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Abstract

Sets of attributes and objects in fuzzy formal concept analysis are usually
different and, hence, it might not make sense to evaluate them on the same
carrier. In this context, the operators used to obtain the concept lattice
could be defined by associating different lattices to attributes and objects;
several reasons exist for which we need to evaluate the sets of attributes and
objects in the same carrier. Following this direction, we introduce a new
definition of a concept lattice, where objects and attributes are evaluated on
the same lattice L, although operators evaluating objects and attributes in
different carriers are used. Moreover, we study the relationship between this
new concept lattice and the alternative one which can be obtained directly
by using different carriers for the sets of attributes and objects.

Key words: Formal concept analysis, multi-adjoint lattices, Galois
connection.

1. Introduction

Formal concept analysis, introduced by Wille in the decade of 1980 [37],
arose as a mathematical theory for qualitative data analysis and, currently,
has become an interesting research topic both on its mathematical founda-
tions [34, 23, 18, 35] and on its multiple applications [21, 30, 3, 16, 15].
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The initial, Boolean, approach was soon extended following ideas coming
different frameworks: fuzzy set theory [4, 9, 31, 26]; possibility theory [13];
fuzzy logic reasoning [5, 14, 2]; from rough set theory [25, 32, 36]; some
integrated approaches such as fuzzy and rough [33], or rough and domain
theory [22], or rough and grey sets [38].

Recently, a new fuzzy framework has been introduced which is more
general and flexible than other fuzzy extensions, see [28]. One of its most
interesting features is that it allows for considering extremely general con-
junctors, which need not be either commutative or associative, to built
formal concepts.

In the topic of fuzzy concept analysis it is reasonable to consider the
particular nature of objects and attributes and, hence, the fuzzy subsets
corresponding to either of them should be evaluated in different underlying
lattices. In spite of the usefulness of considering different carrier sets for
objects and attributes, it is convenient to recall that, sometimes, it could be
interesting to “soften” this framework. For instance, given two experts who
are consulted in order to evaluate a knowledge system, they could believe
that the carriers associated to the set of objects and attributes should not be
different, or some of them believe that the attributes should be evaluated on
L1 and some others believe that they should be evaluated on L2 and, once
the evaluation is finished, the results should be homogenized. An elegant
solution could be to embed both L1 and L2 into a new set L, and to obtain
a new concept lattice ML, by considering the sets of objects and attributes
evaluated in the same lattice, albeit using the operators which evaluate
objects and attributes in different carriers.

This work introduces the notion of L-connected lattices, with the aim of
embedding two given lattices L1 and L2, into a third one L, satisfying cer-
tain properties. Using this notion, it is possible to obtain formal concepts
which are not directly affected by the underlying evaluation of objects and
attributes on two different carriers. The idea is to evaluate the fuzzy sets for
extension and intension of a formal concept in the lattice L, which embeds
both original lattices L1 and L2. In this paper, we obtain several results
which prove the coherence of this embedding, in the sense that the original
concept lattice and the homogenized concept lattice are isomorphic; as a re-
sult, we obtain that the proposed transformation between both frameworks
is sound. An interesting by-product of this approach is the possibility of
using suitable modifications of the different algorithms recently developed
for obtaining concept lattices on specific contexts in which objects and at-
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tributed have a common carrier [7, 8, 24]. Last but not least, it worth
to remark that the structures introduced in this paper generalize the ones
given in the framework of fuzzy concept lattices with hedges [11, 10, 19].

2. P -connected posets

The main notion in this section is the definition of P -connection be-
tween two complete lattices. As we will see later, this condition allows
for somehow conciliating the different values generated when considering a
non-commutative conjunctor in the construction of a concept lattice.

Definition 1. Given the posets (P1,≤1), (P2,≤2) and (P,≤), we say that
P1 and P2 are P -connected if there exist non-decreasing mappings ψ1 : P1 →
P , φ1 : P → P1, ψ2 : P2 → P and φ2 : P → P2 verifying that φ1(ψ1(x)) = x,
and φ2(ψ2(y)) = y, for all x ∈ P1, y ∈ P2.

Note that this definition generalizes the well-known approach of concept
lattices with hedges. To see this, we can simply use Krajči’s approach [19] to
prove that concept lattices with hedges were a particular case of generalized
concepts lattices: in our case L1 and L2 are the fixpoints of the two hedges,
φ1 are the hedge for objects, φ2 are the hedge for attributes, ψ1 and ψ2 be
the identities.

Example 2. Any pair of posets (P1,≤1), (P2,≤2) with top elements >1

and >2, respectively, are P1×P2-connected, where P1×P2 is the Cartesian
product with the pairwise ordering, by considering the mappings φi as the
projections πi, and ψ1, ψ2 as the inclusions defined as ψ1(x) = (x,>2),
ψ2(y) = (>1, y), for all x ∈ P1, y ∈ P2. �

A more complex example is presented below:

Example 3. Assume that, in order to perform the evaluation of a product,
we have to assign one value out of four possible ones. We ask two experts
to collaborate in this task and, only when collecting the feedback from each
expert, we notice that one expert has considered the ordering of values as
in Fig. 1, whereas the other has considered that in Fig. 2. In both cases,
the expert chose a suitable poset for her evaluation.

In order to unify both evaluations, we want to embed the posets4 in
Figs. 1 and 2 into another one, for example, we might consider that given
in Fig. 3.

4Note that these posets are indeed lattices.
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Figure 1: Poset (L1,�1)
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Figure 2: Poset (L2,�2)
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Figure 3: Poset (L,�)
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α β γ δ
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Figure 4: Definition of ψ1 and ψ2

We can define two mappings ψ1 : L1 → L, ψ2 : L2 → L as in Fig. 4;
moreover, there exist several possibilities for the mappings φ1 : L → L1,
φ2 : L → L2 in order to satisfy the properties in Definition 1, one of them
is shown below:

x y z t u v
φ1 a b a b c d

x y z t u v
φ2 α β γ γ δ δ

As a result, L1 and L2 are L-connected. �

Example 4. A different example arises considering the posets ([0, 1]2,≤)
and ([0, 1]4,≤), where [0, 1]n is a regular partition of [0, 1] into n pieces, for
instance [0, 1]2 = {0, 1/2, 1}, [0, 1]4 = {0, 1/4, 2/4, 3/4, 1}.

We have that [0, 1]2, [0, 1]4 are [0, 1]-connected, under the usual ordering,
considering the mappings ψ1, ψ2 as the inclusions ψ1(x) = x, ψ2(y) = y, for
all x ∈ L1, y ∈ L2; and φ1, φ2 defined as φ1(t) = d2 · te/2, φ2(t) = d4 · te/4,
where d e is the ceiling function. For example, if t = 0.55, φ1(0.55) = 1,
φ2(0.55) = 3/4. �
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3. L-connected lattices and formal concept analysis

To begin with, in order to define a new concept lattice where the objects
and attributes are evaluated on the same lattice L, we will recall the defini-
tion of adjoint triple, multi-adjoint frame and context, and the multi-adjoint
concept lattice.

