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Abstract

We investigate the use of multilattices as the set of truth-values underlying a gen-
eral fuzzy logic programming framework. On the one hand, some theoretical results
about ideals of a multilattice are presented in order to provide an ideal-based se-
mantics; on the other hand, a restricted semantics, in which interpretations assign
elements of a multilattice to each propositional symbol, is presented and analysed.
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1 Introduction

The problem of generalising the structure of the underlying set of truth-values
for fuzzy logic programming has attracted the attention of a number of re-
searchers in the recent years.

On the one hand, weakening the structure of the underlying set of truth-values
for logic programming has been studied extensively: There are approaches
which are based either on the structure of lattice (residuated lattice [6, 21]
or multi-adjoint lattice [16]) with the aim of providing a common framework
for monotonic extensions of logic programming, or more restrictive structures,
such as bilattices [7,14], specially suited for the treatment of non-monotonicity,
or trilattices [13], in which points can be ordered according to truth, infor-
mation, or precision. There have been even more general structures such as
algebraic domains [19].

On the other hand, one can also find some attempts aiming at weakening the
restrictions imposed on a (complete) lattice, namely, the “existence of least
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upper bounds and greatest lower bounds” is relaxed to the “existence of min-
imal upper bounds and maximal lower bounds”. In this direction, Benado [1]
and Hansen [9] proposed definitions of a structure so-called multilattice.

More recently, another formalisation of the notion of multilattice was intro-
duced [3, 4] as a theoretical tool to deal with some problems in the theory of
mechanised deduction in temporal logics. This kind of structure also arises in
the research area concerning fuzzy extensions of logic programming: for in-
stance, one of the hypotheses of the main termination result for sorted multi-
adjoint logic programs [5] can be weakened only when the underlying set of
truth-values is a multilattice (the question of providing a counter-example on
a lattice remains open).

A typical example of multilattice can be obtained by interlacing two or more
given chains, for instance as in Fig 1 below. From an applicative point of view
regarding logic programming, when constructing one program, the assignment
of weights to each fact or rule could be done by asking a set of experts,
and each of the given chains may be interpreted as the scoring labels used
by each of these experts; for instance, values a and c would correspond to
Expert 1 and b and d to Expert 2 (maximum and minimum are identified).
The underlying idea is to consider the value of any element of the multilattice
modulo the interlace, this means that we can think of the chain consisting of
[⊥, {a, b}, {c, d},>], and get the added benefit of the traceability of the result,
that is, to check to what extent the information provided by an expert has
been useful for a particular computation. Obviously, the reference to M6 has
been only to provide a simple example, a much more interesting example can
be obtained by interlacing two or more chains [0, 0.1, 0.2, . . . , 0.9, 1]

As far as we know, the only attempt to use multilattices in the context of
extended fuzzy logic programming has been [15], which is extended in several
directions in this work. The aim of this paper is two-fold: on the one hand, we
study some mathematical properties of multilattices, including new conditions
under which fixed points exist, together with an introduction to the theory
of ideals of multilattices, in which some new results are presented (particu-
larly those related to submultilattices) and linked to previous results in the
literature, in order to provide (some) ideal-based semantics of monotonic logic
programs valued on a multilattice; on the other hand, a restricted semantics,
in which interpretations assign elements of a multilattice to each propositional
symbol, is presented and analysed. The study of the restricted semantics gen-
erates a number of interesting algebraic problems among which we concentrate
in the development of a (non-deterministic) fixed point theory. Last but not
least, we improve the result about the existence of minimal models in [15],
and we prove here that any model is lower bounded by a minimal model.

The structure of the paper is as follows: In Section 2 the definition and pre-
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Fig. 1. The multilattice M6.

liminary theoretical results about multilattices are introduced, including the
selection of desirable computational properties of our multilattices, and its the-
ory of ideals; later, the syntax of our extended logic programs are presented in
Section 3, together with the ideal-based semantics and the restricted seman-
tics, both based on the fixed points of the immediate consequence operator.
The last section contains conclusions and prospects for future work.

2 Preliminary results about multilattices

Recall that a complete lattice is a poset such that the set of upper (lower)
bounds of every subset has a unique minimal (maximal) element, that is,
a minimum (maximum). In a multilattice, this property is relaxed in the
sense that minimal elements for the set of upper bounds should exist, but the
uniqueness condition is dropped.

Definition 1 A complete multilattice is a partially ordered set, 〈M,≤〉, such
that for every subset X ⊆M , the set of upper (lower) bounds of X has minimal
(maximal) elements, which are called multi-suprema (multi-infima).

