
A Similarity-Based Unification Model
for Flexible Querying

S. Krajči,1 R. Lencses,1 J. Medina,2 M. Ojeda-Aciego,2� and P. Vojtáš3

1 Inst. of Informatics. P.J. Šafárik University. Slovakia
2 Dept. Matemática Aplicada. Univ. Málaga. Spain †

3 Inst. of Computer Science. Acad. Sci. of the Czech Republic ‡

Abstract. We use the formal model for similarity-based fuzzy unific-
ation in multi-adjoint logic programs to provide new tools for flexible
querying. Our approach is based on a general framework for logic pro-
gramming, which gives a formal model of fuzzy logic programming ex-
tended by fuzzy similarities and axioms of first-order logic with equality.
As a source of similarities we consider different approaches, such as stat-
istical generation of fuzzy similarities, or similarities generated by some
information retrieval techniques or similarities arising from fuzzy con-
ceptual lattices.

1 Introduction

There has been increasing interest in the development of formal tools to handle
problems of users posing queries and systems producing answers. This focus has
become highly relevant as the amount of information available from local and
distributed information bases has increased drastically due to the expansion of
the world wide web. The recent interest in search engines, and the increasing
needs for adding quality in terms of flexibility, performance and precision to
such engines, has further added to the importance of the topic of flexible query
answering systems, the focus being to add flexibility to the systems for the
storage and access to information.

It is customary to consider the following paradigm for flexible query answer-
ing: think about an expert human intermediary who is able to analyse users
information needs and to evaluate the relevant information items from the avail-
able information sources. The knowledge on the information sources and the
capability to interpret the user requests enable the expert to perform a good es-
timate of the items possibly satisfying the users needs, though the query, per se,
may be imprecise, incomplete, or vague. Thus, one of the key issues for defining a
flexible query answering system is the tolerance to imprecision and uncertainty
in the formulation of user queries as well as in the representation of informa-
tion. A significant effort has been made in representing imprecise information
� Corresponding author. aciego@uma.es
† Partially supported by Spanish DGI project BFM2000-1054-C02-02.
‡ Partially supported by Czech Project GAČR 201/00/1489.

1

in database models by using fuzzy methods, and several approaches have been
proposed for dealing with these problems; for instance, an access structure for
similarity-based fuzzy databases is described in [8].

We are convinced that, in order to have a good approach to flexible query an-
swering, one needs to clearly specify both the procedural and declarative parts of
our systems. This is usual practice in mathematical logic, where formal models
have clearly defined its syntactical part (which deals with proofs) and its se-
mantical part (dealing with truth and/or satisfaction). When applying logic to
computer science, mainly in logic programming, a different terminology is used,
and we speak about the declarative part of the formal model (corresponding to
truth and satisfaction) and the procedural part, more focused on algorithmic
aspects of finding proofs (automated deduction).

In this paper we choose the way of including additional information about
fuzzy similarities of different objects and using axioms of equality to transfer
properties between these objects, our main aim being not to give practical advice
on how to detect and handle similarities in practical applications, but to give a
formal model for both the declarative and the procedural part of similarity-based
fuzzy unification as a tool for flexible query answering.

For illustration purposes we will present a number of problems from the real
world, whose solution needs an adequate treatment of similarity:

– Imagine a holidays database with names of touristic cities, depending on the
language in which the database has been developed, we can find “London” in
English, which in Spanish is “Londres”, in Italian “Londra” and even, why
not, could have been mistyped as “Lindon”. Does a query using “Londres”
unify with a database fact about “Londra” or “London”?

– Other problems come from the need of inter-operability, in which a client re-
quires apparently homogeneous access to heterogeneous servers. This causes,
for instance, that web users accessing these information sources usually re-
quire a multi-step process utilizing the intelligence of the end-user to navigate
and to resolve heterogeneity by applying several similarity criteria [3]. There
exist proposals of flexible architecture allowing users to specify a wide range
of structured queries through a uniform query interface [1].

