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Abstract

The aim of this paper is to build a formal model for similarity-based fuzzy unification
in multi-adjoint logic programs. Specifically, a general framework of logic program-
ming which allows the simultaneous use of different implications in the rules and
rather general connectives in the bodies is introduced, then a procedural semantics
for this framework is presented, and an aproximative-completeness theorem proved.
On this computational model, a similarity-based unification approach is constructed
by simply adding axioms of fuzzy similarities and using classical crisp unification
which provides a semantic framework for logic programming with different notions
of similarity.
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1 Introduction

It is usual practice in mathematical logic for a formal model to have clearly
defined its syntactical part (which deals with proofs) and its semantical part
(dealing with truth and/or satisfaction). When applying logic to computer
science, mainly in logic programming, a different terminology is used, and we
speak about the declarative part of the formal model (corresponding to truth
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and satisfaction) and the procedural part, more focused on algorithmic aspects
of finding proofs (automated deduction).

Unification is an important part of procedural semantics for many formal
models, because it helps to identify instantiations of different statements, that
is, to make them syntactically (letter by letter) equal; and unified (identical)
statements can be handled identically. In the classical case, on the one hand,
there was no need to clearly specify the declarative and procedural parts of
a formal model of unification because, on the declarative part, there was the
requirement of being syntactically equal (and hence equal also from the point
of view of truth and satisfaction); on the other hand, the procedural part of
classical unification is well developed, namely, different unification algorithms
have been studied. This is no longer case when considering fuzzy unification,
where both the declarative and the procedural part of a formal model of fuzzy
unification are needed.

We mention below some possible examples of problems from the real world,
whose solution needs an adequate treatment of similarity, but one can imagine
many other syntactical, linguistic and conceptual sources, see e.g. [9]. For
illustration purposes consider the following situations:

• Firstly, imagine a hotel name “Salaš” in Slovak, which can in Hungarian
pronunciation can be written as “Szálás”, in Polish “Sza�las” and in English
(omitting the “check sign” from Slovak) as “Salas”. Does the query us-
ing “Salaš” unify with a database fact about “Sza�las”?, do subgoals about
“Szálás” and “Salas” fit together? A common-sense intuition suggests that,
without the knowledge of any additional fact, the system itself cannot glue
together information about objects with different syntactical form. So the
main question is how to describe this additional information.

• Another source of problems comes from the need of inter-operability, in
which a client requires apparently homogeneous access to heterogeneous
servers. This heterogeneity causes, for instance, that web users accessing
these information sources usually require a multi-step process utilizing the
intelligence of the end-user to navigate and to resolve heterogeneity by ap-
plying several similarity criteria [7].

• A third interesting example comes again from internet, whose initial design
was made as an initiative for connecting sites containing information stored
for direct human processing, but its next generation (the semantic web) is
aimed at storing machine-processable information. For instance, implement-
ing search engines which use ontologies to find pages with words that are
syntactically different but semantically similar [3].

• Our final motivating example has to do with multimedia database queries.
A user might want to query a multimedia database system over several
properties he/she is interested in. For instance, consider the case that one
is searching for a movie clip that has a predominantly red scene with a loud
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noise in the sound track, this example comes from [5]. There is likely to
be a score giving the redness of the scene and a different score giving the
loudness of the sound, and these two scores have to be somehow aggregated
to be able to obtain their similarity degree and provide an ordered list of
results.

Several approaches have been proposed for dealing with these problems; in
this paper we choose the way of including additional information about fuzzy
similarities of different objects and using axioms of equality to transfer prop-
erties between these objects, our main aim being not to give practical advice
on how to detect and handle similarities in practical applications, but to give
a formal model for both the declarative and the procedural part of similarity-
based fuzzy unification. Here we stress the fact that, for fuzzy unification,
both a procedural and declarative semantics are needed, as opposed to the
two valued case.

Our approach to fuzzy unification is based on a theory of fuzzy logic pro-
gramming with crisp unification constructed on the multi-adjoint framework
recently introduced in [12,13]. We recall definitions of declarative and proced-
ural semantics of multi-adjoint logic programming and show how its soundness
and completeness, and especially the fix-point theorem and the minimal model
obtained by the iteration of the immediate consequences operator, can give
a base for a sound and complete model of fuzzy unification. The fact that
this theory of fuzzy unification is developed inside the realm of fuzzy logic
programming is very important for later integration of fuzzy similarity-based
unification and fuzzy logic programming deduction.

The structure of the paper is as follows: in Sections 2 and 3, a general theory of
logic programming which allows the simultaneous use of different implications
in the rules and rather general connectives in the bodies can be constructed.
Models of multi-adjoint logic programs are postfix-points of the immediate
consequences operator, which is proved to be monotonic under very general
hypotheses. The continuity of the immediate consequences operator is proved
under the general assumption of continuity of all the operators in the pro-
gram (but, possibly, implications). Later, in Section 4, a procedural semantics
for the general theory of multi-adjoint logic programming is presented, in the
spirit of [13], and a quasi-completeness theorem is proved. In Section 5, our
similarity-based approach to unification is introduced. Roughly speaking, we
add axioms of fuzzy similarities and, using the computational model provided
by the procedural semantics which uses classical crisp unification, we provide a
semantic framework for logic programming with different notions of similarity.
Finally, we give some comparisons with other approaches. It is worth to men-
tion that the weak unification algorithm introduced in [15] can be completely
emulated by our similarity-based unification model.
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2 Multi-adjoint logic programming

The intuition behind multi-adjoint logic programs is as follows: Considering
different implication operators, such as �Lukasiewicz, Gödel or product implic-
ation in the same logic program, naturally leads to the allowance of several
adjoint pairs in the lattice of truth-values. This idea is used in [12] to introduce
multi-adjoint logic programs as an extension of monotonic and residuated logic
programs, presented in [2], so that it is possible to use a number of different
implications in the rules of our programs. Specifically, the language and se-
mantics of definite logic programs are generalized in order to encompass more
complex rules.