Note that, by definition, it follows that the sets multinf(X) and multisup(X)
are antichains (non-empty sets consisting of pair-wise incomparable elements).

Example 2 The simplest proper complete multilattice is shown in Fig. 1.
Note that the elements a and b do not have a least upper bound, but two
minimal upper bounds, namely c and d.

It is remarkable that, under suitable conditions, the set of fixed points of a
mapping from M to M does have a minimum and a maximum.

Definition 3 A mapping f : P −→ Q between two posets is said to be isotone
if x ≤ y implies f(x) ≤ f(y); a mapping g: P −→ P is inflationary if x ≤ g(x)
for all x ∈ P .

3



Theorem 4 Let f : M −→ M be an isotone and inflationary mapping on
a multilattice, then its set of fixed points is non-empty and has a minimum
element.

PROOF. Let us write X = {x | f(x) = x}, this set is nonempty since
inflation forces > to be a fixed point; now, consider a ∈ multinf(X), a maximal
lower bound of X, and let us prove that a is a fixed point of f .

As a is a lower bound for all x ∈ X, we have a ≤ x and, by isotonicity,
f(a) ≤ f(x) = x for all x ∈ X (the equality follows by definition of X); thus,
f(a) is also a lower bound of X. Moreover, by inflation, we have a ≤ f(a);
thus, as a is maximal, we have f(a) = a, and a is a fixed point. Hence, we
have a ∈ X.

We have proved that multi-infima of the non-empty set of fixed points are
fixed points. Now, let us show that there cannot be two different multi-infima.

Consider a, b ∈ multinf(X), and recall that we have just proved that a, b ∈ X.
As both are lower bounds of X, then a ≤ b and b ≤ a. Thus, multinf(X) is a
singleton consisting of the minimum element of X, that is, the minimum fixed
point. 2

As by assumption, our sets will not necessarily have a supremum but a set of
multi-suprema, we will need to work with some ordering between subsets of
posets. Three different (pre-)orderings are usually considered in the literature,
the Hoare ordering, the Smyth ordering and the Egli-Milner ordering:

Definition 5 Consider X, Y ⊆ 2M :

• X vH Y iff for all x ∈ X exists y ∈ Y such that x ≤ y.
• X vS Y iff for all y ∈ Y exists x ∈ X such that x ≤ y.
• X vEM Y iff X vH Y and X vS Y

2.1 Some desirable properties of multilattices

Regarding computational properties of multilattices, it is interesting to im-
pose certain conditions on the sets of upper (lower) bounds of a given set X.
Specifically, we would like to ensure that any upper (lower) bound is greater
(less) than a minimal (maximal); this condition enables to work on the set
of multi-suprema (multi-infima) as a set of “generators” of the bounds of X.
The formalisation of these concepts is given as follows:
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Fig. 2. A non-coherent multilattice.

Definition 6 A multilattice is said to be coherent if the following set of in-
equalities hold for all X ⊆M :

LB(X) vEM multinf(X) multisup(X) vEM UB(X)

where UB(X) (resp. LB(X)) denotes the set of upper (lower) bounds of X.

Note that in the two items above, one part of the Egli-Milner ordering is trivial,
since any multi-infimum is a lower bound and any multi-supremum is an upper
bound. It is not difficult to provide examples of non-coherent multilattices:

Example 7 A non-coherent multilattice is shown in Fig. 2, where

UB({a, b}) = {>, d} ∪ {cn | n ∈ N}

in which element d is minimal in UB({a, b}); however, the elements cn fail to
be greater than one minimal upper bound.

Another reasonable condition to require on a multilattice is that it should
not contain infinite sets of mutually incomparable elements (antichains) since,
semantically, it makes little sense to consider infinitely many incomparable
truth-values. Coherent multilattices without infinite antichains have interest-
ing computational properties: to begin with, recall that the sets of multi-
suprema or multi-infima for totally ordered subsets (also called chains) always
have a supremum and an infimum.

Lemma 8 Let M be a coherent multilattice without infinite antichains, then
any chain in M has a supremum and an infimum.

PROOF. Let {xi}i∈I ⊂M be a chain and, assume that a, b ∈ multisup({xi}).
We will show that there is an element c ∈ multinf({a, b}) which is an upper
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bound of the chain.

As there are no infinite antichains in M , the set multinf({a, b}) is finite, and
we can write

multinf({a, b}) = {c1, . . . , cn}

If n = 1, as any xi is a lower bound of {a, b}, by the hypothesis of consistency
we would have xi ≤ c1 for all i ∈ I.