3.1. Recalling the basics of the theory of adjoint triples

Assuming a conjunctor defined on the product P1×P2 directly provides
two different ways of generalising the well-known adjoint property between a
t-norm and its residuated implication [1, 29], depending on which argument
is fixed.

Definition 5. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets, and consider map-
pings &: P1×P2 → P3,↙ : P3×P2 → P1,↖ : P3×P1 → P2, then (&,↙,↖)
is an adjoint triple with respect to P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ↙ and ↖ are order-preserving in the consequent and order-reversing
in the antecedent.

3. x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1, y ∈ P2

and z ∈ P3.

As mentioned in [6], the definition above may be shortened (in fact,
condition 3 is sufficient), but we prefer to stress on the two first conditions
since they will be often used hereafter.

More general examples than the classical Gödel, product and  Lukasiewicz
connectives were introduced in [28], where non-commutative and non-assoc-
iative conjunctors were considered on regular partitions of [0, 1] together
with their corresponding adjoint implications. In the following example, an
adjoint triple will be presented with respect to the posets (L1,�1), (L2,�2),
given in Example 3, and the unit interval [0, 1], with the classical order.

Example 6. Let (L1,�1), (L2,�2) be the lattices given in Example 3 and
the operator &: L1 × L2 → [0, 1], defined in Table 1.
This operator has two adjoint implications↙ : [0, 1]×L2 → L1,↖ : [0, 1]×
L1 → L2, which are defined in Table 2.

Either using the definition or the results given in [29], we obtain that
the triple (&,↙,↖) is an adjoint triple. �
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Table 1: Definition of &
& α β γ δ
a 0 0 0 0
b 0 0 3/4 3/4

c 0 1/2 1/2 1
d 0 1/2 3/4 1

Table 2: Definition of ↙ and ↖
↙ α β γ δ
1 d d d d

[3/4, 1) d d d b
[1/2, 3/4) d d c a
[0, 1/2) d b a a

↖ a b c d
1 δ δ δ δ

[3/4, 1) δ δ γ γ
[1/2, 3/4) δ β γ β
[0, 1/2) δ β α α

The general theory of formal concept analysis requires the underlying
posets to have the structure of a lattice. Therefore, we will assume hereafter
that we are working on lattices instead of on posets.

The multi-adjoint framework allows the existence of several adjoint triples
for a given triplet of lattices.

Definition 7. A multi-adjoint frame L is a tuple

(L1,�1, L2,�2, P,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for
all i ∈ {1, . . . , n}, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .
A multi-adjoint frame is denoted as (L1, L2, P,&1, . . . ,&n).

Definition 8. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a multi-
adjoint context is a tuple (A,B,R, σ) such that A and B are non-empty
sets (usually interpreted as attributes and objects, respectively), R is a
P -fuzzy relation R : A × B → P and σ : B → {1, . . . , n} is a mapping
which associates any element in B with some particular adjoint triple in
the frame.5

5A similar theory could be developed by considering a mapping τ : A → {1, . . . , n}
which associates any element in A with some particular adjoint triple in the frame.
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Once we have fixed a multi-adjoint frame and a context for that frame,
we can define the following mappings ↑σ : LB2 −→ LA1 and ↓

σ
: LA1 −→ LB2

which can be seen as generalisations of those given in [20]:6

g↑σ(a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (1)

f ↓
σ

(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (2)

It is not difficult to show that these two arrows generate a Galois connec-
tion [28], whose definition is recalled below:

Definition 9. Let (P1,≤1) and (P2,≤2) be posets, a pair (↑, ↓) of mappings
↓ : P1 → P2, ↑ : P2 → P1 forms a Galois connection between P1 and P2 if
and only if:

1. ↑ and ↓ are order-reversing.
2. x ≤1 x

↓↑ for all x ∈ P1.
3. y ≤2 y

↑↓ for all y ∈ P2.

A multi-adjoint concept, as it is often the case in the different frameworks
of formal concept analysis, is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1
and that g↑σ = f and f ↓

σ
= g; with (↑σ , ↓

σ
) being the Galois connection

defined above.

Definition 10. The multi-adjoint concept lattice associated to a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑σ = f, f ↓
σ

= g}

in which, given 〈g, f〉, 〈h, k〉 ∈ M, the ordering is defined by 〈g, f〉 �
〈h, k〉 if and only if g �2 h (equivalently k �1 f).

In [28], a detailed construction of a multi-adjoint concept lattice was
presented, and it was proved that the ordering just defined above actually
provides M with the structure of a complete lattice.

In the following example a concept will be obtained from a fuzzy subset
of objects using the adjoint triple of Example 6.

Example 11. Let (L1,�1), (L2,�2) be the lattices given in Example 3,
the adjoint triple (&,↙,↖), where &: L1 × L2 → [0, 1], ↙ : [0, 1] × L2 →
L1 and ↖ : [0, 1] × L1 → L2 were introduced in Example 6, the frame
(L1, L2, [0, 1],&) and the context (A,B,R, σ), where σ is constant, A =
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Table 3: Fuzzy relation between objects and attributes
R b1 b2 b3

a1 0.8 0.6 0.1
a2 0.2 0.3 0.9

{a1, a2}, B = {b1, b2, b3} and the fuzzy relation R is defined in Table 3. We
will write (↑, ↓) instead of (↑σ , ↓

σ
).

Given the fuzzy subset of objects g : B → L2, defined as g(b1) = α,
g(b2) = β and g(b3) = γ, the least concept that “contains” g is (g↑↓, g↑),
which is obtained as follows:

g↑(a1) = inf{R(a1, bj)↙σ(b) g(bj) | bj ∈ B}
= inf{0.8↙ α, 0.6↙ β, 0.1↙ γ} = inf{d, d, a} = a

g↑(a2) = inf{0.2↙ α, 0.3↙ β, 0.9↙ γ} = inf{d, d, d} = d

This mapping is used to compute g↑↓:

g↑↓(b1) = inf{R(ai, b1)↖σ(b) g
↑(ai) | ai ∈ A}

= inf{0.8↖ a, 0.2↖ d} = inf{δ, α} = α

g↑↓(b2) = inf{0.6↖ a, 0.3↖ d} = inf{δ, β} = β

g↑↓(b3) = inf{0.1↖ a, 0.9↖ d} = inf{δ, γ} = γ

�

3.2. Concept lattices on L-connected lattices

In the following paragraphs, we define a pair of mappings on which the
new concept lattice structure will be built in order to evaluate the objects
and attributes on the same lattice L.