The semantical framework of multi-adjoint logic programs is based on the so-
called multi-adjoint lattices. The semantic basis of the notion of consequence
in generalized logic programs is that of adjoint pair, which allows that fairly
general conjunctors and their adjoints are used as, for instance, in [17].

The concept of adjoint pair was firstly introduced in a logical context by
Pavelka [14], who interpreted the poset structure of the set of truth-values
as a category, and the relation between the connectives of implication and
conjunction as functors in this category. The result turned out to be another
example of the well-known concept of adjunction, introduced by Kan in the
general setting of category theory in 1950.

Definition 1 Let 〈P,�〉 be a partially ordered set and (←, &) a pair of binary
operations in P such that:

(1) Operation & is increasing in both arguments, i.e. if x1, x2, y ∈ P such
that x1 � x2 then (x1 & y) � (x2 & y) and (y & x1) � (y & x2);

(2) Operation ← is increasing in the first argument (the consequent) and
decreasing in the second argument (the antecedent), i.e. if x1, x2, y ∈ P
such that x1 � x2 then (x1 ← y) � (x2 ← y) and (y ← x2) � (y ← x1);

(3) Adjoint property. For any x, y, z ∈ P , we have that x � (y ← z) holds
if and only if (x & z) � y holds.

Then we say that (←, &) forms an adjoint pair in 〈P,�〉.

The main point in the extension of the results in [2,17,18] to a more gen-
eral setting, in which different implications (�Lukasiewicz, Gödel, product) and
several modus ponens-like inference rules are used, naturally leads to consid-
ering several adjoint pairs in the residuated lattice, leading to what we call a
multi-adjoint lattice. More formally,

Definition 2 Let 〈L,�〉 be a complete lattice. A multi-adjoint lattice L is a
tuple (L,�,←1, &1, . . . ,←n, &n) satisfying the following items:
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(1) 〈L,�〉 is bounded, i.e. it has bottom (⊥) and top (�) elements;
(2) (←i, &i) is an adjoint pair in 〈L,�〉 for i = 1, . . . , n;
(3) �&i ϑ = ϑ &i � = ϑ for all ϑ ∈ L for i = 1, . . . , n.

Note that residuated lattices [4] are a special case of multi-adjoint lattice, in
which only one adjoint pair is present, and the underlying lattice has monoidal
structure wrt & and � (in general we are assuming neither associativity nor
commutativity of &).

From the point of view of expressiveness, it is convenient to allow extra op-
erators to be involved with the operators in the multi-adjoint lattice. The
structure which captures this possibility is that of a multi-adjoint algebra.

Definition 3 Let Ω be a graded set containing operators ←i and &i for i =
1, . . . , n and possibly some extra operators, and let L = 〈L, I〉 be an Ω-algebra
whose carrier set L is a complete lattice under �.

We say that L is a multi-adjoint Ω-algebra with respect to the pairs (←i, &i)
for i = 1, . . . , n if L = (L,�, I(←1), I(&1), . . . , I(←n), I(&n)) is a multi-
adjoint lattice.

In the following, as we will work with a fixed graded set Ω, the prefix Ω- will
be dropped and, when necessary, we will talk simply about algebras.

3 Syntax and Semantics of Multi-Adjoint Programs

The definition of multi-adjoint logic program is given, as usual in fuzzy lo-
gic programming, as a set of weighted rules and facts of a given first-order
language F, constructed as an algebra. Note that we will be allowed to use
different implications in our rules.

Definition 4 A multi-adjoint logic program is a set P of weighted rules of
the form 〈A ←i B, ϑ〉 such that:

(1) The consequent of the implication, A, is an atom which is called the head.
(2) The antecedent of the implication, B, is called the body, and is a for-

mula built from atoms B1, . . . , Bn (n ≥ 0) by the use of conjunctors,
disjunctors, and aggregators.

(3) The confidence factor ϑ is an element (a truth-value) of L.

As usual, facts are rules with body �, goals or queries are atoms intended
as questions ?A prompting the system. Free occurrences of variables in the
program are assumed to be universally quantified.
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Definition 5 An interpretation is a mapping from the Herbrand base, BP, of
the program P to the multi-adjoint lattice of truth-values 〈L,�〉.

By using the unique homomorphic extension, it is possible to extend uniquely
the mapping I, defined on BP, to be defined on the set of all ground formu-
las of the language, this extension will be denoted Î. The extension for the
non-ground case is also straightforward, due to the fact that all our formulas
are considered universally closed; this way, for a non-ground formula A, the
interpretation I is defined as follows: 3

Î(A) = inf
ξ
{Î(Aξ) | Aξ is a ground instantiation of A }

The ordering � in L can be easily extended to the set of interpretations as
usual, I1 	 I2 iff I1(A) � I2(A) for all ground atom. The least interpretation
� maps every ground atomic formula to the least element ⊥ of L.

Definition 6 An interpretation I satisfies a weighted rule 〈A ←i B, ϑ〉, if and
only if ϑ � Î(A ←i B). An interpretation I is a model of a multi-adjoint logic
program P iff all weighted rules in P are satisfied by I.