If n > 1, by contradiction, assume that no cj, with j = 1, . . . , n, is an upper
bound of the chain; then, for all j we choose an element xj which is not
upper bounded by cj. Now, as {xi} is a chain, let us consider the greatest of
x1, . . . , xn, say xj0 . By consistency, there is ck which is greater than xj0 , but
then

xk ≤ xj0 ≤ ck

which would contradict the choice of xk.

To summarise, we have proved the existence of c ∈ multinf({a, b}) which,
moreover, is an upper bound of the chain. Now, c ∈ multinf({a, b}) implies
the inequalities c ≤ a and c ≤ b; on the other hand, as c is also an upper
bound of {xi} and a and b are multi-suprema of {xi}, then a ≤ c and b ≤ c,
resulting that a = b = c, which proves that multisup({xi}) is a singleton,
hence the supremum of the chain.

The proof for the infimum is similar. 2

All the hypotheses are necessary for the existence of supremum and infimum
of chains; in particular, the condition on infinite antichains cannot be dropped.

Example 9 The poset in Fig. 3 is a coherent multilattice; however, the set of
upper bounds of the increasing sequence {xn} does not have a minimum, but
two minimals, namely, a and b.

An important consequence of the choice of coherent multilattices and without
infinite antichains is the following result, alternative to Theorem 4, concerning
the existence and reachability of least fixed points of mappings f : M −→M .

Theorem 10 Let M be a coherent multilattice without infinite antichains and
f : M −→M an isotone map then f has a least fixed point which can be reached
by (transfinite) iterations of f .
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Fig. 3. Coherent multilattice with infinite antichains.

PROOF. Isotonicity guarantees the construction, starting from ⊥, of an in-
creasing sequence for every successor ordinal. Now, by Lemma 8, every chain
has a supremum, so it makes sense to define the extension of the sequence
for limit ordinals in the usual manner. The rest of the proof follows that of
Knaster-Tarski for complete lattices. 2

Note that the same result does not hold when changing inflation for isotonicity.
Although it is trivial that an inflationary function has fixed points, it is not
always the case that a least one should exist. Moreover, even if a least fixed
point exists it might happen that the sequence defined above does not converge
to it.

Example 11 Let us consider the map f : M6 −→M6 defined as follows:

f(⊥) = a, f(a) = d, f(b) = c, f(c) = c, f(d) = >, f(>) = >

Obviously, f is inflationary but non-isotonic, and has a least fixed point (the
element c); however, the successive iterations from ⊥ lead to the fixed point >.

We will assume in the rest of the paper that our underlying multilattices are
complete, coherent and without infinite antichains.

2.2 Ideals of multilattices

As stated in the introduction, we are interested in studying the set of ideals of
a multilattice, so that we can define an ideal-semantics as in [12]; however, the
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definition of ideal in a multilattice is not canonical. For instance, one can find
the notion of s-ideals introduced by Rach̊unek, or the l-ideals of Burgess, or
the m-ideals given by Johnston [10,17]. In this section, we study the differences
between the various definitions and propose some new alternatives.

To begin with, let us recall the definition of ideal of a lattice:

Definition 12 A nonempty subset D of a lattice L is said to be an ideal of
L if it is downward closed and for all a, b ∈ D we have that a ∨ b ∈ D.

For a multilattice, as stated above, at least three extensions of the concept of
ideal can be found.

Definition 13 Given a multilattice M and a non-empty subset D of M , we
say that D is:

• An s-ideal if and only if it is downward closed and for every a, b ∈ D we
have that UB({a, b}) ∩D 6= ∅.

• An l-ideal if and only if for every a, b ∈ D we have that LB(UB({a, b})) ⊆
D.

• An m-ideal if and only if for every a, b ∈ D such that sup{a, b} exists we
have that LB(sup{a, b}) ⊆ D.

It is not difficult to check that, in the particular case of a lattice, all definitions
above collapse to the usual definition of ideal of a lattice. Moreover, for the
general case of a multilattice M , if Iα(M) denotes the set of α-ideals, where
α ∈ {l,m, s}, we clearly have

Is(M) ⊆ Il(M) ⊆ Im(M). (1)

Recall the following interesting relationship between sublattices and ideals of
a lattice, see [2, 8].

Lemma 14 Let A be a sublattice of a lattice L, then A is an ideal of L if and
only if for every a ∈ A and x ∈ L we have that a ∧ x ∈ A.

In order to obtain a similar result for multilattices, we introduce the definition
of submultilattice of a multilattice M .

