to monads, and which are relevant from the many-valued point
of view. We will also review some results concerning monad compositions.

2.1 Monads and Kleisli categories

A monad (or triple, or algebraic theory) over a category C is written as Φ =
(Φ, η, µ), where Φ: C→ C is a covariant functor, and η : id → Φ and µ : Φ◦Φ →
Φ are natural transformations for which µ◦Φµ = µ◦µΦ and µ◦Φη = µ◦ηΦ =
idΦ hold.

A Kleisli category CΦ for a monad Φ over a category C is defined as fol-
lows: Objects in CΦ are the same as in C, and the morphisms are defined as
homCΦ(X, Y ) = homC(X, ΦY ), that is morphisms f : X ⇁ Y in CΦ are simply
morphisms f : X → ΦY in C, with ηΦ

X : X → ΦX being the identity morphism.

Composition of morphisms is defined as

(X
f
⇁ Y ) ◦ (Y

g
⇁ Z) = X

µΦ
Z◦Φg◦f
−→ ΦZ.

The Kleisli category is equivalent to the full subcategory of free Φ-algebras of
the monad, and its definition makes it clear that arrows are substitutions.

The term functor TΩ, or T for short, with TX being the set of terms over
the operator domain Ω and the variable set X, is extended to a monad in the
usual way. The categorical unification algorithm in [24] is based on the Kleisli
category of the term monad.

In this paper we will follow the categorical notation adopted in [8], where a
term ω(m1, . . . ,mn) is more formally written as (n, ω, (mi)i≤n).

2.2 Set functors extended to monads

In the previous section we have used the, perhaps more intuitive, notation
PX to denote the powerset of X. From now on, in a generalised context we
feel more comfortable with the notation 2X to represent the classical boolean
powerset, according to the general notation LX where L-fuzzy subsets are
considered.
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Consider ordinary powersets and let 2X denote the set of subsets of X, so
that 2 denotes the ordinary powerset functor. With ηX : X → 2X given
by ηX(x) = {x} and µX : 22X → 2X given by µX(B) =

⋃
B, we have the

well-known ordinary powerset monad 2 = (2, η, µ).

The extension to many-valued sets is according to [12]. Let L be a completely
distributive lattice. The covariant powerset functor Lid is obtained by LidX =
LX , i.e. the set of mappings (or L-fuzzy sets) α : X → L. For a morphism

X
f→ Y in Set, we use

Lidf(α)(y) =
∨

f(x)=y

α(x).

Further, ηX : X → LidX is defined by

ηX(x)(x′) =

1 if x = x′

0 otherwise

and µX : LidLidX → LidX by

µX(β)(x) =
∨

α∈LidX

α(x) ∧ β(α).

In [20] it was proved that Lid = (Lid, η, µ) is a monad. Note that for L = {0, 1}
we have Lid = 2.

2.3 Monad compositions

Monad compositions require the use of a swapper transformation σ (see below)
together with conditions related to this swapper. In [4], a set of such condi-
tions was given and the conditions were called distributive laws. Conditions
on monad composability are discussed also e.g. in [5,8,9,15].

In [8] we made use of a swapper σX : TLX → LTX defined in the base case
by σX |T 0LX = idLX , and further inductively given by

σX(l)((n′, ω′, (mi)i≤n)) =


∧
i≤n

σX(li)(mi) if n = n′ and ω = ω′

0 otherwise

where l = (n, ω, (li)i≤n) ∈ TαLX, α > 0, li ∈ T βiLX, βi < α, and it was
proved that the composition of the monads Lid and TΩ is as well a monad.

In case of L = 2, the swapper σX : T2X → 2TX coincides with the expected
result given by intuition, and can be written in set-theoretical terms as follows:
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for the base case σX |2X = id2X and, otherwise by recursion as

σX(l) = {(n, ω, (mi)i≤n) | mi ∈ σX(li)}.