– Another example from internet: its initial design was made as an initiative
for connecting sites with information stored for direct human processing, but
the next generation web is aimed at storing machine processable information.
For instance, implementing search engines based on ontologies to find pages
with words that are syntactically different but semantically similar [2].

As a source of similarities we consider different approaches, in the next sec-
tions, such as statistical generation of fuzzy similarities, or similarities generated
by some information retrieval techniques or similarities arising from fuzzy con-
ceptual lattices. Finally, a formal model for similarity-based fuzzy unification
is presented by using the multi-adjoint logic programming paradigm, and its
relation with Sessa’s approach [6] is stressed.

2

2 Similarity of Documents

Information Retrieval is an important branch of computer science which studies
the representation and searching of information. Pieces of information are typic-
ally stored as a fully (or semi-)structured text in documents. When a user creates
a query, an information retrieval system (IRS) finds documents whose content is
relevant to user request. The similarity plays an important role in this process
as we will show later. Formally, an IRS can be defined as a triple I = (D, R, δ),
where D is a document collection, R is a set of queries and δ:R → 2D is a
mapping assigning a set of relevant documents to each query. A widely used
document representation is the vector space model (or “bag of words”).

Table 1. Vector space representation of a document.

t1 t2 . . . tn

d1 w11 w12 . . . w1n

d2 w21 w22 . . . w2n

· · · · · · · · ·
. . . · · ·

dm wm1 wm2 . . . wmn

Each document di from a document collection D is represented by a vector
(wi1, . . . , win), where wij is a measure of the importance (weight) of term tj in
document di. Terms tj form a vector of terms (in the table with size n), which
contains all the meaningful terms from the whole collection D. Weights can be
determined by the well-established method TFIDF of document classification:

wij = tf ij · log
(

M

df j

)

where tf ij represents term frequency, that is, the number of occurrences of
term tj in document di; and the second factor is the inverse document frequency
(which gives the name to the method) where M is the number of documents and
df j is document frequency, that is, the number of documents in which the term
tj occurs . The TFIDF method gives greater weight to terms which appear more
frequently in lesser documents. There are also some variants of this method.

Usual similarity of documents (or documents and query) is based on the
euclidean distance or cosine of angle of two vectors:

Sim(Q, di) =

n∑
j=1

wij · wqj

√√√√ n∑
j=1

(wij)2 ·
n∑

j=1

(wqj)2

where (wq1, . . . , wqn) is the vector of the query Q.

3

The similarity of documents is typically used in clustering of documents,
which can be used for the visualization of a document collection, browsing
without querying or quickly finding of documents similar to required one. The
similarity of document and the query (also considered as a document) is used in
finding documents relevant to the query, which is the primary purpose of IRS.

3 Similarity on Documents via Fuzzy Conceptual Lattices

There exists another interesting approach to obtain similarity of documents. Let
us assume that numbers R(di, tj) = wij in the matrix from the Table 1 in the
interval [0, 1], and take some fix α ∈ [0, 1].

For every subset N of documents define the set ctα of all common terms with
degree at least α:

ctα(N) = {t : (∀d ∈ N)R(d, t) ≥ α},

and for every subset P of terms define the set cdα of all common documents
with degree at least α:

cdα(P) = {d : (∀t ∈ P)R(d, t) ≥ α}.

An α-concept is defined as a pair (N, P) of subsets of documents and terms,
respectively, such that ctα(N) = P and cdα(P) = N .

It is easy to see that set Lα of all α-concepts with ordering ≤, defined by
(N1, P1) ≤ (N2, P2) iff N1 ⊆ N2 (or, equivalently, P2 ⊆ P1), is a lattice, so-called
fuzzy conceptual lattice.

It is not difficult to define some type of similarity of documents in this con-
text: Documents d1 and d2 are said to be α-equivalent iff there is no set of doc-
uments N in the lattice Lα which separates them, i.e. for all N , either both d1

and d2 belong to N or neither does. The difference of d1 and d2 is defined as

diff(d1, d2) = µ({α ∈ [0, 1] : d1 and d2 are not α-equivalent})

where µ is Lebesgue’s measure. This difference is a pseudo-metric and, of course,
similarity is defined as the complement of this difference to 1.