Definition 15 Let M be a multilattice and ∅ 6= B ⊆ M , we say that B is
a submultilattice of M if it inherits the multilattice structure when using the
restriction of the multisuprema and multinfima to B.

Notice that there are two reasonable possibilities of considering the restriction
of the operators multisup and multinf:
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• A submultilattice B of M is said to be full (or f-submultilattice) if for every
a, b ∈ B we have that all the multisuprema and multinfima of {a, b} in M
are in B.
• A submultilattice B of M is said to be restricted (or r-submultilattice)

if for every a, b ∈ B we have that at least one multisupremum and one
multinfimum of {a, b} in M is in B.

It is obvious that every f-submultilattice is a r-submultilattice, but not vice
versa. The following lemma gives us a relationship between (f- or) r-submultilat-
tices and each type of ideal:

Lemma 16 Let B be a (f- or) r-submultilattice of multilattice M then, B is
an (s- or l- or) m-ideal if an only if for every b ∈ B and x ∈M we have that
multinf{b, x} ⊆ B.

PROOF. Let B be a r-submultilattice B, for the case of f-submultilattices
the proof is equal.

Firstly, we suppose that B is an (s- or l- or) m-ideal then the property is
clearly satisfied since every such ideal is downward closed.

Reciprocally, by the chain of inclusions Is(M) ⊆ Il(M) ⊆ Im(M), it is enough
to prove that B is an s-ideal, that is, B is downward closed and for every
a, b ∈ B we have that UB({a, b}) ∩B 6= ∅.

It is straightforward that B is downward closed, since for b ∈ B, and every
x ∈M such that x ≤ b we have multinf{b, x} = {x} ⊆ B by our hypothesis.

Now, let a, b ∈ B, as B is a r-submultilattice, we have that at least an element
c of multisup{a, b} is in B, hence c ∈ UB({a, b}) ∩B 6= ∅. 2

From the previous result one could be tempted to say that all three types of
ideals for multilattices coincide. This is not true, as the inclusions in (1) are,
in general, strict:

• In M6 we have that {⊥, a, b} is an l-ideal but it is not an s-ideal.
• In the multilattice of Fig. 4 we have that {⊥, a, b} is an m-ideal but it is

not an l-ideal.

An interesting consequence of Lemma 16 is that, in difference with what
happens with lattices, not every l-ideal or m-ideal is necessarily a (f- or) r-
submultilattice, otherwise all three types of ideals would coincide. However,
every s-ideal of a coherent multilattice is a r-submultilattice but not necessarily
a f-submultilattice.
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Lemma 17 Let D be a s-ideal of a coherent multilattice M , then D is a r-
submultilattice.

PROOF. Given a, b ∈ D, we must prove that multisup{a, b} ∩ D 6= ∅ and
multinf{a, b} ∩D 6= ∅.

The last one is trivial from the downward closed property. For the other one,
as D is a s-ideal, we consider c ∈ UB({a, b}) ∩D then, from the coherent of
M , there exists d ∈ multisup({a, b}) such that d ≤ c and, as D is downward
closed and c ∈ D, we obtain that d ∈ multisup({a, b}) ∩D. 2

In the following example we show that the result above does not hold if the
initial multilattice is not coherent.

Example 18 In the non-coherent multilattice shown previously in Fig. 2, the
subset D = {⊥, a, b, c1, c2, c3, . . .} is an s-ideal, but we can check easily that
multisup{a, b} ∩D = ∅, hence it is not a submultilattice.

Example 19 An s-ideal is not always a f-submultilattice, for example in the
(coherent) multilattice M6 we have that {⊥, a, b, c} is an s-ideal but not a
f-submultilattice.

Another interesting property on the framework of ideals of lattices is the fol-
lowing result, which relates the kernel of a join-homomorphism (the inverse
image of ⊥) with ideals.

Theorem 20 (Birkhoff [2]) If Φ: L1 −→ L2 is an join-homomorphism be-
tween lattices then ker(Φ) is an ideal.

In the statement, a join-homomorphism between lattices is an application
which preserves joins. The extension to the framework of multilattices is the
following:

Definition 21 Let M1 and M2 be multilattices; a mapping Φ: M1 −→ M2 is
said to be a multisup-homomorphism if for every B ⊆M1 and b ∈ multisup(B),
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we have that Φ(b) ∈ multisup(Φ(B)).

With these definitions we can translate the theorem above to multilattices.

Theorem 22 If Φ: M1 −→ M2 is a multisup-homomorphism between multi-
lattices, then ker(Φ) is an (s- or l- or) m-ideal.