The natural transformation η2T : id → 2T specializes to η2T
X (x) = {x}, and

the natural transformation µ2T : 2T2T → 2T is for R = {(nj, ωj, (rij)i≤nj
) |

j ∈ J} ∈ 2T2TX given by

{(nj, ωj, (mij)i≤nj
) | j ∈ J, mij ∈ σTX(rij)}

Later the ad hoc swapper construction was abstracted and, in [9] a generali-
sation of Beck’s conditions was given as follows

Let Φ = (Φ, ηΦ, µΦ) and Ψ = (Ψ, ηΨ, µΨ) be monads and let σ : Ψ ◦ Φ →
Φ ◦Ψ be a natural transformation such that the following conditions hold:

σ ◦ ηΨΦ = ΦηΨ,

σ ◦ΨηΦ = ηΦΨ,

ΦµΨ ◦ σΨ ◦ΨµΦΨ ◦ΨΦσ = µΦΨ ◦ Φσ ◦ ΦµΨΦ ◦ σΨΦ.

Then Φ •Ψ = (Φ ◦Ψ, ηΦΨ ◦ ηΨ, ΦµΨ ◦ µΦΨΨ ◦ ΦσΨ) is a monad.

The result above gave a set of sufficient conditions for the compositionality
of two given monads, provided we have a swapper. Although the result above
provides a very abstract framework for generalised terms, for the purposes of
this paper, when discussing possible definitions for unifiers using similarities,
we will use the 2T monad only.

3 Similarities

There are several references in the literature that include concepts as either
fuzzy equality relation, or fuzzy equivalence relation, or similarity relation. We
will adopt the latter terminology which will be formally defined later. It should
be remarked that it is useful to consider similarities from a topos-theoretic
point of view. The topos oriented situation where Heyting algebras have idem-
potent conjunctions is not acceptable in many-valued considerations and thus
we need amendments such as those involving monoidal non-idempotent con-
junctions, leading to the weak topos framework, see [26,14] for more detail.
The position of this paper is, however, not to include topos-theoretic consider-
ations at this stage, as our primary purpose is to demonstrate how the concept
of unifiers can be extended to consider also powersets of terms.

In this section, we recall the concept of similarity and, for selected functors
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such as the term functor, the powerset term functor and the term power-
set functor, some examples are developed. We will assume that L denotes a
completely distributive lattice.

A similarity on X is a mapping E : X ×X → L satisfying

E(x, x) = 1 (reflexivity)
E(x, y) = E(y, x) (symmetry)
E(x, y) ∧ E(y, z) ≤ E(x, z) (transitivity)

for all x, y, z ∈ X.

Given two terms
(
n, ω, (mi)i≤n

)
and

(
n′, ω′, (m′

i)i≤n′

)
, we need now to obtain

a similarity between them. Intuitively, we must join the similarity between
ω and ω′ with the combined similarities between respective components mi

and m′
i. In order to be more precise, let Ω be a set of operations, and let further

EΩ be a similarity on Ω, which will be used to define a similarity on TX.

Proposition 3.1 Let ET : TX × TX → L be a relation on TX such that

ET (x, x) = 1 (1)

for all x ∈ X, and for terms t =
(
n, ω, (mi)i≤n

)
, and t′ =

(
n′, ω′, (m′

i)i≤n′

)
,

ET (t, t′) =

EΩ(ω, ω′) ∧ ∧
i≤n ET (mi, m

′
i) if n = n′,

0 otherwise.
(2)

Then ET is a similarity on TX.

Proof: The proof considers the iterative construction in order to build upon
the fact that a join of equality relations is again an equality relation.

The reflexivity of ET follows easily by structural induction and the reflexivity
of EΩ.

Using symmetry of EΩ we obtain

ET

((
n, ω, (mi)i≤n

)
,
(
n, ω′, (m′

i)i≤n

))
= EΩ(ω, ω′) ∧

∧
i≤n

ET (mi, m
′
i)

= EΩ(ω′, ω) ∧
∧
i≤n

ET (m′
i, mi)

= ET

((
n, ω′, (m′

i)i≤n

)
,
(
n, ω, (mi)i≤n

))
.

Transitivity of EΩ gives
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ET

((
n, ω, (mi)i≤n

)
,
(
n, ω′, (m′

i)i≤n

))
∧

ET

((
n, ω′, (m′

i)i≤n

)
,
(
n, ω′′, (m′′

i )i≤n

))
= EΩ(ω, ω′) ∧

∧
i≤n

ET (mi, m
′
i) ∧ EΩ(ω′, ω′′) ∧

∧
i≤n

ET (m′
i, m

′′
i )

= EΩ(ω, ω′) ∧ EΩ(ω′, ω′′) ∧
∧
i≤n

(
ET (mi, m

′
i) ∧ ET (m′

i, m
′′
i )

)
≤EΩ(ω, ω′′) ∧

∧
i≤n

ET (mi, m
′′
i )

= ET

((
n, ω, (mi)i≤n

)
,
(
n, ω′′, (m′′

i )i≤n

))
.