Given a complete lattice (L,�) such that L1 and L2 are L-connected, a
multi-adjoint frame (L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we
can define the mappings7 ↑cσ : LB → LA and ↓

cσ
: LA → LB defined for all

6We follow the common usage to denote the set of mappings from A to L as LA.
7The subscript c refers to the L-connection, since we are using the mappings φj and ψj ;

on the other hand, σ is needed to refer the particular choice of adjoint triple for a given b.

8



g ∈ LB and f ∈ LA as follows:

g↑cσ(a) = ψ1(inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B}) (3)

f ↓
cσ

(b) = ψ2(inf{R(a, b)↖σ(b) φ1(f(a)) | a ∈ A}) (4)

Note that these definitions can be related to those given in [28] in that, for
each adjoint triple (&,↙,↖) of the multi-adjoint frame, we can define the
mappings &∗ : L × L → P , ↙∗ : P × L → L and ↖∗ : P × L → L for all
x, y ∈ L and z ∈ P as follows:

x&∗ y = φ1(x) &φ2(y) z ↙∗ y = ψ1(z ↙ φ2(y))
z ↖∗ x = ψ2(z ↖ φ1(x))

which, under the requirements t ≤ ψ1(φ1(t)) and t ≤ ψ2(φ2(t)), for all t ∈ L,
forms another adjoint triple (&∗,↙∗,↖∗). Under the additional assumption
that the mappings ψj are inf-preserving, the mappings ↑cσ : LB → LA and
↓cσ : LA → LB can be rewritten as

g↑cσ(a) = inf{R(a, b)↙∗b g(b) | b ∈ B} (5)

f ↓
cσ

(b) = inf{R(a, b)↖∗b f(a) | a ∈ A} (6)

and coincide with the Galois connection introduced in [28], which is asso-
ciated to the new frame (L,L, P,&∗1, . . . ,&

∗
n). As our construction of the

new concept lattice does not require either of the requirements above, the
proposed framework is strictly more general than the previous one. Hence,
the requirements t ≤ ψ1(φ1(t)) and t ≤ ψ2(φ2(t)), for all t ∈ L, and that
the mappings ψj are inf-preserving, will not be assumed.

Example 12. Mappings ψ1 and φ1, defined in Example 3, verify the con-
ditions in Definition 1 and ψ1 is not inf-preserving since

ψ1(inf{b, c}) = ψ1(a) = x

inf{ψ1(b), ψ1(c)} = inf{t, u} = z

and, certainly, x 6= z.
Moreover, ψ1 and φ1 do not satisfy the inequality t ≤ ψ1(φ1(t)), for all

t ∈ L. For example, the element ψ1(φ1(z)) = ψ1(a) = x is obtained, which
is not greater than z. �
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Summarizing, expressions (3) and (4) do not coincide with those given
in [28], because they are not defined directly from a residuated implication,
although the mappings ψ1, ψ2, φ1 and φ2 are involved as well. Indeed, these
mappings do not form a Galois connection.

The next proposition shows that these mappings are order-reversing but
do not verify conditions 2 and 3 of Definition 9.

Proposition 13. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where
L1 and L2 are L-connected, and a context (A,B,R, σ).

1. The mappings ↑cσ , ↓
cσ

are order-reversing.

2. For each g ∈ LB, f ∈ LA, the following inequalities are obtained:
(ψ2 ◦ φ2 ◦ g) � g↑cσ↓

cσ
, (ψ1 ◦ φ1 ◦ f) � f ↓

cσ↑cσ .

Proof. To improve readability, we will write (↑c , ↓
c
) instead of (↑cσ , ↓

cσ
) and

↙b, ↖b instead of ↙σ(b), ↖σ(b).

1. ↑c and ↓
c

are order-reversing. If f1, f2 ∈ LA, f1 � f2, then φ1(f1(a)) �1

φ1(f2(a)) for all a ∈ A, because φ1 is increasing. Now, as the impli-
cations are order-reversing in the second argument we obtain that:

R(a, b)↖b φ1(f2(a)) �2 R(a, b)↖b φ1(f1(a))

for all a ∈ A and b ∈ B. Therefore, since ψ2 is increasing, by the
infimum property we obtain that

f ↓
c

2 (b) = ψ2(inf{R(a, b)↖b φ1(f2(a)) | a ∈ A}
� ψ2(inf{R(a, b)↖b φ1(f1(a)) | a ∈ A}
= f ↓

c

1 (b)

for all b ∈ B. The proof for ↑c is similar.

2. We need to prove that, given g ∈ LB, then (ψ2 ◦ φ2 ◦ g) � g↑c↓
c
. We

begin from the definition of ↑c :

g↑c(a) = ψ1(inf{R(a, b)↙b φ2(g(b)) | b ∈ B})

for all a ∈ A. Now, applying the mapping φ1, we obtain:

φ1(g↑c(a)) = inf{R(a, b)↙b φ2(g(b)) | b ∈ B}

10



for all a ∈ A. Therefore, given a ∈ A and b ∈ B the next chain of
inequalities holds by adjointness:

φ1(g↑c(a)) �1 R(a, b)↙b φ2(g(b)) ⇐⇒ φ1(g↑c(a)) &b φ2(g(b)) ≤ R(a, b)

⇐⇒ φ2(g(b)) �2 R(a, b)↖b φ1(g↑c(a))

As these inequalities hold for all a ∈ A, by applying properties of the
infimum, we obtain that, for all b ∈ B

φ2(g(b)) �2 inf{R(a, b)↖b φ1(g↑c(a)) | a ∈ A}

Thus, (ψ2 ◦φ2 ◦g)(b) � g↑c↓
c
(b) for all b ∈ B, because ψ2 is increasing.