PROOF. By the chain of inclusions (1) we only have to prove the result for
s-ideals. Let a, b ∈ ker(Φ) and let us prove that UB({a, b}) ∩ ker(Φ) 6= ∅.

As a, b ∈ ker(Φ) we have that Φ(a) = Φ(b) = ⊥ so multisup{Φ(a), Φ(b)} = ⊥.
Since Φ is a multisup-homomorphism we have that if x ∈ multisup{a, b}, then

Φ(x) ∈ multisup{Φ(a), Φ(b)} = ⊥

hence x ∈ ker(Φ) and therefore x ∈ UB({a, b}) ∩ ker(Φ). 2

Now that we have shown that the proposed definitions of ideals for a mul-
tilattice are friendly to most of the properties of ideals of a lattice, let us
concentrate now on the algebraic structure of the sets of every type of ideal.

Assuming that the set of ideals Iα(M) is ordered by set-inclusion, then it is
easy to check that Il(M) and Im(M) are complete lattices. On the other hand,
Is(M) is a complete multilattice (provided that M is complete and infinite
antichains do not exist) [10].

Example 23 For M6, the complete multilattice of its s-ideals is depicted on
the left of the picture below, and turns out to be isomorphic to M6. The com-
plete lattices of l-ideal and m-ideals coincide, since in this case there is no
difference between l- and m- ideals, and the result is depicted on the right part
of the picture:
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That the set of s-ideals of M6 coincides with M6 is not just a coincidence, but
an instance of the following result:
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Proposition 24 Let M be a finite multilattice, then M and Is(M) are order-
isomorphic, i.e. there exists a bijective mapping which is both order-preserving
and order-reflecting.

PROOF. Let us define an order-isomorphism Φ: M −→ Is(M). Given an
element a ∈ M , define Φ(a) = Da = {x ∈ M | x ≤ a}. It is not difficult to
check that Da is the least s-ideal containing a, so Φ is well-defined.

Let us prove that Φ is bijective: If a 6= b it is clear that Da 6= Db, hence Φ is
one-to-one; on the other hand, to prove that Φ is onto it suffices to check that
any s-ideal in M has a maximum.

As D ⊆M is finite, it has maximal elements. Consider two maximal elements c
and d then, by definition of s-ideal, there exists e ∈ UB({c, d})∩D. This means
that c, d ≤ e, by maximality of c and d we would have c = e = d, as a result
D is a finite set with just one maximal element, which is its maximum. 2

3 Extended logic programs

In this section we provide a first approximation of the definition of an extended
logic programming paradigm in which the underlying set of truth-values is
assumed to have structure of multilattice. The proposed schema is an extension
of the monotonic and residuated logic programs of [6]. The definition of logic
program is given, as usual, as a set of rules and facts.

Definition 25 An extended logic program is a set P of rules of the form
A← B such that:

(1) A is a propositional symbol of Π, and
(2) B is a formula of F built from propositional symbols and elements of M

by using isotone operators.

The structure of complete lattice of some sets of ideals enables us to provide an
ideal-based fixpoint semantics for extended programs in terms of the Knaster-
Tarski theorem. This will be done in the following section.

3.1 Ideal fix-point semantics

We will consider α-ideals (where α denotes either l or m, since Il(M) and
Im(M) form a complete lattice), and our interpretations will attach an ideal
to any propositional symbol:
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Definition 26 An interpretation is a mapping I: Π→ Iα(M). The set of all
interpretations is denoted I.

The ordering ≤ of the truth-values M can be extended point-wise to the set of
interpretations I as usual; and also endows I with a complete lattice structure.

Now, at this point we cannot apply the homomorphic extension theorem in
order to extend the definition of interpretation to any formula occurring in
the body of our rules 2 as usual, since our connective operators are usually
interpreted as functions in the multilattice M , not between ideals. Thus, we
explicitly define how to extend a given interpretation to any body-formula:

• Given I and a ∈M , we define Î(a) as the least α-ideal containing a.
• Given I, atoms A1, . . . , An, and any isotone n-ary function @ we define

Î(@(A1, . . . , An)) as⊎ {
@(a1, . . . , an) | ai ∈ I(Ai), i ∈ {1, . . . , n}

}

where
⊎

denotes the least α-ideal generated by a subset.

Note that, with the definition above, @ can be seen as an operator in Iα

sending the ideals I(A1), . . . , I(An) to the ideal defined above.