In practice, values in the table R are usually rational (even decimal) numbers,
i.e. there exists some positive integer n that all values have a form p(d, t)/n for
some integer p(d, t). This fact allows for a simpler definition of the differences
function, since for all p < n and all α ∈

(
p/n, (p + 1)/n

]
all lattices Lα are

identical and it follows that

diff(d1, d2) =
card{p : 1 ≤ p ≤ n ∧ (d1 and d2 are not p

n -equivalent)}
n

Note that roles of documents and terms can be interchanged, therefore it can
be defined similarity of terms in the same way. Another approach to similarity
of terms is given in the next section.

4

4 Similarity of Terms

To define similarity for two terms we can work either syntactically or semantic-
ally. Syntactical approaches to similarity can be based on the definition of dis-
tance functions over terms. These functions must be metrics (reflexive, sym-
metric and satisfy the triangle inequality). One example of such a function is
Humming distance, which is defined as the number of positions with different
characters in two terms with equal length. Another distance is the edit or Leven-
shtein distance. This function is defined as the minimum number of operations
(insertion, deletion and substitution of one character) that are necessary to make
one term equal to another.

Semantical similarity of terms is part of the relationships between terms in-
cluded in a typical IR structure, such as a thesaurus. Thesauri can contain equi-
valences (synonyms and quasi-synonyms), hierarchical structures (hypernyma
and hyponyma, meronyma) and associative relationships (other than equival-
ence or hierarchical relations). Another approach concerns grouping semantically
similar terms (synonyms) into clusters.

Thesauri or clusters can be built by hand or automatically generated. The
automatic generation of such structures can be based on the joint occurrences
of terms in documents. Terms which occur simultaneously very often in docu-
ments, should have some relationship (which can be given a name). This idea
can be extended with a notion of distance (terms occurring jointly should be
in stronger relationship, if they their meaning is closer to each other). Another
approach is based on the idea that two terms are similar if their contexts (terms
in the neighbourhood) are similar (have relationship)—this is so called indirect
similarity.

Similarity of terms is typically used in query expansion. A user constructs
the query, then the IRS returns the relevant documents and, finally, the IRS or
the user (or both) can refine the query. IRS can analyse retrieved documents
(what do they have in common?) and build clusters of terms. These clusters
are utilized to expand the query—either the user chooses the proper terms or
the system does it automatically. A whole document collection can be used for
thesaurus generation.

5 Subjective Similarities

The previous approaches correspond to object-attribute data model, where an-
swering a query we have to fulfil some selection conditions. For instance, in a
classical query

SELECT Hotel
FROM Hotels, Distance, Building
WHERE Price < 1000, Distance < 50, Age of Building > 1995

we have to specify selection conditions using comparison on domains. This ap-
proach is not satisfactory because of two reasons:

5

1. First, it does not rank results starting with the best.
2. If there are too many or no results, we have to iterate the query by changing

selection conditions: increasing or decreasing parameters 1000, 50 and 1995,
but we do not know which up which down, in what steps . . .

In a fuzzy query we can specify selection conditions by fuzzy sets

SELECT Hotel
FROM Hotels, Distance, Building
WHERE Price is Cheap, Distance is Close, Age of Building is New

and we can order results by a (user tuned) aggregation, e.g. a weighted sum.
Here we would like to show another advantage of such an approach. Namely,

we can deduce similarities on the respective domains from these fuzzy sets.
The approach has a probabilistic motivation: In probability theory there is

a procedure which reasonably describes the geometry in the sample space. The
likelihood distance is a “natural” pseudometric generated by the distribution
function. In [7] a procedure was described for generating such a pseudomet-
ric (and hence a similarity) on an arbitrary interval. The only problem is the
assumption of differentiability of the distribution.