Note that we will be working with two algebras, F for the formulas and L for
its interpretations, to avoid the risk of confusion we will introduce a special
notation to clarify which algebra an operator belongs to. Let ω be an oper-
ator symbol, its interpretation under L is denoted

.
ω (a dot on the operator),

whereas ω itself will be interpreted in F.

Note the following equalities, where ξ is ground

Î((A ←i B)ξ) = Î(Aξ ←i Bξ) = Î(Aξ)
.←i Î(Bξ) = I(Aξ)

.←i Î(Bξ)

where the evaluation of Î(Bξ) proceeds inductively as usual. Similarly, a fact
〈A ←i �, ϑ〉 is satisfied if

ϑ � Î((A ←i �)) � I((A ←i �)ξ) = I(A)
.←i �

now, by the adjoint property, this is equivalent to ϑ
.

&i � � I(A) and, by the
third assumption in Definition 2, this gives ϑ � I(A).

Definition 7 A pair (λ; θ) where λ ∈ L and θ is a substitution, is a correct
answer for a program P and a query ?A if for any model of P we have

λ � inf
ξ

{
I(Aθξ)

}
= Î(Aθ)

3 In the rest of the paper, we will always use the notation infξ to denote the infimum
on the set of all ground instantiations of the corresponding formula.
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3.1 Fix-point semantics

The immediate consequences operator, given by van Emden and Kowalski, can
be generalized to the framework of multi-adjoint logic programs as follows:

Definition 8 Let P be a multi-adjoint logic program. The immediate con-
sequences operator TP maps interpretations to interpretations and is defined
in such a way that, given an interpretation I and a ground atom A,

TP(I)(A) = sup
{
ϑ

.
&i Î(Bθ) | 〈C ←i B, ϑ〉 ∈ P and A = Cθ

}

As it is usual in the logic programming framework, the semantics of a multi-
adjoint logic program is defined as the least fix-point of TP. In [12], the mono-
tonicity of TP, and its continuity (granted under continuity of all the operators
in the body) were proved in the propositional case. These results about mono-
tonicity and continuity of TP are extended to first-order multi-adjoint logic
programs in the rest of the section.

Theorem 9 An interpretation I is a model of a multi-adjoint logic program
P iff TP(I) 	 I.

PROOF. Firstly, assume that I is a model for P, and let us prove that
TP(I) 	 I.

Let A be a ground atom, for all weighted rule 〈C ←i B, ϑ〉 matching with A
(that is, there is a ground instantiation (C ←i B)θ such that A = Cθ) we
have, by hypothesis, the following chain of (in)equalities:

ϑ � inf
ξ
{Î((C ←i B)ξ)} � Î((C ←i B)θ) = Î(Cθ ←i Bθ) = Î(Cθ)

.←i Î(Bθ)

now, applying the adjoint property, we have ϑ
.
&i Î(Bθ) � I(Cθ) = I(A) and

taking suprema on the corresponding set of substitutions we get

sup{ϑ
.

&i Î(Bθ) | 〈C ←i B, ϑ〉 ∈ P and A = Cθ} � I(A)

If there is no rule with head A, then

TP(I)(A) = sup ∅ = ⊥ � I(A)

We have also to prove the converse: if TP(I)(A) � I(A) for all ground atom A,
then I is a model for P. This is immediate, as for any weighted rule 〈C ←i B, ϑ〉
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in P and ground instantiation ξ for C ←i B; by definition of TP, we have that
ϑ &i Î(Bξ) � TP(I)(Cξ). Now, by hypothesis,

ϑ &i Î(Bξ) � I(Cξ) for all ground instantiation ξ

and, again by the adjoint property, ϑ � I(Cξ) ←i Î(Bξ) = Î((C ←i B)ξ) and
finally, taking the infimum:

ϑ � inf
ξ
{Î((C ←i B)ξ)}

The monotonicity of the operator TP is given below:

Theorem 10 The operator TP is monotonic.

PROOF. Consider I and J two interpretations such that I 	 J , and let us
prove that TP(I) 	 TP(J).

Firstly, let us prove that Î(F ) � Ĵ(F ) for all ground body formula F . We will
use structural induction:

If F is a ground atomic formula, then it is obvious, ie

Î(F ) = I(F ) � J(F ) = Ĵ(F )

For the inductive case, consider F to be a body formula @(F1, . . . , Fn) and
assume that Î(Fi) � Ĵ(Fi) for all i = 1, . . . , n. By definition, @ behaves as an
aggregator, and therefore, using the induction hypothesis

Î(F ) =
.
@(Î(F1), . . . , Î(Fn)) �

.
@(Ĵ(F1), . . . , Ĵ(Fn)) = Ĵ(F )

With the previous result, let us finish the proof:

Consider a rule 〈C ←i B, ϑ〉 in P and a ground θ with A = Cθ; by the induction
hypotheses, as Bθ is a ground formula, we have the inequality Î(Bθ) � Ĵ(Bθ),

then we also have ϑ
.

&i Î(Bθ) � ϑ
.

&i Ĵ(Bθ) for all i, since operators
.

&i are
increasing. Now, by taking suprema TP(I)(A) � TP(J)(A) for all A.

Due to the monotonicity of the immediate consequences operator, the se-
mantics of P is given by its least model which, by Knaster-Tarski’s theorem
together with Theorem 9, is exactly the least fix-point of TP, which can be
obtained by transfinitely iterating TP from the least interpretation �.
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A first result in this approach is that whenever every operator turns out to
be continuous in the lattice, then TP is also continuous and, consequently, its
least fix-point can be obtained by a countably infinite iteration from the least
interpretation.

Let us state the definition of continuous function which will be used.