Remark 27 It is worth to recall that, as a consequence of Is(M) not being a
lattice, the operator

⊎
is not defined for s-ideals: for instance, in M6 there is

not a least ideal containing {a, b}, but two minimal ideals.

A rule of an extended logic program is satisfied whenever the truth-value of the
head of the rule is greater or equal than the truth-value of its body. Formally:

Definition 28 Given an interpretation I, a rule A ← B is satisfied by I if
and only if Î(B) ⊆ I(A). An interpretation I is said to be a model of an
extended logic program P if and only if all rules in P are satisfied by I, then
we write I |= P.

After defining the (two) model semantics based on the (l- and m-) ideals of a
multilattice, we can proceed with the development of a fixpoint semantics and
study possible similarities with the ideal fixed semantics based on lattices.

The usual definition of immediate consequences operator TP, can be translated
to the context of our ideal-based semantics as follows:

Definition 29 Given an extended logic program P, an interpretation I and a
propositional symbol A; the immediate operator of consequences TP is defined

2 We will refer to these formulas as body-formulas.
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about I and A as

TP(I)(A) =
⊎  ⋃

A←B∈P
Î(B)


As we are working on a lattice structure we can apply the results of [16], and
obtain that:

(1) TP is an isotone operator.
(2) An interpretation I is a model if and only if TP(I) ≤ I.
(3) TP is a continuous operator if and only if all the operators @ involved in

the bodies are continuous (as operators in Iα).
(4) If TP is continuous, then it has a least fixed point that can be attained

after at most ω iterations.

Obviously, the least ideal-based model for a program might be different de-
pending on whether we are using either l-ideals or m-ideals.

Example 30 Let us consider in Figure 4 the following program:

A← a A← b

We have that the least m-ideal is Im(A) = {⊥, a, b}, but its least l-ideal is
Il(A) = {⊥, a, b, c}.

The previous example shows that the use of different type of ideals can lead
to different least models. Anyway, by the chain of inclusions (1), it is always
the case that the least model provided by the m-ideals is smaller or equal than
that provided by the s-ideals.

The question of choosing one type of ideal or the other seems to be conditioned
by the particular application in mind; however, in order to provide some the-
oretical support for helping a suitable choice of the type of ideal to work
with, it seems reasonable to develop an alternative semantics directly based
on the underlying multilattice, and study its relationship with the ideal-based
semantics.

3.2 Restricted fix-point semantics

In this section, we aim at providing a semantics directly based on the under-
lying multilattice of truth-values. This means that the definition of interpre-
tation has to be modified in that an interpretation will be considered as an
assignment of truth-values to every propositional symbol in the language.

Definition 31 A (restricted) interpretation is a mapping I: Π→M . The set

14



of all interpretations is denoted I.

Note that by the unique homomorphic extension theorem, any interpretation
I can be uniquely extended to the whole set of formulas (the extension will
be denoted as Î). The ordering ≤ of the truth-values M can be extended
point-wise to the set of interpretations as usual.

A rule of an extended logic program is satisfied whenever the truth-value of the
head of the rule is greater or equal than the truth-value of its body. Formally:

Definition 32 Given an interpretation I, a rule A ← B is satisfied by I iff
Î(B) ≤ I(A). An interpretation I is said to be a model of an extended logic
program P iff all rules in P are satisfied by I, then we write I |= P.

Example 33 Let us consider the following program on the multilattice M6:

E ← A E ← B A← a B ← b

It is easy to check that the interpretation I defined as I(E) = >, I(A) = a,
I(B) = b is a model of the program.

Every extended program P has the top interpretation O as a model; regarding
minimal models, it is possible to prove the following technical lemma.

Lemma 34 A chain of models {Ik}k∈K of P has an infimum in I which is
a model of P.

PROOF. Given a propositional symbol A, the existence of infk{Ik(A)} is
guaranteed by Lemma 8, thus we can safely define an interpretation Iω as
follows:

Iω(A) = inf
k∈K
{Ik(A)}

Now, let us show that Iω is a model of P:

Given a rule A ← @[B1, . . . , Bn] in P, where @ denotes the composition of
the operators occurring in the body of the rule, and the Bi’s are the variables
occurring in it; by isotonicity of @ we obtain the following chain of inequalities
for all i ∈ K:

Îi(B) = @[Ii(B1), ..., Ii(Bn)] ≥ @
[
inf
k∈K
{Ik(B1)}, ..., inf

k∈K
{Ik(Bn)}

]
= Îω(B)
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As Ii is a model for all i we obtain:

Ii(A) ≥ Îi(B) ≥ Îω(B)

thus, by definition of infimum, we have

Iω(A) = inf
k∈K
{Ik(A)} ≥ Îω(B)

so Iω is a model of P. 2

Theorem 35 There exist minimal models for any extended logic program P.
Moreover, if I is a model of P then there exists a minimal model of P, m, such
that m v I.