Finally, a similar argument proves that (ψ1 ◦ φ1 ◦ f) � f ↓
c↑c for all

f ∈ LA. �

The pair (↑c , ↓
c
) is not a Galois connection since ↓

c↑c is not a closure
operator, as the following example shows:

Example 14. Continuing with Example 3, consider the mapping f ∈ LA
defined by f(a1) = z, f(a2) = x. Then, f ↓

c↑c is obtained as follows:

f ↓
c

(b1) = ψ2(inf{R(ai, b1)↖b1 φ1 ◦ f(ai) | ai ∈ A})
= ψ2(inf{0.8↖ a, 0.2↖ a}) = ψ2(inf{δ, δ}) = ψ2(δ) = v

f ↓
c

(b2) = ψ2(inf{0.6↖ a, 0.3↖ a}) = ψ2(inf{δ, δ}) = ψ2(δ) = v

f ↓
c

(b3) = ψ2(inf{0.1↖ a, 0.9↖ a}) = ψ2(inf{δ, δ}) = ψ2(δ) = v

f ↓
c↑c(a1) = ψ1(inf{R(a1, bj)↙bj φ2(f ↓

c

(bj)) | bj ∈ B})
= ψ1(inf{0.8↙ δ, 0.6↙ δ, 0.1↙ δ})
= ψ1(inf{b, a, a}) = ψ1(a) = x

f ↓
c↑c(a2) = ψ1(inf{0.2↙ δ, 0.3↙ δ, 0.9↙ δ})

= ψ1(inf{a, a, b}) = ψ1(a) = x

Therefore, as f(a1) = z and f ↓
c↑c(a1) = x, the inequality f � f ↓

c↑c does
not hold. �

As a consequence of the previous example, the operators ↑c↓
c

and ↓
c↑c are

not closure operators, since they do not satisfy the property of extensity.
However, although ↑c and ↓

c
do not form a Galois connection, and ↑c↓

c
,

↓c↑c are not closure operators, they have properties on which we still can
provide the definition of a concept in this extended framework.
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Lemma 15. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where L1

and L2 are L-connected, and (A,B,R, σ) be a context, then the following
equalities hold:

(ψ1 ◦ φ1 ◦ f)↓
c

= f ↓
c

ψ2 ◦ φ2 ◦ (f)↓
c

= f ↓
c

(ψ2 ◦ φ2 ◦ g)↑c = g↑c ψ1 ◦ φ1 ◦ (g)↑c = g↑c

Proof. We will prove just equalities (ψ1◦φ1◦f)↓
c

= f ↓
c

and ψ2◦φ2◦(f)↓
c

=
f ↓

c
, the rest follow analogously.
In order to prove the first equality, the following chain of equalities can

be obtained for all b ∈ B:

(ψ1 ◦ φ1 ◦ f)↓
c

(b) = ψ2(inf{R(a, b)↖b φ1 ◦ (ψ1 ◦ φ1 ◦ f)(a) | a ∈ A})
(∗)
= ψ2(inf{R(a, b)↖b (φ1 ◦ f)(a) | a ∈ A})
= f ↓

c

(b)

where (∗) is obtained by Definition 1.
The second equality follows by a similar chain of equalities:

ψ2 ◦ φ2 ◦ (f)↓
c

(b) = ψ2 ◦ φ2(ψ2(inf{R(a, b)↖b (φ1 ◦ f)(a) | a ∈ A}))
(∗)
= ψ2(inf{R(a, b)↖b (φ1 ◦ f)(a) | a ∈ A})
= f ↓

c

(b)

where (∗) is obtained by Definition 1. �

As a consequence of the previous result, we obtain the following

Proposition 16. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where
L1 and L2 are L-connected, and a context (A,B,R, σ), then f ↓

c
= f ↓

c↑c↓c,
g↑c = g↑c↓

c↑c, for all g ∈ LB and f ∈ LA.

Proof. To begin with, from Proposition 13(2), we have that (ψ1◦φ1◦f) �
f ↓

c↑c , now applying the order-reversing mapping ↓
c

we get the inequality
(f ↓

c↑c)↓
c � (ψ1 ◦ φ1 ◦ f)↓

c
; finally, by Lemma 15, f ↓

c↑c↓c � f ↓
c

holds.
On the other hand, again by Lemma 15 and Proposition 13(2), we have

that f ↓
c

= ψ2 ◦ φ2 ◦ f ↓
c � (f ↓

c
)↑c↓

c
. As a result, the equality f ↓

c
= f ↓

c↑c↓c

is obtained.
The other equality follows similarly. �
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On a frame where (L1,�1) and (L2,�2) are L-connected, the result
above allows for defining a new concept lattice by following the usual con-
struction: a concept is a pair 〈g∗, f ∗〉 satisfying g∗ ∈ LB, f ∗ ∈ LA and that
(g∗)↑c = f ∗ and (f ∗)↓

c
= g∗. 8

Definition 17. Given the complete lattices (L1,�1), (L2,�2) and (L,�),
where L1 and L2 are L-connected, the multi-adjoint L-connected concept lat-
tice associated to a multi-adjoint frame (L1, L2, L,&1, . . . ,&n) and context
(A,B,R, σ) is the set

ML = {〈g∗, f ∗〉 | 〈g∗, f ∗〉 is a concept}

in which the ordering is defined by 〈g∗1, f ∗1 〉 ≤ 〈g∗2, f ∗2 〉 if and only if g∗1 � g∗2
(equivalently f ∗2 � f ∗1 ).

The pair (ML,≤) is clearly a poset and, by Proposition 16, their ele-
ments can be obtained by applying ↑c and ↓

c
to a fuzzy subset of objects or

attributes, respectively, as in the classical case.

Example 18. Let (L1,�1), (L2,�2) and (L,�) be the lattices given in
Example 3 and the multi-adjoint frame presented in Example 11.

Given the fuzzy subset of objects g∗ : B → L, defined as g∗(b1) = u,
g∗(b2) = x and g∗(b3) = x, the least concept “containing” g∗ is ((g∗)↑c↓

c
, (g∗)↑c),

which is obtained as follows:

(g∗)↑c(a1) = ψ1(inf{R(a1, bj)↙σ(b) φ2(g∗(bj)) | bj ∈ B})
= ψ1(inf{0.8↙ δ, 0.6↙ α, 0.1↙ α})
= ψ1(inf{b, d, d}) = ψ1(b) = t

(g∗)↑c(a2) = ψ1(inf{0.2↙ δ, 0.3↙ α, 0.9↙ α})
= ψ1(inf{a, d, d}) = ψ1(a) = x

(g∗)↑c↓
c

(b1) = ψ2(inf{R(ai, b1)↖σ(b) φ1 ◦ (g∗)↑(ai) | ai ∈ A})
= ψ2(inf{0.8↖ b, 0.2↖ a}) = ψ2(inf{δ, δ}) = ψ2(δ) = v

(g∗)↑c↓
c

(b2) = ψ2(inf{0.6↖ b, 0.3↖ a}) = ψ2(inf{β, δ}) = ψ2(β) = y

(g∗)↑c↓
c

(b3) = ψ2(inf{0.1↖ b, 0.9↖ a}) = ψ2(inf{β, δ}) = ψ2(β) = y

�

8We include ∗ as a superscript in this new construction so that we can distinguish this
new approach from that in [28]. Note that, in order to simplify the notation, references
to σ have been omitted.
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Note, however, that (ML,≤) is not a complete lattice as in the classical
case, since it is not closed under supremum, that is, given 〈g∗1, f ∗1 〉 and
〈g∗2, f ∗2 〉, the supremum should be defined as:

〈g∗1, f ∗1 〉 ∨ 〈g∗2, f ∗2 〉 = 〈(g∗1 ∨ g∗2)↑c↓
c

, f ∗1 ∧ f ∗2 〉

but the element in the right hand side need not be a concept of ML, as the
following example shows.