Definition 11 Let L be a complete lattice and let f : L → L be a mapping.
We say that f is continuous if it preserves suprema of directed sets, that is,
given a directed set X one has

f(sup X) = sup{f(x) | x ∈ X}

A mapping g: Ln → L is said to be continuous provided that it is continuous
in each argument separately.

Let F be a language interpreted on a multi-adjoint algebra L, and let ω be any
operator symbol in the language. We say that ω is continuous if its interpret-
ation under L, that is

.
ω, is continuous in L.

Now we state and prove a technical lemma which will allow us to prove the
continuity of the immediate consequences operator.

Lemma 12 Let P be a multi-adjoint program, and let B be any body formula
in P. Assume that all the operators in B are continuous, let X be a directed
set of interpretations, and write S = sup X; then

Ŝ(B) = sup{Ĵ(B) | J ∈ X}

PROOF. Firstly, let us prove by structural induction the equality for all
ground formula B; in the base case of being an atomic ground formula the
result is obvious, since

Ŝ(B) = S(B) = sup{J(B) | J ∈ X} = sup{Ĵ(B) | J ∈ X}

For the inductive case, consider B = @(B1, . . . ,Bn), then by definition we

have Ŝ(B) =
.
@(Ŝ(B1), . . . , Ŝ(Bn)) since B is a ground formula. Now, by the

induction hypothesis we have Ŝ(Bi) = sup{Ĵ(Bi) | J ∈ X} for i = 1, . . . , n;
thus

Ŝ(B) =
.
@

(
sup{Ĵ(B1) | J ∈ X}, . . . , sup{Ĵ(Bn) | J ∈ X}

)

Note that, as X is a directed set so is each {Ĵ(Bi) | J ∈ X} and, by the
continuity of the aggregation operators, we have that
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Ŝ(B) = sup{
.
@(Ĵ(B1), . . . , Ĵ(Bn)) | J ∈ X}

= sup{Ĵ(
.
@(B1, . . . ,Bn)) | J ∈ X}

= sup{Ĵ(B) | J ∈ X}

Now we can consider the general case of a non-ground B. In this case we have
that, for all ground instantiation Bξ we have

Ŝ(Bξ) = sup{Ĵ(Bξ) | J ∈ X}

and calculating infima we obtain the desired equality.

Theorem 13

(1) If all the operators occurring in the bodies of the rules of a program P are
continuous, and the adjoint conjunctions are continuous in their second
argument, then TP is continuous.

(2) Conversely, if TP is continuous for all program P, then all the operat-
ors occurring in the bodies of the rules are continuous, and the adjoint
conjunctions are continuous in their second argument

PROOF. (1). We have to check that for each directed subset of interpreta-
tions X and each ground atomic formula A

TP(sup X)(A) = sup{TP(J)(A) | J ∈ X}

Let us write S = sup X, and consider the following chain of equalities:

TP(sup X)(A) = sup{ϑ
.

&i Ŝ(Bθ) | 〈C ←i B, ϑ〉 ∈ P, A = Cθ}
(∗)
= sup{ϑ

.
&i sup{Ĵ(Bθ) | J ∈ X} | 〈C ←i B, ϑ〉 ∈ P, A = Cθ}

(�)
= sup{ϑ

.
&i Ĵ(Bθ) | J ∈ X, and 〈C ←i B, ϑ〉 ∈ P, A = Cθ}

= sup{sup{ϑ
.

&i Ĵ(Bθ) | 〈C ←i B, ϑ〉 ∈ P, A = Cθ} | J ∈ X}
= sup{TP(J)(A) | J ∈ X}

where equality (∗) follows from Lemma 12 and equality (�) follows from the

continuity of the operators
.

&i.

The proof of item (2) is similar.
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4 Procedural semantics

Once we know that the least model can be reached in at most countably many
iterations, that is as TP

ω(�), under pretty general assumptions, it is worth to
define a procedural semantics which allows us to actually construct the answer
to a query for a given program.

In this section we provide a procedural semantics to the paradigm of multi-
adjoint logic programming, and a quasi-completeness theorem will be given.

In the following, we will be working in a hybrid language Fe consisting of body
formulas built up from elements of the lattice and propositional symbols; this
way we can develop a symbolic computational model with partially evaluated
formulas. The formal definition of the extended language is given below:

Definition 14 Let P be a multi-adjoint logic program on a multi-adjoint al-
gebra L with carrier L and let V be the set of truth values of the rules in P.
The extended language Fe is the corresponding algebra of body formulas freely
generated from the disjoint union of V and the set of propositional symbols Π.

Formulas in the language Fe are called extended formulas, or simply e-formulas.
An operator symbol ω interpreted under Fe will be denoted as ω̄.

Our computational model will take a query (an atom), providing a lower bound
of the value of A under any model of the program. Intuitively, the computation
proceeds by, somehow, substituting atoms by lower bounds of their truth-value
until, eventually, an extended formula with no atom is obtained, which will
be interpreted in the multi-adjoint lattice to get the computed answer.

Given a program P, we define the following admissible rules for transforming
any pair formed by an e-formula and a substitution.

Definition 15 Admissible rules for a pair (F, θ) where F is an e-formula
and θ is a substitution, and A is an atom occurring in F (denoted F [A]), are
the following:

R1 Substitute F [A] by (F [A/ϑ &̄i B])θ′, and θ by θ′ ◦ θ whenever
(a) θ′ is the mgu of C and A,
(b) there exists a rule 〈C ←i B, ϑ〉 in P,

R2 Substitute A by ⊥ (just to cope with unsuccessful branches), and do not
modify θ.