PROOF. Let M be the set of models of P. By Zorn’s lemma, we only have
to prove that any chain in M is lower bounded, but this follows from the
previous lemma since the infimum of a chain of models is also a model.

For the second result consider I to be a non-minimal model, then there exists
another model I1 such that I1 v I. If I1 is minimal we have finished, otherwise
there exists a model I2 such that I2 v I1 v I, and so on. Following this
process we build a chain of models, therefore by Kuratowski’s lemma (a chain
of elements of a poset is contained in a maximal chain) on the poset of models,
there should exist a maximal chain of models C containing our chain, but by
Lemma 34 we have that C has an infimum m which is a model but C was
maximal so m is a minimal model and m v I. 2

Example 36 Continuing with the program in the previous example, it is easy
to check that the program does not have a minimum model but two minimal
ones:

I1(E) = c I2(E) = d

I1(A) = a I2(A) = a

I1(B) = b I2(B) = b

An interesting technical problem arises when trying to extend the definition of
the immediate consequences operators to the framework of multilattice-based
logic programs. One of the several possible approaches to provide a fixed point
semantics for the extended logic programs is presented and analysed.

The main theoretical tool for the study of the fixed point semantics of pro-
gramming languages is Knaster-Tarski theorem in some of its constructive
versions, although some other fixed point theorems are also of use, see [11].
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Given a logic program P valued on a lattice, the operator TP: I → I, maps
interpretations to interpretations, and can be defined by considering

TP(I)(A) = sup{Î(B) | A← B ∈ P}

Note that all the suprema involved in the definition do exist provided that we
are assuming a complete lattice structure on the underlying set of truth-values;
however, this needs not hold for a multilattice.

In order to work this problem out, we consider the following definition

Definition 37 Given an extended logic program P, an interpretation I and a
propositional symbol A; we can define

TP(I)(A) = multisup
(
{I(A)} ∪ {Î(B) | A← B ∈ P}

)

Some properties of this definition of the TP operator are stated below, wherevS

denotes the Smyth-ordering between subsets of a poset:

Lemma 38 If I v J , then TP(I)(A) vS TP(J)(A) for all propositional sym-
bol A.

PROOF. Let us write XI to denote the set {I(A)} ∪ {Î(B) | A ← B ∈ P},
then the hypothesis states that X↑J ⊆ X↑I , where the ↑ denotes the upwards-
closure of a set. Now, consider b ∈ TP(J)(A), then b is an element of X↑J ⊆ X↑I ;
thus, by consistency, considering any minimal a of X↑I below b leads to the
existence of an element a ∈ TP(I)(A). 2

The definition of TP proposed above generates some coherence problems, in
that the resulting ‘value’ is not an element, but a subset of the multilattice.
A possible solution to this problem would be to consider a choice function
()∗ which, given an interpretation, for any propositional symbol A selects an
element in TP(I)(A); this way, TP(I)∗ represents actually an interpretation.

Regarding particular properties of the composition of the TP operator with
suitable choice functions, the first property one can obtain, directly from the
definition, is that the composition leads to an inflationary operator.

Lemma 39 Given an interpretation I and a choice function ()∗, then I(A) ≤
TP(I)∗(A) for all propositional symbol A.

PROOF. Straightforward. 2
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Note that, for some choice functions, the resulting operator TP
∗ might not

be monotone in the set of interpretations, since it can lead to incompara-
ble interpretations; the multilattice M6 of Fig. 1 can be used to construct a
counter-example.

Example 40 Consider the following program with just two facts

A← a A← b

and consider interpretations I(A) = ⊥ and J(A) = c; obviously I v J .

Now, we have that TP(I)(A) = {c, d} and TP(J)(A) = {c}. Thus, the choice
function ()∗ which selects d in TP(I)(A) generates incomparable interpretations
TP(I)∗ and TP(J)∗.

We are interested in computing models of our extended programs by successive
iteration of TP

∗. Therefore, we should characterise the models of P in terms TP.
The following result, which characterises the models of our extended programs
in terms of properties of TP, can be proved:

Proposition 41 The four statements below are equivalent:

(1) I is a model of P.
(2) TP(I)(A) = {I(A)} for all A ∈ Π.
(3) TP(I)∗ = I for all choice function.
(4) I ∈ TP(I), 3 (i.e. I is a fixed point of TP as a non-deterministic operator).