Example 19. Let us denote the concept in Example 18 as 〈(f ∗1 )↓
c
, f ∗1 〉, and

let us write 〈(f ∗2 )↓
c
, f ∗2 〉 to denote the one given by the fuzzy subset of objects

g∗2 : B → L, defined as g∗2(b1) = y, g∗2(b2) = t and g∗2(b3) = x.
We will explicitly obtain the mapping f ∗2 and prove that f ∗1 ∧ f ∗2 6=

(f ∗1 ∧ f ∗2 )↓
c↑c .

f ∗2 (a1) = (g∗2)↑c(a1) = ψ1(inf{R(a1, bj)↙b φ2(g∗2(bj)) | bj ∈ B})
= ψ1(inf{0.8↙ β, 0.6↙ γ, 0.1↙ α})
= ψ1(inf{d, c, d}) = ψ1(c) = u

f ∗2 (a2) = (g∗2)↑c(a2) = ψ1(inf{0.2↙ β, 0.3↙ γ, 0.9↙ α})
= ψ1(inf{b, c, d}) = ψ1(a) = x

Therefore, (f ∗1 ∧ f ∗2 )(a1) = t ∧ u = z and (f ∗1 ∧ f ∗2 )(a2) = x ∧ x = x,
which is the mapping assumed in Example 14. Thus, the equality f ∗1 ∧f ∗2 =
(f ∗1 ∧ f ∗2 )↓

c↑c does not hold. �

In the rest of this section we focus on alternative suitable definition of
meet f and a join g operators such that (ML,f,g) will be a complete
lattice.

To begin with, some technical lemmas are needed.

Lemma 20. Given the complete lattices (L1,�1), (L2,�2) and (L,�), where
L1 and L2 are L-connected, and x, x′ ∈ L1, y, y′ ∈ L2, we have that

x ∧1 x
′ = φ1(ψ1(x) ∧ ψ1(x′)) y1 ∧2 y

′ = φ2(ψ2(y) ∧ ψ2(y′))

x ∨1 x
′ = φ1(i1(x) ∨ ψ1(x′)) y1 ∨2 y

′ = φ2(ψ2(y) ∨ ψ2(y′))

where ∧1, ∧2, ∧, ∨1, ∨2, ∨, are the meet and join operators defined on L1,
L2 and L, respectively.

14



Proof. On the one hand, we have that x∧1 x
′ is less or equal to x and x′,

and hence ψ1(x ∧ x′) is less or equal to ψ1(x) and ψ1(x′). By definition of
infimum, the inequality ψ1(x∧1 x

′) � ψ1(x)∧ψ1(x′) holds and, applying φ1

now, the inequality x ∧1 x
′ �1 φ1(ψ1(x) ∧ ψ1(x′)) is obtained.

On the other hand, we have ψ1(x) ∧ ψ1(x′) is less or equal to ψ1(x) and
ψ1(x′), now applying φ1, we obtain φ1(ψ1(x) ∧ ψ1(x′)) �1 x ∧1 x

′, and the
first equality holds.

The proof for the rest of equalities follows analogously. �

Lemma 21. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where L1

and L2 are L-connected, a context (A,B,R, σ), and a family 〈g∗i , f ∗i 〉 of
concepts of ML, for i running in an index set Λ, then(∧

i∈Λ

g∗i

)↑c↓c
= ψ2 ◦ φ2

(∧
i∈Λ

g∗i

)
,

(∧
i∈Λ

f ∗i

)↑c↓c
= ψ1 ◦ φ1

(∧
i∈Λ

f ∗i

)

Proof. Only the first equality will be proved, the second follows similarly.
Since

∧
i∈Λ g

∗
i � g∗i , then (

∧
i∈Λ g

∗
i )
↑c↓c � (g∗i )

↑c↓c , for all i ∈ Λ. Now,
as g∗i is the extension of a concept, (g∗i )

↑c↓c = g∗i is verified, for all i ∈ Λ.
Therefore, by the infimum property, the inequality (

∧
i∈Λ g

∗
i )
↑c↓c �

∧
i∈Λ g

∗
i

holds, which is considered together with Proposition 13 and Lemma 15, to
obtain the following chain of inequalities.

(
∧
i∈Λ

g∗i )
↑c↓c = ψ2 ◦ φ2((

∧
i∈Λ

g∗i )
↑c↓c) � ψ2 ◦ φ2(

∧
i∈Λ

g∗i ) � (
∧
i∈Λ

g∗i )
↑c↓c

Thus, the inequalities above are equalities and we have the result. �

The following theorem defines meet and join operators which will provide
ML a complete lattice structure.

Theorem 22. Given complete lattices (L1,�1), (L2,�2) and (L,�), where
L1 and L2 are L-connected, a context (A,B,R, σ), and a multi-adjoint frame
(L1, L2, L,&1, . . . ,&n), the multi-adjoint L-connected concept lattice ML is
actually a complete lattice with the meet and join operators f,g : ML ×
ML →ML defined below, for all 〈g∗1, f ∗1 〉, 〈g∗2, f ∗2 〉 ∈ML,

〈g∗1, f ∗1 〉f 〈g∗2, f ∗2 〉 = 〈ψ2 ◦ φ2(g∗1 ∧ g∗2), (f ∗1 ∨ f ∗2 )↓
c↑c〉

〈g∗1, f ∗1 〉g 〈g∗2, f ∗2 〉 = 〈(g∗1 ∨ g∗2)↑c↓
c

, ψ1 ◦ φ1(f ∗1 ∧ f ∗2 )〉
15



Proof. Commutative and idempotent laws follow directly from the respec-
tive properties of the infimum and supremum defined on L1 and L2. In order
to prove the lattice structure, we have just to prove the associative and the
absorption laws.

Consider 〈g∗1, f ∗1 〉, 〈g∗2, f ∗2 〉 and 〈g∗3, f ∗3 〉 ∈ML, then

g∗j (b) = (f ∗j )↓
c

(b) = ψ2(inf{R(a, b)↖b (φ1 ◦ f ∗j )(a) | a ∈ A})

for all j ∈ {1, 2, 3} and b ∈ B, hence there exist mappings g1, g2, g3 defined
on LB2 such that g∗j = ψ2(gj), for all j ∈ {1, 2, 3}.