R3 Substitute F [A] by (F [A/ϑ])θ′ and θ by θ′ ◦ θ whenever
(a) θ′ is the mgu of C and A
(b) there exists a fact 〈C ←i �, ϑ〉 in P.
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Note that if an e-formula turns out to have no atoms, then it can be directly
interpreted in the multi-adjoint lattice L. This justifies the following definition
of computed answer.

Definition 16 Let P be a program in a multi-adjoint language interpreted on
a multi-adjoint lattice L and let ?A be a goal. An element (

.
@[r1, . . . , rm], θ),

with rj ∈ L, for all j = 1, . . . , m is said to be a computed answer if there is a
sequence G0, . . . , Gn+1 such that

(1) G0 = (A, id) and Gn+1 = (@̄[r1, . . . , rm], θ′) where θ = θ′ restricted to the
variables of A and rj ∈ L for all j = 1, . . . m.

(2) Every Gi, for i = 1, . . . , n, is a pair of an e-formula and a substitution.
(3) Every Gi+1 is inferred from Gi by one of the admissible rules.

The length of this computed answer is defined to be n.

Note that the properties of multi-adjoint lattice guarantee that every com-
puted answer is correct, therefore the correctness theorem for this procedural
semantics is immediate.

4.1 Reductants

It might happen that for some lattices it is not possible to get the greatest
correct answer, an example can be easily constructed for a non-linear lat-
tice 〈L,�〉 as follows: let a, b be two incomparable elements in L, and consider
the situation in which a given query can be only matched with two rules, the
first one leading to the answer a, and the second one leading to the answer b.
By correctness of the procedural semantics we have that both a and b are
correct answer and, therefore, it is obvious that the supremum of a and b is
also a correct answer but uncomputable.

The idea to cope with this problem is the generalization of the concept of
reductant. Namely, whenever we have k rules 〈A ←i @i(D

i
1, . . . , D

i
ni

), ϑi〉 for
i = 1, . . . , k, then there should exist a rule allowing us to get the greatest
possible value of A under the program, that is, we would like to have the
possibility of reaching the supremum of all the contributions in a single step
of the computational model.

The reductant property is defined in [13] so that a single rule in the program
computes the supremum stated above (which is a generalization of the concept
of reductant [8]). Any rule 〈A ←i @i(D

i
1, . . . , D

i
ni

), ϑi〉 contributes, by the

adjoint property, with a value of the form ϑi

.
&i bi for the calculation of the
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lower bound for the truth-value of A; this fact justifies the definition below:

Definition 17 Let P be a program, and A a ground atom, let 〈Ci ←ji
Bi, ϑi〉

be the set of rules in P whose head matches with A (there are θi such that
A = Ciθi) and assume that this set contains at least a proper rule; a reductant
for A is any rule 〈A ← @(B1, . . . ,Bn)θ,�〉 where 4 θ = θ1 · · · θn, and ← is any
implication with an adjoint conjunctor, and the aggregator @ is defined as

.
@(b1, . . . , bn) = sup{ϑ1

.
&1 b1, . . . , ϑn

.
&n bn}

If the only rules matching with A turn out to be facts Ci, then the reductant
is defined to be a fact which aggregates all the knowledge about A, i.e.,

〈A ← �, sup{ϑ1, . . . , ϑn}〉

It is immediate to prove that the rule constructed in the definition above, in
presence of proper rules, behaves as a classical reductant for A in P. Note that,
as a consequence, the choice of the adjoint pair to represent the corresponding
reductant is irrelevant for the computational model. Therefore, in the follow-
ing, we will assume that our language has a distinguished adjoint pair to be
selected in the construction of reductants, leading to the so-called canonical
reductants.

Note that we have chosen to discard non-determinism by means of the use of
reductants, following traditional techniques of logic programming in the rest
of the construction.

In the following, we will assume that our program P has the reductant prop-
erty, as a consequence we can also assume that the program contains all the
reductants, since it can be easily proved that the set of models is not modified.

As a first consequence of the assumption of the reductant property, we present
a result which states that any computed answer with length n can be improved
by n iterations of the TP operator, which also constructs computed answers as
we will show later.

Proposition 18 If (λ, θ1 · · · θn) is a computed answer of length n for a ground
goal ?A, then λ � T n

P
(�)(A).

PROOF. By induction on the length of the computed answer for ?A.

4 Note that the order is not important since the rules can be assumed to be stand-
ardized apart.
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For n = 1 either R2 or R3 has been applied. The case of R2 is trivial, since
λ = ⊥; the case of R3 implies that there is a fact 〈C ← �, ϑ〉 and substitution θ
such that A = Cθ, therefore the computed answer has the form (ϑ, θ) and:

ϑ = ϑ
.
&i �� sup{ϑ

.
&i T

0
P
(�)(Bθ) | 〈C ←i B, ϑ〉 ∈ P and A = Cθ}

= T 1
P
(�)(A)

Assume that the result is true for length less than n, and that (λ, θ1 · · · θn) is
a computed answer for ?A of length n, for n > 0. Obviously, the first step has
been to apply R1 on a rule, say 〈C ←i B, ϑ〉 with matching substitution θ1,
therefore we can assume that G1 = ϑ &i Bθ1.

Note that the formula Bθ1 is ground; and let us denote it by @[B1, . . . , Bl],
where Bi are its ground atoms. Now, obviously, each atom Bi has a computed
answer of length at most n − 1, which can be written as (λi, θ2 · · · θn) for
i = 1, . . . , l. By induction hypothesis, and the monotonicity of the TP operator
we have

λi � T n−1
P

(�)(Bi) for all i = 1, . . . , l

therefore

λ = ϑ
.
&i

.
@(λ1, . . . , λl)�ϑ

.
&i

.
@(T n−1

P
(�)(B1), . . . , T

n−1
P

(�)(Bl))

= ϑ
.