We can understand our fuzzy sets for “close” and “cheap” as subjective
probability density functions (up to some assumption on normalisation). We
describe some heuristical construction which is under testing:

– Given a probability measure P with distribution function F (x) = P ((−∞, x))
and density f(x) = dF (x)/dx = µ (where µ is the fuzzy set) an alternative
(pseudo)metric describing the geometry of the sample space is defined as

ρ(x1, x2) = |F (x1) − F (x2)|
– Another possibility is to avoid derivation and integration and assumptions

on this. A similar effect can be obtained by using a monotone function Tµ

generated from the density by “inverting” descending parts of the graph of
the density (fuzzy set on an ordered domain, e.g. the real line or an interval).

Having a fuzzy set µ: [a, b] −→ [0, 1] take all local maxima t1, t2, . . . , ti, . . . and
all local minima b1, b2, . . . , bi, . . . of the function µ and assume that

t1 < b1 < t2 < b2 < . . . < ti < bi < . . .

The function Tµ is defined by induction through i as follows:

x ∈ (a, t1] then Tµ(x) = µ(x)
x ∈ (t1, b1] then Tµ(x) = Tµ(t1) + (µ(t1) − µ(x))
x ∈ (b1, t2] then Tµ(x) = Tµ(b1) − (µ(b1) − µ(x))

. . .

x ∈ (ti, bi] then Tµ(x) = Tµ(ti) + (µ(ti) − µ(x))
x ∈ (bi, ti+1] then Tµ(x) = Tµ(bi) − (µ(bi) − µ(x))

then the pseudometric ρµ(x1, x2) = |Tµ(x1)−Tµ(x2)| generates a similarity after
a normalisation.

6

6 Multi-Adjoint Similarity-Based Unification

We have opted to approach a querying problem (finding an information, or an
object of our interest) by using logic methods defined by a suitable declarative
and computation model. Here we briefly present a fuzzy similarity-based unific-
ation procedure, which is based on a theory of fuzzy logic programming with
crisp unification constructed on the multi-adjoint framework introduced in [4].

We recall definitions of declarative and procedural semantics of multi-adjoint
logic programming and show our model of similarity-based unification. The fact
that this theory of fuzzy unification is developed inside the realm of fuzzy logic
programming is very important for later integration of fuzzy similarity-based
unification and fuzzy logic programming deduction.

Considering different implication operators, such as �Lukasiewicz, Gödel or
product implication in the same logic program, naturally leads to the allowance
of several adjoint pairs in the lattice of truth-values. This idea is used in to
introduce multi-adjoint logic programs, so that it is possible to use a number
of different implications in the rules of our programs in a more general set of
truth-values (a multi-adjoint lattice).

The definition of multi-adjoint logic program is given, as usual in fuzzy logic
programming, as a set of weighted rules and facts of a first-order language F.

Definition 1. A multi-adjoint logic program is a set P of weighted rules of the
form 〈A ←i B, ϑ〉 such that:

1. The consequent of the implication, A, is an atom which is called the head.
2. The antecedent of the implication, B, is called the body, and is a formula

built from atoms B1, . . . , Bn (n ≥ 0) by the use of conjunctors, disjunctors,
and aggregators.

3. The confidence factor ϑ is an element (a truth-value) of L.

Facts and goals or queries are understood as usual. Free occurrences of variables
in the program are assumed to be universally quantified.

Definition 2.

1. An interpretation is a mapping I:BP → L from the Herbrand base of P to
the multi-adjoint lattice of truth-values 〈L,�〉.

2. I satisfies a weighted rule 〈A ←i B, ϑ〉, if and only if its extension to the
whole set of formulas Î satisfies ϑ � Î(A ←i B);

3. I is said to be a model of a program P if and only if all weighted rules in P

are satisfied by I.

Definition 3. A pair (λ; θ) where λ ∈ L and θ is a substitution, is a correct
answer for a program P and a query ?A if for any model of P we have λ � Î(Aθ).

As usual in logic programming, the semantics of a multi-adjoint logic pro-
gram P is defined as the least fix-point of the immediate consequences oper-
ator TP, which is monotone and continuous (under general hypotheses); as a

7

consequence, the least model can be reached in at most countably many itera-
tions.