Associativity wrt f: the fuzzy extent of (〈g∗1, f ∗1 〉f 〈g∗2, f ∗2 〉)f 〈g∗3, f ∗3 〉 is

ψ2 ◦ φ2(ψ2 ◦ φ2(g∗1 ∧ g∗2) ∧ g∗3) = ψ2 ◦ φ2(ψ2 ◦ φ2(ψ2(g1) ∧ ψ2(g2)) ∧ ψ2(g3))

= ψ2 ◦ φ2(ψ2(g1 ∧2 g2) ∧ ψ2(g3))

= ψ2((g1 ∧2 g2) ∧2 g3)

Similarly, the fuzzy extent of 〈g∗1, f ∗1 〉f (〈g∗2, f ∗2 〉f 〈g∗3, f ∗3 〉) is

ψ2 ◦ φ2(g∗1 ∧ ψ2 ◦ φ2(g∗2 ∧ g∗3)) = ψ2(g1 ∧2 (g2 ∧2 g3))

Thus, the associativity law w.r.t. f is proved by the associativity law of
the meet operator ∧2 defined on L2. Associativity wrt g follows similarly.

Absorption law of f w.r.t g. To begin with, the equality (g∗1 ∨ g∗2)↑c↓
c

=
ψ2(g1 ∨2 g2) will be proved.

(g∗1 ∨ g∗2)↑c(a) = ψ1(inf{R(a, bj)↙bj φ2((g∗1 ∨ g∗2)(bj)) | bj ∈ B})
(∗)
= ψ1(inf{R(a, bj)↙bj φ2((ψ2(g1) ∨ ψ2(g2))(bj)) | bj ∈ B})
= ψ1(inf{R(a, bj)↙bj (g1 ∨2 g2)(bj)) | bj ∈ B})
= ψ1((g1 ∨2 g2)↑(a))

where a ∈ A and (∗) is obtained by Lemma 20.
As a consequence, the equalities below follow:

(g∗1 ∨ g∗2)↑c↓
c

(b) = ψ2(inf{R(aj, b)↖b φ1((g∗1 ∨ g∗2)↑c(aj)) | aj ∈ A})
= ψ2(inf{R(aj, b)↖b φ1(ψ1((g1 ∨2 g2)↑c(aj))) | aj ∈ A})
= ψ2(inf{R(aj, b)↖b (g1 ∨2 g2)↑c(aj) | aj ∈ A})
= (ψ2 ◦ (g1 ∨2 g2)↑↓)(b)

for all b ∈ B. Therefore, we have that (g∗1 ∨ g∗2)↑c↓
c

= ψ2((g1 ∨2 g2)↑↓) =
ψ2(g1 ∨2 g2), where the last equality is given by the definition of the join
operator in M.
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Now, using the comment above and Lemma 20, the fuzzy extent of
〈g∗1, f ∗1 〉f (〈g∗1, f ∗1 〉g 〈g∗2, f ∗2 〉) is

ψ2 ◦ φ2(g∗1 ∧ (g∗1 ∨ g∗2)↑c↓
c

) = ψ2 ◦ φ2(ψ2(g1) ∧ ψ2(g1 ∨2 g2))

= ψ2(g1 ∧2 (g1 ∨2 g2))

= ψ2(g1) = g∗1

The other absorption law can be proved analogously.
Therefore, (ML,f,g) is an algebraic lattice. As a consequence, an

ordering on ML, which will be denoted �L, can be defined from f and g.
In order to prove that (ML,�L) is a complete lattice [12], given a family

of concepts
{
〈g∗i , f ∗i 〉

}
i∈Λ

in ML we will prove that its infimum exists (the
existence of supremum follows similarly).

If 〈(
∧
i∈Λ g

∗
i )
↑c↓c(

∧
i∈Λ g

∗
i )
↑c〉 is the infimum, then, by Lemma 21, we ob-

tain: k

i∈Λ

〈g∗i , f ∗i 〉 = 〈ψ2 ◦ φ2(
∧
i∈Λ

g∗i ), (
∧
i∈Λ

g∗i )
↑c〉

Hence, we only need to prove that 〈(
∧
i∈Λ g

∗
i )
↑c↓c , (

∧
i∈Λ g

∗
i )
↑c〉 is the infimum.

As (
∧
i∈Λ g

∗
i ) � g∗i , then (

∧
i∈Λ g

∗
i )
↑c↓c � (g∗i )

↑c↓c . Now, since g∗i is the
fuzzy extent of a concept, Lemma 15 provides (

∧
i∈Λ g

∗
i )
↑c↓c �L g∗i , for each

i ∈ Λ.
In order to prove that 〈(

∧
i∈Λ g

∗
i )
↑c↓c , (

∧
i∈Λ g

∗
i )
↑c〉 is the greatest lower

bound, we will assume that 〈g∗, f ∗〉 ∈ ML is another lower bound of the
family of concepts, that is, 〈g∗, f ∗〉 �L 〈g∗i , f ∗i 〉, for all i ∈ Λ. Equivalently,
the equalities

〈g∗, f ∗〉 = 〈g∗, f ∗〉f 〈g∗i , f ∗i 〉 = 〈ψ2 ◦ φ2(g∗ ∧ g∗i ), (f ∗ ∨ f ∗i )↓
c↑c〉

are obtained. Hence, g∗ = ψ2 ◦ φ2(g∗ ∧ g∗i ) � ψ2 ◦ φ2(g∗i ) = g∗i , because
ψ2◦φ2 is order-preserving, by Lemma 15 and the definition of�L. Therefore,
g∗ � (

∧
i∈Λ g

∗
i ) � g∗i and, from the order-preserving property of ψ2 ◦ φ2, the

following chain of inequalities are obtained:

g∗ = ψ2 ◦ φ2(g∗ ∧ g∗i ) � ψ2 ◦ φ2(g∗) � ψ2 ◦ φ2(
∧
i∈Λ

g∗i ) = (
∧
i∈Λ

g∗i )
↑c↓c

where the last equality is given by Lemma 21.
Finally, the fuzzy extent of 〈g∗, f ∗〉f 〈(

∧
i∈Λ g

∗
i )
↑c↓c , (

∧
i∈Λ g

∗
i )
↑c〉 is given

by ψ2 ◦ φ2(g∗ ∧ (
∧
i∈Λ g

∗
i )
↑c↓c) = ψ2 ◦ φ2(g∗) = g∗, by the definition of f, the

comment above and Lemma 15.
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Thus, the inequality 〈g∗, f ∗〉 �L 〈(
∧
i∈Λ g

∗
i )
↑c↓c , (

∧
i∈Λ g

∗
i )
↑c〉 holds and,

consequently, there exist the meet (and join) of each non-empty set of ML.
The proof is finished by showing that (ML,�L) has bottom and top

elements, which can be easily expressed as

⊥ =
k
{〈g∗, f ∗〉 | 〈g∗, f ∗〉 ∈ML} > =

j
{〈g∗, f ∗〉 | 〈g∗, f ∗〉 ∈ML}

�

As a result of the previous statements, two orderings have been defined
on ML, although only �L makes ML to be a complete lattice. The follow-
ing proposition prepares the next section, in which both orderings will be
compared.