&i
̂T n−1
P

(�)(@[B1, . . . , Bl])

= ϑ
.

&i
̂T n−1
P

(�)(Bθ1)

� sup{ϑ
.

&i T̂ n
P
(�)(Bθ) | 〈C ←i B, ϑ〉 ∈ P, A = Cθ}

= T n
P
(�)(A)

4.2 Completeness result

The proof of the completeness result follows from the following proposition
showing the behavior of both computed answers, which says that the TP op-
erator actually builds computed answers for ground goals. Specifically,

Proposition 19 Let P be a program and A be a ground atom, then the pair
(T n

P
(�)(A), id) is a computed answer for ?A for all n.

PROOF. By induction on n.

For n = 0, since T 0
P
(�)(A) = ⊥, the result follows as an application of R2.
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As induction hypothesis, assume that (T n
P
(�)(Q), id) is a computed answer for

all ground goal ?Q, and let us prove that (T n+1
P

(�)(A), id) is also a computed
answer for a given ground atom A. As we will use canonical reductants for A,
we have to consider two possibilities attending to its two possible forms.

On the one hand, if the reductant is a fact, then all the rules matching with A
are facts, and it should have the form 〈A ← �, ϑ〉, where ϑ is the supremum
of the confidence values of the facts matching with A.

Now, by definition of TP we have:

T n+1
P

(�)(A) = sup{ϑi

.
&ji

T̂ n
P
(�)(Bθ) | 〈C ←ji

B, ϑi〉 ∈ P, A = Cθ}
(∗)
= sup{ϑi | 〈C ←ji

�, ϑi〉 ∈ P, A = Cθ} = ϑ

where the equality (∗) holds because no proper rule (only facts) in P match
with A.

By using the canonical reductant, the sequence

G0 = (A, id) G1 = (ϑ, id)

proves that (ϑ, id) is a computed answer for ?A.

On the other hand, if 〈A ← @(B1, . . . ,Bl)θ,�〉 is a ground instance of the
canonical reductant for A, the body of the reductant can be interpreted as a
composition of a number of aggregators depending on a number of atoms Bi,
which will be denoted as @′[B1, . . . , Bk]. Thus we have:

T n+1
P

(�)(A) = sup{ϑ
.

&i T̂ n
P
(�)(Bφ) | 〈C ←i B, ϑ〉 ∈ P, A = Cφ}

(∗)
=

.
@(T̂ n

P
(�)(B1θ), . . . , T̂ n

P
(�)(Blθ))

= T̂ n
P
(�)(@(B1, . . . ,Bl)θ)

= T̂ n
P
(�)(@′[B1, . . . , Bk])

=
.

@′(T n
P
(�)(B1), . . . , T

n
P
(�)(Bk))

where (∗) follows by the definition of reductant.

By induction hypothesis, (T n
P
(�)(Bi), id) is a computed answer for ?Bi for all

ground atom Bi, with computing sequence

Hi0 = (Bi, id), . . . , Hij = (T n
P
(�)(Bi), id)
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Consider G0 = (A, id), and generate G1 as an application of the canonical
reductant for A, that is G1 = (� &̄ @̄′[B1, . . . , Bk], id). Now, we can use the
computing sequences for Bi to obtaining 5

Gr = (� &̄ @̄′[T n
P
(�)(B1), . . . , T

n
P
(�)(Bk)], id)

The proof of the completeness theorem follows easily from the previous the-
orem.

Theorem 20 (Approximative-completeness) Given a program P, for every
correct answer (λ; θ) for a program P and a ground goal ?A, there is a sequence
of computed answers (λn, id) such that λ � sup{λn | n ∈ N}.

PROOF. By Proposition 19 we have that, for all n, (T n
P
(�)(A), id) is a com-

puted answer for ?A.

Now, consider λn = T n
P
(�)(A); as (λ; θ) is a correct answer, and T ω

P
(�) is, in

particular, a model, we have that

λ� inf
ξ

{
T ω

P
(�)(Aθξ)

}

= T ω
P
(�)(A) = sup{T n

P
(�)(A) | n ∈ N} = sup{λn | n ∈ N}

This approximative completeness theorem cannot be extended to a full com-
pleteness theorem. It is not difficult to show the existence of programs for
which the greatest correct answer for a query ?A, that is TP

ω(�)(A), can be
approximated up to any value, but not attainable in finitely many steps.

Regarding non-ground queries, all the results in this section can be obtained
by means of suitable versions of lifting lemmas; just consider that we are
using classical crisp unification in our computational model. Moreover, in the
next section we will show how a similarity-based unification approach can be
constructed on it.

5 Similarity-based unification

Our approach will consider similarities acting on elements of domains of at-
tributes. This was already motivated in the introduction, when we have het-
erogeneous data source, and aiming to solve problems for the semantic web

5 This is due to the fact that the Bi are ground.
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we would have to link, e.g. the relation human(name, birth date, address) to
the relation person(name, birth date, address). The idea is based on the fact
that part of our knowledge base, the multi-adjoint program P, might consist of
graded facts representing information about existent similarities on different
domains which depend on the predicate they are used in, e.g.

〈s(Salaš, Sza�las), 0.8〉 〈s(Salaš, Szálás), 0.7〉 〈s(Szálás, Sza�las), 0.9〉

The particular semantics of our logic, based on the multi-adjoint paradigm,
enables one to easily implement a version of fuzzy unification by extending
suitably our given program.