Note that the definition of similarity on TX adopted in this paper differs
from the one adopted in [25] in that the latter requires additionally that
ET (x1, x2) = 0 if x1 6= x2.

For unification purposes we will need a similarity between powersets of terms,
and for this purpose we will now use ET in order to define a similarity on 2TX.
The choice of this similarity on 2TX is less obvious than the one on TX. For
the similarity on 2TX we adopt the viewpoint of combining all similarities of
pairwise terms from respective sets of terms.

Proposition 3.2 Let ET be a relation satisfying conditions (1) and (2). The
relation

E2T : 2TX × 2TX → L

defined for all M1, M2 ∈ 2TX as

E2T (M1, M2) =
∧

m1∈M1

∨
m2∈M2

ET (m1, m2) ∧
∧

m2∈M2

∨
m1∈M1

ET (m1, m2) (3)

is a similarity on 2TX.

Proof: The proof is included for sake of completeness. A similar proof has
been presented in [23] in the case of implication measures.

Reflexivity and symmetry are obvious. For transitivity, we will prove two par-
tial inequalities, in which the notation MN means the set of all the functions
from N to M .

8



Firstly,∨
m∈M

ET (m1, m) ∧
∧

m∈M

∨
m2∈M2

ET (m,m2)

=
∨

m∈M

ET (m1, m) ∧
∨

f∈MM
2

∧
m′∈M

ET (m′, f(m′))

=
∨

m∈M
f∈MM

2

∧
m′∈M

(
ET (m1, m) ∧ ET (m′, f(m′))

)

≤
∨

m∈M
f∈MM

2

(
ET (m1, m) ∧ ET (m, f(m))

)

≤
∨

m∈M
f∈MM

2

(
ET (m1, f(m))

)

=
∨

m2∈M2

ET (m1, m2)

and similarly∨
m∈M

ET (m,m2) ∧
∧

m∈M

∨
m1∈M1

ET (m1, m) ≤
∨

m1∈M1

ET (m1, m2).

Thus, transitivity follows from

E2T (M1, M) ∧ E2T (M, M2) =

=
∧

m1∈M1

∨
m∈M

ET (m1, m) ∧
∧

m∈M

∨
m1∈M1

ET (m1, m)

∧
∧

m∈M

∨
m2∈M2

ET (m, m2) ∧
∧

m2∈M2

∨
m∈M

ET (m, m2)

=
∧

m1∈M1

( ∨
m∈M

ET (m1, m) ∧
∧

m∈M

∨
m2∈M2

ET (m, m2)
)

∧
∧

m2∈M2

( ∨
m∈M

ET (m, m2) ∧
∧

m∈M

∨
m1∈M1

ET (m1, m)
)

≤
∧

m1∈M1

∨
m2∈M2

ET (m1, m2) ∧
∧

m2∈M2

∨
m1∈M1

ET (m1, m2)

= E2T (M1, M2)

Regarding similarities in 2T , recall the approach used in [11] which introduced
the pseudosimilarity (it is not reflexive) below

E ′(M1, M2) =
∧

m1,m2∈M1∪M2

E ′
T (m1, m2).

however, the proposition above shows that there are reasonable similarities
in 2T .
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A similarity on T2X can now easily be given using the similarity on 2TX.

Proposition 3.3 The relation

ET2 : T2X × T2X → L

defined as

ET2(l1, l2) = E2T

(
σX(l1), σX(l2)

)
(4)

where σX : T2X → 2TX is the swapper, is a similarity on T2X.

Proof: Reflexivity and symmetry are obvious. Transitivity follows from

ET2(l1, l) ∧ ET2(l, l2) = E2T

(
σX(l1), σX(l)

)
∧ E2T

(
σX(l), σX(l2)

)
≤E2T

(
σX(l1), σX(l2)

)
= ET2(l1, l2).

Note that, although we have the similarity of T2, it is still an open question
whether the functor composition T2 can be extended to a monad. This is
why in the following section we restrict our attention to standard powersets
of terms.

4 Unifiers

In this section we introduce the concepts of variable substitutions and unifiers,
in particular within the context of powersets of terms. In the classical situation,
variable substitutions are mappings assigning variables to terms, i.e. mappings
θ : X → TY .