PROOF.
(1⇒ 2). Let us assume that I is a model of P; then, we have that I(A) ≥ Î(B)
for all rule A← B ∈ P. This implies that I(A) is the maximum of the set

{I(A)} ∪ {Î(B) | A← B ∈ P}

hence, the only multi-supremum.

(2⇒ 1). The hypothesis implies that I(A) is an upper bound of

{Î(B) | A← B ∈ P}

as a result, I(A) ≥ Î(B) for all rule A← B ∈ P and I |= P.

3 Abusing notation this means that I(A) ∈ TP(I)(A) for all A ∈ Π.
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(2⇔ 3⇔ 4). Trivial. 2

Regarding the iterated application of the TP operator, the use of choice func-
tions is essential. Let us consider a model I, that is, a fixed point of TP, then
for all propositional variable A, we have that TP(I)(A) = {I(A)}. Lemma 38
guides us in the choice after each application of TP as follows:

• For the base case, we have 4 M v I, then TP(M)(A) vS TP(I)(A) = {I(A)}.
This means that there exists an element m1(A) ∈ TP(M)(A) such that

m1(A) ≤ I(A)

This way we obtain an interpretation m1 satisfying m1 v I such that for
any propositional variable A, m1(A) is an element of TP(M)(A).
• This argument applies also to any successor ordinal: given mk v I, there

exists an element mk+1(A) ∈ TP(mk)(A) such that

mk(A) ≤ mk+1(A) ≤ I(A)

where the first inequality holds by the definition of TP and the second in-
equality follows from Lemma 38.
• For a limit ordinal α, Lemma 8 states that for all A the increasing sequence
{mn(A)} has a supremum, which is considered, by definition, to be mα(A).

As a result of the discussion above we obtain that we can choose suitable
elements in the sets generated by the application of TP in such a way that we
can construct a transfinite sequence of interpretations mk satisfying

m1 v m2 v · · · v mk v · · · v I

Note that the sequence of interpretations above, can be interpreted as the
Kleene sequence which allows to reach the least fixed point of TP in the classical
case.

Interestingly enough, if I is a minimal model of P, the previous sequence of
interpretations can be proved to converge to I.

Theorem 42 Let I be a minimal model of P, then the previous construction
leads to a Kleene-like sequence {mλ} which converges to I.

PROOF. A cardinality-based argument suffices to show that {mλ} is even-
tually constant and equal to I:

4 Here, as usual, M denotes the minimum interpretation.
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Let β be the least ordinal greater than the cardinal of the set of interpretations,
for all λ < β we can consider the interpretation mλ and, thus, define the map
h: β −→ I assigning mλ to λ.

If the transfinite sequence were strictly increasing, then h would be injective,
obtaining a contradiction with the choice of β. As a result, we have proved
the existence of an ordinal α such that mα = mα+1.

Recall that, by definition, we have mα v I and mα+1 ∈ TP(mα), therefore
mα ∈ TP(mα) and, by Proposition 41, mα is a model of P. By minimality of I
we have that mα = I. 2

Example 43 Continuing with Example 36, let us consider the minimal model
I1, and let us construct a sequence of approximating interpretations as stated
in the theorem above.

M TP(M) m1 TP(m1) m2

A ⊥ {a} a {a} a

B ⊥ {b} b {b} b

E ⊥ {⊥} ⊥ {c, d} c

4 Conclusions and future work

A mathematical study of the theory multilattices, including the selection of
desirable computational properties of our multilattices, and its theory of ide-
als has been presented, with the aim of providing an extension of fuzzy logic
programming. Ideal-based semantics and the restricted semantics, both based
on the fixed points of the immediate consequence operator have been intro-
duced. We have obtained some initial and encouraging results for the restricted
semantics: specifically, the existence of minimal models below any model of
an extended program, and that any minimal model can be attained by some
Kleene-like sequence.

A number of theoretical problems still remain to be investigated in the future:
for instance, the relationship between the ideal-based semantics and the re-
stricted semantics, or the constructive nature of minimal models (is it possible
to construct suitable choice functions which generate convergent sequence of
interpretations with limit a minimal model?). Possible answers could be based
on a general theory of fixed points, relying on some of the ideas related to fixed
points in partially ordered sets [18] or, perhaps, in fuzzy extensions of Tarski’s
theorem [20].
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[21] P. Vojtáš. Fuzzy logic programming. Fuzzy sets and systems, 124(3):361–370,
2001.

22