Given a program P we construct an extension by adding a parameterized
theory (which introduces a number of similarities depending on the predicate
and function symbols in P), such as those below

〈s(x, x),�〉 〈s(x, y) ← s(y, x),�〉 〈s(x, z) ← s(x, y) & s(y, z),�〉

For all function symbol we also have

〈s(f(x1, . . . , xn), f(y1, . . . , yn)) ← sf
1(x1, y1) & · · · & sf

n(xn, yn),�〉

Finally, given a predicate symbol, then the following rules are added

〈P (y1, . . . , yn) ← P (x1, . . . , xn) & sP
1 (x1, y1) & · · · & sP

n (xn, yn),�〉

where & is some conjunction suitably describing the situation formalized by
the program. Note that the implication in these axioms can be arbitrary due
to both, the adjoint property and the fact that the truth-value of each rule is
always �.

This way we get a multi-adjoint logic program PE in which it is possible to get
computed answers wrt PE with similarity match in unification. This justifies
the following extension of Definition 16:

Definition 21 Let P be a program, let PE be an extension of this program by
appropriate rules describing axioms of similarity for the respective predicate
and function symbols, and let ?A be a query. An element (

.
@[r1, . . . , rm], θ),

with rj ∈ L, for all j = 1, . . . , m is said to be a similarity-based computed
answer for ?A wrt the program P if it is a computed answer for ?A wrt PE.

Note that similarity-based computed answers are nothing but computed an-
swers with crisp unification on a program extended by axioms of equality.
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Moreover, as this approach makes use of the computational model of multi-
adjoint programs, our similarity-based unification model, could also get benefit
from existing efficient implementations of its operational semantics [11].

Comparison with other approaches

A lot of research has been done in the field of unification based on similarities,
for instance, [1] starts from unification based on similarity to derive a logic
programming system, thoroughly relying on similarity, one of its principal
features being the allowance of flexible information retrieval in deductive data
bases. On the other hand, the purpose of [16] is to investigate the use of
similarities as the basis for unification and resolution in logic programming. As
a result, a well-founded semantical method to incorporate linguistic variables
into logic programming is given.

In contrast, the approach taken in [6] is based on fuzzy set theory and com-
puting something like the degree of being a singleton. They are restricted
to max-min connectives and we argue that similarity should be coupled by
product semantics, at least when working in the unit interval. The reason is
that the truth of the query answer should be independent of the fact whether
we made a misprint and/or a translation error or not (one of possible reasons
for having no unification but similarity one).

An specially interesting connection can be established between our approach
and the weak unification algorithm introduced in [15]. With this aim, in the
rest of the section we will work in a particular case of the multi-adjoint frame-
work in which L = [0, 1] and the only connectives will be Gödel’s implication
and Gödel’s conjunction.

We recall in the following paragraphs, in order to make this paper as self-
contained as possible, Sessa’s weak unification algorithm, which aims at find-
ing a weak mgu of two atoms A and B starting from a set of equations W
associated to A and B.

A weak unifier for A = P (t1, . . . , tn) and B = Q(t′1, . . . , t
′
n) with unifica-

tion degree λ up to a similarity relation R (or, simply, a λ-unifier) is a
substitution θ such that

λ = min
1≤i≤n

{
R(P, Q),R(tiθ, t

′
iθ)

}
= max

ϑ∈Ψ

{
min

1≤i≤n
{R(P, Q),R(tiϑ, t′iϑ)}

}

where Ψ denotes the set of all the substitutions.
The procedure constructs a sequence of improved sets of equations until

a solved set is reached. The algorithm is given below:

18



Given two atoms A = P (t1, . . . , tn) and B = Q(t′1, . . . , t
′
n) of the same

arity with no common variables to be unified, construct its associated set of
equations W . If R(P, Q) = 0, halts with failure, otherwise, set λ = R(P, Q)
and W = W � {P = Q}.

Until the current set of equation W does not change, non-deterministically
choose from W an equation of a form below and perform the associated
action.
(1) f(t1, . . . , tn) = g(t′1, . . . , t

′
n) where R(f, g) > 0 replace by the equations

t1 = t′1,. . . , tn = t′n and set λ = min {λ,R(f, g)}.
(2) f(t1, . . . , tn) = g(t′1, . . . , t

′
n) where R(f, g) = 0; halts with failure.

(3) x = x delete the equation.
(4) t = x where t is not a variable; replace by the equation x = t.
(5) x = t where x 
= t and x has another occurrence in the set of equations:

if x appears in t then halt with failure, otherwise perform the substitution
{x/t} in every other equation.

Similarities are considered, in [15], to act on constants, function symbols and
predicate symbols, therefore, assume that we have a similarity relation R
acting on F ∪ P ∪ C (function, predicate and constant symbols) with truth-
values ranging in the unit real interval [0, 1]. In our approach, the similarity R
is internalized, that is, we include a new predicate symbol in our language,
denoted sR.

Now, for every f, g ∈ F with R(f, g) > 0 let us extend our logic program by
the following schema of axioms

〈sR(f(x1, . . . , xn), g(y1, . . . , yn)) ← sR(x1, y1) & · · · & sR(xn, yn),R(f, g)〉

where, in the case of constants (as 0-ary functions) it is understood as

〈sR(c, d),R(c, d)〉

In addition, for every P, Q ∈ P with R(P, Q) > 0 let us extend our logic
program by a schema of axioms

〈P (y1, . . . , yn) ← Q(x1, . . . , xn) & sR(x1, y1) & · · · & sR(xn, yn),R(P, Q)〉

The extension of a program P with respect to a similarity relation R described
above will be denoted PR.