For powersets of terms in a generalised setting, given a monad Φ such that
the composition Φ •TΩ still provides a monad, variable substitutions should
then be viewed as mappings

θ : X → ΦTY.

Given a term M ∈ ΦTX in form of a generalised powerset of terms, the result
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M1 M2 E2T (M1,M2)

{t1} {t1, t2, t3} ET (t1, t2) ∧ ET (t1, t3)

{u1(c1)} {u1(u1(c1))} 0

{u1(c1)} {u2(x)} EΩ(u1, u2) ∧ ET (c1, x)

{u1(c1), u1(c2)} {u2(c1), u2(c2)} EΩ(u1, u2)

{u1(c1), u2(c2)} {u1(c2), u2(c1)} EΩ(u1, u2) ∨ EΩ(c1, c2)
Table 1
Equality of generalised terms.

Mθ of applying a variable substitution θ on M is given by

Mθ = (µΦT
Y ◦ ΦTθ)(M)

i.e. Mθ is kind of a flattening of a set of terms over sets of terms, where µΦT
Y

provides the flattening operation. Note that in the particular case of Φ being
the identity monad, Mθ is nothing but the expected classical result when
applying the variable substitution θ to the term M ∈ TX.

We will focus on the particular case of Φ = 2. To illuminate our constructions,
let Ω = {c1, c2, u1, u2}, where ci are nullary operators (constants), and ui unary
operators, i = 1, 2. Further, let x be a variable. Table 1 shows similarity values
for some typical pairs of generalised terms. For M2 = {u2(x)}, note the effect
of the variable substitutions θ(x) = c1 and θ(x) = u1(c1).

Variable substitutions can obviously be defined more generally over monads
(F, ηF , µF ). Indeed for an object A ∈ FX, and a variable substitution θ : X →
FY , we will have

Aθ = (µF
Y ◦ Fθ)(A).

When composing substitutions, the utility of the flattening operator again
becomes explicit.

Definition 4.1 The composition of two substitutions θ′ : X → ΦTY and
θ′′ : Y → ΦTZ is given by

θ′θ′′ = µΦT
Z ◦ ΦTθ′′ ◦ θ′

i.e. the composition in the Kleisli category SetΦT for the powerset monad
Φ •T over the category of sets.

For Φ being the identity monad, variable substitutions correspond to the
classical case, where use of the idempotency of “terms over terms” is usually
not made very explicit.

To continue with the case of Φ = 2, given M1, M2 ∈ 2TX, let [M1; M2]
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represent an equation over 2TX. In order to propose a definition of generalised
unifiers for equations we will assume the existence of similarities, as those in
the previous section.

Definition 4.2 A unifier of the equation [M1; M2] over 2TX is a substitution,
θ : X → 2TY , such that E2T (M1θ, M2θ) equals

sup{E2T (M1ϑ, M2ϑ) | ϑ is a substitution}.

It might be possible that the supremum above could not be attained by any
substitution. The particular features of the lattice or the underlying applica-
tion might require a weaker version of the definition, as follows:

Let θ be a substitution, and [M1; M2] an equation over 2TX. We say that θ is a
unifier if E2T (M1, M2) ≤ E2T (M1θ,M2θ), that is, if the substitution increases
the similarity degree. Note that a unifier θ is a so called extensional mapping
according to [17].

5 Examples

Examples in this section are included in order to provide illuminations of our
notions. More elaborate examples can be found in application papers, such as
those dealing with fuzzy control.

5.1 Similarity between numerical functions

A possible situation in which the use of similarities is required is given be-
low as a similarity between numerical real-valued functions. The similarity is
defined in terms of a ‘uniform distance.’ Suppose that when solving a func-
tional equation, we apply different iterative methods and, therefore, different
approximations are obtained. The different approximations obtained to the
actual solution f are classified in classes of functions [f ]εi

according to an
increasing numerable sequence of bounds ε1, ε2, . . . , εn < 1 and the following
measure: A function g is in the class [f ]εi

if and only if |f(x)− g(x)| < εi and
g /∈ [f ]εj

for all j < i.