The computational model proceeds by substitution of atoms by lower bounds
of their truth-value until, eventually, an extended formula with no atom is ob-
tained, which will be interpreted in the multi-adjoint lattice to get the computed
answer. Formally, given a program P, we define the following admissible rules:

Definition 4. Admissible rules for a pair (F, θ) where F is a formula and θ is a
substitution, and A is an atom occurring in F (denoted F [A]), are the following:

R1 Substitute F [A] by
(
F [A/ϑ &̄i B]

)
θ′, and θ by θ′ ◦ θ whenever

(a) θ′ is the mgu of C and A,
(b) there exists a rule 〈C ←i B, ϑ〉 in P,

R2 Substitute A by ⊥ (just to cope with unsuccessful branches), and do not
modify θ.

R3 Substitute F [A] by
(
F [A/ϑ]

)
θ′ and θ by θ′ ◦ θ whenever

(a) θ′ is the mgu of C and A
(b) there exists a fact 〈C ←i �, ϑ〉 in P.

Note that if a formula turns out to have no atoms, then can be directly inter-
preted in the lattice. This justifies the following definition of computed answer :

Definition 5. Let P be a program in a multi-adjoint language interpreted on a
multi-adjoint lattice 〈L,�〉 and let ?A be a goal. An element (

.
@[r1, . . . , rm], θ),

with rj ∈ L, for all j = 1, . . . , m is said to be a computed answer if there is a
sequence G0, . . . , Gn+1 such that

1. G0 = (A, id) and Gn+1 = (@̄[r1, . . . , rm], θ′) where θ = θ′ restricted to the
variables of A and rj ∈ L for all j = 1, . . . m.

2. Every Gi, for i = 1, . . . , n, is a pair of a formula and a substitution.
3. Every Gi+1 is inferred from Gi by one of the admissible rules.

Assuming the necessary technical hypotheses, the following approximate com-
pleteness result was proven in [5]:

Theorem 1 (Approximate-completeness). Given a program P, for every
correct answer (λ; θ) for a program P and a ground goal ?A, there is a sequence
of computed answers (λn, id) such that λ � sup{λn : n ∈ N}.

Our approach to similarity-based unification considers similarities acting on
elements of domains of attributes. The idea is based on the fact that part of
our knowledge base, the multi-adjoint program P, might consist of graded facts
representing information about existent similarities on different domains which
depend on the predicate they are used. The particular semantics of the multi-
adjoint paradigm, enables us to easily implement a version of fuzzy unification
by extending suitably our given program.

Given a program P we construct an extension by adding a parametrized
theory E (which introduces a number of similarities depending on the predicate
and function symbols in P), such as those below

〈s(x, x),�〉 〈s(x, y) ← s(y, x),�〉 〈s(x, z) ← s(x, y) & s(y, z),�〉

8

For all function symbol we also have

〈s(f(x1, . . . , xn), f(y1, . . . , yn)) ← sf
1 (x1, y1) & · · · & sf

n(xn, yn),�〉

Finally, given a predicate symbol, then the following rules are added

〈P (y1, . . . , yn) ← P (x1, . . . , xn) & sP
1 (x1, y1) & · · · & sP

n (xn, yn),�〉

where & is some conjunction suitably describing the situation formalized by P.
This way we get a multi-adjoint logic program PE in which it is possible to

get computed answers wrt PE with similarity match in unification. This justifies
the introduction of a similarity-based computed answer simply as a computed
answer with crisp unification on a program extended by axioms of equality.

It is worth to remark the interesting connection existing between this ap-
proach and Sessa’s weak unification algorithm [6], provided we work with a
particular case of the multi-adjoint framework in which L = [0, 1] and the only
connectives will be Gödel’s implication and Gödel’s conjunction.

In [6], similarities are considered to act on constants, function symbols and
predicate symbols, so we will assume we have a similarity relation R acting on
F ∪P ∪ C (function, predicate and constant symbols) with truth-values ranging
in the unit real interval [0, 1]. In our approach, the similarity R is internalized,
that is, we include a new predicate symbol in our language, denoted sR.