It is worth to mention that the equality axioms introduced in order to ob-
tain PE are simply the similarity-based extension obtained when the ‘external’
similarity R is the usual equality relation.
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In the following, in order to emulate the weak unification algorithm, we will
be working with the two-fold extension of the program PER. Moreover, in this
particular case, we will not need to have any other rules than those in the
two-fold extension of an empty program ∅ER, denoted E ∪R.

Theorem 22 Let P (t1, . . . , tn) and Q(t′1, . . . , t
′
n) be two atoms, assume that

some substitution θ is a λ-unifier (for λ ∈ [0, 1]) obtained by the weak unific-
ation algorithm, then (λ, θ) is a computed answer to the query ?P (t1, . . . , tn)
wrt the program E ∪R ∪ {〈Q(t′1, . . . , t

′
n), 1〉}.

PROOF. As the weak unification algorithm is non-deterministic, we will
withdraw the use of reductants from our calculation, so that our computa-
tional model turns back to be non-deterministic.

By induction along a branch of the computation of the weak unification al-
gorithm. We will show how the multi-adjoint computational model emulates
each possible step in the weak unification algorithm:

Preprocessing step. Set λ = R(P, Q). The emulation makes use of the rule

〈P (y1, . . . , yn) ← Q(x1, . . . , xn) & sR(x1, y1) & · · · & sR(xn, yn),R(P, Q)〉

which builds the following e-formula

min
{
R(P, Q), Q(x1, . . . , xn) & sR(x1, t1) & · · · & sR(xn, tn)

}

now, by using the fact 〈Q(t′1, . . . , t
′
n), 1〉, we obtain

min
{
R(P, Q), sR(t′1, t1) & · · · & sR(t′n, tn)

}

which represents both the set of equations W of the weak unification algorithm
and the current value of the unification degree.

We will show below our emulation of the applications of Steps 1–5 in the weak
unification algorithm.

Step 1. Given t1 = f(u1, . . . , um) = g(v1, . . . , vm) = t′1, with R(f, g) > 0, re-
place by the equalities u1 = v1, . . . , um = vm and update λ = min(λ,R(f, g)).

The computation uses the axiom

〈sR(f(x1, . . . , xm), g(y1, . . . , ym)) ←
sR(x1, y1) & · · · & sR(xm, ym),R(f, g)〉
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which builds the new e-formula below

min
{
R(f, g),R(P, Q), sR(u1, v1) & · · · & sR(um, vm),

sR(t′2, t2) & · · · & sR(t′n, tn)
}

Step 2. If f(t1, . . . , tn) = g(t′1, . . . , t
′
n) where R(f, g) = 0; then halt with failure.

This step is never applied because we are assuming that θ is a λ-unifier,
therefore the algorithm does not terminate with failure.

Step 3. If x = x delete the equation.

As we are using crisp unification, this step is trivial.

Step 4. If t = x where t is not a variable; replace by the equation x = t.

There is nothing to simulate here, since all the equations are interpreted as
similarities (which turn out to be commutative).

Step 5. If x = t where x 
= t and x has another occurrence in the set of equa-
tions: if x appears in t then halt with failure, otherwise perform the substitution
{x/t} in every other equation.

Once again, we are assuming that the algorithm does not halt with failure.
The application of the substitution is part of our semantics (see Definition 15),
because we use the crisp model of unification.

Recall that, when working with max-min similarities it is possible to decom-
pose the similarity to a sequence of refining crisp equivalences. This is no
longer possible in our case, due to the greater generality of the multi-adjoint
approach. Moreover, in [15], the similarity-based SLD derivation is applied to
a classical program (for there is no uncertainty in the program). The only place
where uncertainty appears is in the similarity coming from unification. Now,
as a consequence of the theorem on emulation of unification by the computa-
tional model of multi-adjoint programs, we can obtain the following theorem,
in which we are assuming the language of [15] (Defn.7.2).

Theorem 23 Given a similarity R, a crisp program P and a goal G0, and a
similarity-based derivation

G0 =⇒C1,θ1,λ1 G1 =⇒ · · · =⇒Cm,θm,λm Gm

the approximation degree of θ1 · · · θn restricted to the variables of G0 is set to
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be λ = min1≤i≤m{λi}, then there exists a multi-adjoint computation for ?G0

and the (crisp) program P in the logic with Gödel connectives and L = [0, 1]
such that the computed answer is (λ, θ).

It is worth to note that all theorems on fix-point, Hλ and Pλ semantics given
in [15] state that Sessa’s approach perfectly embeds in our more general multi-
adjoint approach (suitable restricted to the unit interval and Gödel connect-
ives).

6 Conclusions

A general framework of logic programming which allows the simultaneous use
of different implications in the rules and rather general connectives in the
bodies have been introduced. A procedural semantics for this framework of
multi-adjoint logic programming has been presented, and a quasi-completeness
theorem proved. On this computational model, a similarity-based unification
approach is constructed by simply adding axioms of fuzzy similarities and
using classical crisp unification which provides a semantic framework for logic
programming with different notions of similarity.

In the final section, our approach to unification is compared with some other
approaches, we show that the weak unification algorithm introduced in [15]
can be emulated by our unification model. From a practical point of view, the
proposed approach seems to be appropriate for some applications for inform-
ation retrieval systems such as those studied in [10].
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Košice, Slovakia, 2001.

[11] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. Multi-adjoint logic
programming: a neural net approach. In Logic Programming. ICLP’02. Lect.
Notes in Computer Science, 2002. To appear.

[12] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming
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