Let us designate a canonical representative gεi
for each class [g]εi

, and consider
the set Ω = {f, gεi

}1≤i≤n. The relation EΩ : Ω× Ω → [0, 1] given by

EΩ(f, f) = 1 = EΩ(gεi
, gεi

),

EΩ(gεi
, gεj

) = 1−max{εi, εj} if i 6= j
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and
EΩ(f, gεi

) = 1− εi = EΩ(gεi
, f)

indeed defines a similarity relation. The similarities E2T and ET are defined
in terms of EΩ as stated previously.

Now, the similarity between two composite functions, for instance gεi
(f(x))

and f(gεi
(x)), can be considered as terms over the variable x and, therefore,

calculated using ET by the expression

ET (gεi
(f(x)), f(gεi

(x))) = 1− εi.

Furthermore, we compare the similarity of two sets of functions as sets of
terms:

M1 = {f(f(x)), f(gε(x))}
M2 = {gε(f(x)), f(gε(x))}

The similarity between M1 and M2 is then given by

E2T (M1, M2) = 1− ε.

Let us now consider the sets N1 and N2:

N1 = {f(a), gε(x1)}

N2 = {f(x1), gε(a)}
Then, E2T (N1, N2) = 1− ε.

Let θ1, θ2 : X → 2TY be the substitutions given by θ1(x1) = {a, y}, and
θ2(x1) = {a}. Then E2T (N1θ1, N2θ1) = 1 − ε and E2T (N1θ2, N2θ2) = 1. Note
that in this case θ2 is a most general unifier. In fact the composition of θ1 and
θ2 is again θ1.

5.2 Qualification for course participance

In order to qualify for participance in a course, C, the students should (pref-
erentially) have taken the courses c1, c2, c3. Alternatively, students may obtain
part of the contents of these courses by studying the courses n1, n2.

The lectures for the courses c1 and n1 are held at the same time. The same
happens for the courses c2 and n2. This means that the students should choose
between studying either c1 or n1 and studying either c2 or n2.

The relation between the contents in the different courses are given by the
similarity relation in Table 2. In order to admit students to participate in C,
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E c1 c2 c3 n1 n2

c1 1 0.2 0.2 0.6 0.2

c2 0.2 1 0.2 0.2 0.7

c3 0.2 0.2 1 0.2 0.2

n1 0.6 0.2 0.2 1 0.2

n2 0.2 0.7 0.2 0.2 1
Table 2
Similarities between courses.

it is needed to check which students have an education more ‘similar’ to the
one required.

In the following a student will be represented by the set of courses (s)he
has studied. Let R = {c1, c2, c3} be the set of requirements. The student
S1 = {c1, n2} has studied the courses c1, n2. The level of agreement with the
C course for this student is then E2T (S1, R) = 0.2.

For S2 = {c3, n1, n2}, the level of agreement is E2T (S2, R) = 0.6, and for
S3 = {c2, c3, n1}, the level is also E2T (S3, R) = 0.6.

If we know that a student has taken at least the courses c1, n2, i.e. Sx =
{c1, n2, x}, then a most general unifier in this case is θ(x) = {c3} with corre-
sponding level of agreement E2T (Sxθ,R) = 0.7. Note that θ′(x) = {c2, c3} is
also a unifier. Then E2T (Sxθ

′, R) = 0.7 and not 1 as we might have expected.
The reason for this is that we are comparing similarity of sets, even if in a real
case this unifier is not worth to be considered since the student cannot study
c2 and n2 simultaneously.

6 Conclusions and future work

We have shown how generalised terms, as given by powersets of terms, can
be handled in equational settings involving substitutions and unifiers. The
utility of categorical techniques as provided by monads is obvious and indeed
encouraging for further investigations on more elaborate compositions and
categorical techniques for unification as initiated in [24].

In further work it is important to merge our efforts with developments, such
as in [2], that have focused more on semantic aspects of many-valued logic
programming. Semantic approaches seem to be fruitful in particular within
possibilistic logic frameworks. These developments, however, still have a rather
specialised use of terms as they typically restrict to using powersets of con-
stants instead of generalised terms in their full range. However, restricting to
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powersets of constants seems more to be a struggle with unification than with
proof procedural issues, and there are no indications that the specialised use
of terms is enforced by the semantic developments, such as those seen in pos-
sibilistic logic. The procedural issues being important it is equally worthwhile
to underline the importance of further studies on monad compositions.

Acknowledgements We are grateful to the anonymous referees who helped
us significantly to improve the paper and also drew our attention to further
categorical issues to be considered in future work related to these problems.
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