Now, for every f, g ∈ F with R(f, g) > 0 let us extend our logic program by
the following schema of axioms

〈sR(f(x1, . . . , xn), g(y1, . . . , yn)) ←G sR(x1, y1) &G · · · &G sR(xn, yn),R(f, g)〉

which, in the case of constants it is understood as 〈sR(c, d),R(c, d)〉.
In addition, for every P, Q ∈ P with R(P, Q) > 0 let us extend our logic

program by a schema of axioms

〈P (y1, . . . , yn) ←G Q(x1, . . . , xn) &G sR(x1, y1) &G · · · &G sR(xn, yn),R(P, Q)〉

With this notation, it is possible to show that Sessa’s approach to unification
can be embedded in ours.

Theorem 2 ([5]). Let P (t1, . . . , tn) and Q(t′1, . . . , t
′
n) be two atoms, assume

that some substitution θ is a λ-unifier (for λ ∈ [0, 1]) obtained by the weak uni-
fication algorithm, then (λ, θ) is a computed answer to the query ?P (t1, . . . , tn)
wrt the program E ∪R ∪ {〈Q(t′1, . . . , t

′
n), 1〉}.

It is remarkable that the equality axioms introduced in order to obtain PE

are simply the similarity-based extension obtained when the ‘external’ similarity
R is the usual equality relation.

Furthermore Sessa’s similarity-based SLD derivation can be completely emu-
lated by our multi-adjoint computation, since it is applied on a classical program,
and the only place where uncertainty appears is in the similarity coming from
unification. Now, as a consequence of the theorem on emulation of unification
by the computational model of multi-adjoint programs, the following theorem
holds, in which we are assuming the language of [6] (Defn.7.2).

9

Theorem 3. Given a similarity R, a crisp program P and a goal G0, and a
similarity-based derivation G0 =⇒C1,θ1,λ1 G1 =⇒ · · · =⇒Cm,θm,λm

Gm the
approximation degree of θ1 · · · θn restricted to the variables of G0 is set to be
λ = min1≤i≤m{λi}, then there exists a multi-adjoint computation for ?G0 and
the (crisp) program P in the logic with Gödel connectives and L = [0, 1] such
that the computed answer is (λ, θ).

To finish with, it is important to note that all theorems on fix-point, Hλ and
Pλ semantics given in [6] state that Sessa’s approach perfectly embeds in this
more general multi-adjoint approach suitable restricted to the unit interval and
Gödel connectives.

7 Conclusions

Different approaches have been introduced to generate similarities to be used in
flexible query answering systems, such as statistical generation of fuzzy similarit-
ies, or generation by some information retrieval techniques or similarities arising
from fuzzy conceptual lattices. Later, a formal model for similarity-based fuzzy
unification is presented by using the multi-adjoint logic programming paradigm
to provide new tools for flexible querying. The approach gives a formal model
of fuzzy logic programming extended by fuzzy similarities and axioms of first-
order logic with equality. Finally, it is shown how the given framework perfectly
emulates Sessa’s approach to similarity-based unification.

References

1. S. Adali and C. Bufi. A flexible architecture for query integration and mapping. In
Cooperative Information Systems Conference, 1998.

2. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erd-
mann, and I. Horrocks. The semantic web: the roles of XML and RDF. IEEE
Internet Computing, 43:2–13, 2000.

3. K.G. Jeffery. What’s next in database. ERCIM News, 39:24–26, 1999.
4. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-

adjoint logic programming. In Progress in Artificial Intelligence, EPIA’01, pages
290–297. Lect. Notes in Artificial Intelligence 2258, 2001.

5. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 2002. Submitted.

6. M.I. Sessa. Approximate reasoning by similarity-based SLD resolution. Theoretical
Computer Science, 275(1–2):389–426, 2002.

7. P. Vojtáš and Z. Fabián. Aggregating similar witnesses for flexible query answering.
In H.L. Larsen et al., editor, Flexible Query Answering Systems, FQAS’00, pages
220–229. Physica Verlag, 2000.

8. A. Yazici and D. Cibiceli. An access structure for similarity-based fuzzy databases.
Information Sciences, 115(1–4):137–163, 1999.

10