Proposition 23. Given the set of concept ML, and the orders defined
above, ≤ and �L, we obtain that: if 〈g∗1, f ∗1 〉, 〈g∗2, f ∗2 〉 ∈ ML, such that
〈g∗1, f ∗1 〉 ≤ 〈g∗2, f ∗2 〉, then 〈g∗1, f ∗1 〉 �L 〈g∗2, f ∗2 〉.

Proof. As we stated in the proof of Theorem above, if 〈g∗1, f ∗1 〉 and 〈g∗2, f ∗2 〉 ∈
ML, then g∗1 = (f ∗1 )↓

c
, g∗2 = (f ∗2 )↓

c
and there exist mappings g1, g2 defined

on (L2)B such that g∗1 = ψ2(g1), g∗2 = ψ2(g2). Hence, the following chain of
equalities is obtained:

〈g∗1, f ∗1 〉f 〈g∗2, f ∗2 〉 = 〈ψ2 ◦ φ2(g∗1 ∧ g∗2), (g∗1 ∧ g∗2)↑c〉
= 〈ψ2 ◦ φ2(ψ2(g1) ∧ ψ2(g2)), (g∗1 ∧ g∗2)↑c〉
(1)
= 〈ψ2(g1 ∧2 g2), (g∗1 ∧ g∗2)↑c〉
= 〈ψ2(g1), (g∗1 ∧ g∗2)↑c〉
(2)
= 〈g∗1, (g∗1 ∧ g∗2)↑c〉
(3)
= 〈g∗1, (g∗1)↑c〉

where (1) is given by Lemma 20 and (2) is obtained since ψ2(g1) = g∗1 �
g∗2 = ψ2(g2) and, applying φ, we have g1 �2 g2. (3) is satisfied by the
definition of concept.

4. Comparison between (M, �) and (ML, �L)

In this section, we establish a comparison between the concept lat-
tices (ML,�L) (defined above) and (M,�) (defined in [28]). We will con-
sider a fixed context (A,B,R, σ), a frame (L1, L2, L,&1, . . . ,&n), where L1
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and L2 are L-connected, and the corresponding multi-adjoint concept lat-
tices (M,�) and (ML,�L).

Firstly we will prove, in the following result, that each concept 〈g, f〉 ∈
M determines a concept in ML.

Proposition 24. If 〈g, f〉 ∈ M, then the mappings g∗ : B → L, f ∗ : A →
L, defined as g∗ = ψ2 ◦ g, f ∗ = ψ1 ◦ f , form a concept of the multi-adjoint
concept lattice (ML,�L).

Proof. The equalities (ψ2 ◦g)↑c = (ψ1 ◦f) and (ψ1 ◦f)↓
c

= (ψ2 ◦g) have to
be checked. We will prove just the first one, as the second follows similarly.

Given a ∈ A, as 〈g, f〉 ∈M, we obtain the following chain of equalities:

(ψ2 ◦ g)↑c(a) = ψ1(inf{R(a, b)↙b φ2((ψ2 ◦ g)(b)) | b ∈ B})
= ψ1(inf{R(a, b)↙b g(b) | b ∈ B})
= ψ1(g↑(a))

= ψ1(f(a))

= (ψ1 ◦ f)(a)

Hence, (ψ2 ◦ g)↑c = (ψ1 ◦ f). �

Example 25. Considering the concept (g↑↓, g↑) ∈M given in Example 11,
and the mappings in Example 3, by Proposition 24, the pair (ψ2◦g↑↓, ψ1◦g↑)
is a concept of the multi-adjoint L-connected concept lattice (ML,�L).

For example, the mapping ψ1◦g↑ : A→ L is defined as: (ψ1◦g↑)(a1) = x
and (ψ1 ◦ g↑)(a2) = v. �

Now, given a mapping g : B → L2, we have two possible ways to con-
struct the smallest concept in ML “containing” g:

• Considering the mapping ψ2◦g ∈ LB and obtaining the corresponding
concept in ML, that is, 〈(ψ2 ◦ g)↑c↓

c
, (ψ2 ◦ g)↑c〉.

• Obtaining the corresponding concept in M and, by Proposition 24,
considering the concept 〈ψ2 ◦ g↑↓, ψ1 ◦ g↑〉 in ML.

The following proposition states that the two constructions above coincide.

Proposition 26. Given a mapping g : B → L2, the concepts 〈(ψ2◦g)↑c↓
c
, (ψ2◦

g)↑c〉 and 〈ψ2 ◦ g↑↓, ψ1 ◦ g↑〉 coincide.
19



Proof. It is sufficient to prove that (ψ2 ◦ g)↑c = ψ1 ◦ g↑, and this follows
from the proof of Proposition 24. �

Similarly, we obtain a concept of M from each concept of ML, and the
two possible constructions of the smallest concept “containing” g∗ : B → L
coincide.

Proposition 27. If 〈g∗, f ∗〉 ∈ML, then the mappings g : B → L2, f : A→
L1, defined as: g = φ2 ◦ g∗, f = φ1 ◦ f ∗, form a concept of the multi-adjoint
concept lattice M. Moreover, given a mapping g∗ : B → L, the concepts
〈(φ2 ◦ g∗)↑↓, (φ2 ◦ g∗)↑〉 and 〈φ2 ◦ (g∗)↑c↓

c
, φ1 ◦ (g∗)↑c〉 coincide.

Proof. First of all, we need to prove that g↑ = f, f ↓ = g. We will prove
just the first equality (the second follows similarly).

Given a ∈ A, as 〈g∗, f ∗〉 ∈ML, we obtain the following chain of equali-
ties:

f ∗(a) = (g∗)↑c(a)

= ψ1(inf{R(a, b)↙b φ2(g∗(b)) | b ∈ B})
= ψ1(inf{R(a, b)↙b g(b) | b ∈ B})
= ψ1(g↑(a))

Hence, applying φ1 on both sides, we obtain

f(a) = φ1(f ∗(a)) = φ1(ψ1(g↑(a))) = g↑(a)

Finally, from the chain of equalities above, we conclude that (φ2 ◦g∗)↑ =
φ1 ◦ (g∗)↑c , since

(φ2 ◦ g∗)↑(a) = g↑(a) = φ1(ψ1(g↑(a))) = φ1(f ∗(a)) = (φ1 ◦ (g∗)↑c)(a)

which lead us to ensure that the concepts 〈(φ2 ◦ g∗)↑↓, (φ2 ◦ g∗)↑〉 and 〈φ2 ◦
(g∗)↑c↓

c
, φ1 ◦ (g∗)↑c〉 coincide. �

Example 28. Given the concept ((g∗)↑c↓
c
, (g∗)↑c) ∈ML considered in Ex-

ample 18, and the mappings in Example 3, by Proposition 27, the pair
(φ2 ◦ (g∗)↑c↓

c
, φ1 ◦ (g∗)↑c) is a concept of the multi-adjoint concept lattice M.

For example, the mapping φ1 ◦ (g∗)↑c : A → L1 is defined as: (φ1 ◦
(g∗)↑c)(a1) = b and (φ1 ◦ (g∗)↑c)(a2) = a. �
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It is worth to take into account that the result above can be given
analogously for any f : A→ L1 as well.

As a consequence of the definition of L-connection and the above results,
the following theorem is obtained.

Theorem 29. The mappings Φ: (ML,�L) → (M,�) and Ψ: (M,�) →
(ML,�L) defined, for each 〈g, f〉 ∈M and 〈g∗, f ∗〉 ∈ML, as follows

Φ(〈g∗, f ∗〉) = 〈φ2 ◦ g∗, φ1 ◦ f ∗〉
Ψ(〈g, f〉) = 〈ψ2 ◦ g, ψ1 ◦ f〉

are well-defined and Φ and Ψ are (order-)isomorphism. Thus, ML and M

are isomorphic.

Proof. From Propositions 24 and 27, Φ and Ψ are well-defined. Mapping
Ψ is order-preserving since ψ1, ψ2 are order-preserving mappings and by
Proposition 23.

To prove that Φ is order-preserving, let us to consider 〈g∗1, f ∗1 〉 and
〈g∗2, f ∗2 〉 ∈ML, such that 〈g∗1, f ∗1 〉 �L 〈g∗2, f ∗2 〉 and φ2 ◦ g∗1 �2 φ2 ◦ g∗2 must be
proved or, equivalently, φ2 ◦ g∗1 = φ2 ◦ g∗1 ∧2 φ2 ◦ g∗2.

As g∗1 = (f ∗1 )↓
c
, g∗2 = (f ∗2 )↓

c
, there exist mappings g1, g2 defined on (L2)B

such that g∗1 = ψ2(g1), g∗2 = ψ2(g2). Moreover, the equality 〈g∗1, f ∗1 〉 =
〈g∗1, f ∗1 〉f 〈g∗2, f ∗2 〉 is satisfied.

Therefore, g∗1 = ψ2 ◦φ2(g∗1 ∧ g∗2) = ψ2 ◦φ2(ψ2(g1)∧ψ2(g2)) = ψ2(g1∧2 g2)
and, applying φ2, we obtain the equality needed.

φ2(g∗1) = φ2◦ψ2(g1∧2g2) = g1∧2g2 = φ2◦ψ2(g1)∧2φ2◦ψ2(g2) = φ2(g∗1)∧2φ2(g∗2)

Furthermore, by Definition 1, we have that Φ◦Ψ: M→M is the identity
mapping. The proof will be finished if Ψ◦Φ: ML →ML is also the identity
mapping on ML.

Consider 〈g∗, f ∗〉 ∈ML, in order to prove that Ψ◦Φ(〈g∗, f ∗〉) = 〈g∗, f ∗〉
it is enough to prove that ψ1 ◦ φ1 ◦ f ∗ = f ∗; this is obtained from the
following equalities, considering a ∈ A.

ψ1 ◦ φ1 ◦ f ∗(a) = (ψ1 ◦ φ1)((g∗)↑c(a))

= (ψ1 ◦ φ1)(ψ1(inf{R(a, b)↙b φ2(g∗(b)) | b ∈ B}))
= ψ1((φ1 ◦ ψ1)(inf{R(a, b)↙b φ2(g∗(b)) | b ∈ B}))
= ψ1(inf{R(a, b)↙b φ2(g∗(b)) | b ∈ B})
= (g∗)↑c(a)

�
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Therefore, M and ML are isomorphic posets and, as (ML,�L), (M,�)
are lattices, Φ and Ψ are lattice-isomorphisms.

As a consequence of the previous isomorphisms, in order to obtain the
concept lattice (M,�), we firstly use an algorithm to build the concept
lattice (ML,�L) and then, the mapping Φ is applied to obtain M.

There exist algorithms developed to obtain the concept lattices where
the conjunctors have the same carrier for both arguments, as for instance,
Lindig’s algorithm [24], or its extension for graded attributes [7], or the
efficient algorithm to compute the lattice of all fixpoints of a fuzzy clo-
sure operator [8]; however these algorithms cannot be applied to obtain
the lattice (ML,�L) since ↑c , ↓c do not form a Galois connection, and nei-
ther ↑c↓

c
nor ↓

c↑c are closure operators. Suitable modifications on these
algorithms could be enough to obtain an efficient mechanism to obtain the
lattice (ML,�L). As the complexity of the algorithm used depends on the
size of L, we should find, whenever possible, the least lattice L such that
L1 and L2 are L-connected, but this is beyond the scope of this work, and
will be studied in the future.

5. Conclusions and future work

Sets of attributes and objects in fuzzy formal concept analysis are usually
different and, hence, it might not make sense to evaluate them on the same
carrier when interpreted in a fuzzy extension. In this context, the operators
used to obtain the concept lattice could be defined by associating different
lattices to attributes and objects, see [28].

There exist reasons which suggest the need to evaluate the set of at-
tributes and objects in the same carrier and, in this direction, a new concept
lattice has been introduced, in which objects and attributes are evaluated
on the same lattice L, although using operators which evaluate objects and
attributes in different carriers.

The relationship between the new concept lattice and the alternative
one obtained directly considered different carriers to both set of attributes
and objects, introduced in [28], has been studied. It is worth to recall that
our framework based on L-connected lattices generalizes the well-known
approach of concept lattices with hedges [11, 10, 19].

For future work, in order to define an efficient mechanism to obtain the
lattice (ML,�L), modifications in the different algorithms introduced to
compute the concept lattices in which the conjunctors have the same carrier
for both arguments, will be studied. Moreover, we want to further develop
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how the theory presented here can be applied to obtain t-concepts [17, 27]
when, originally, the set of attributes and objects are evaluated in different
lattices. Finally, another interesting topic to be studied in the short term
is to obtain mechanisms to find the least lattice L such that L1 and L2 are
L-connected.
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[3] G. Arévalo, S. Ducasse, S. Gordillo, and O. Nierstrasz. Generating a catalog of
unanticipated schemas in class hierarchies using formal concept analysis. Informa-
tion and Software Technology, 52(11):1167–1187, 2010.
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