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Abstract—In this work, we focus on the study of necessary
and sufficient conditions in order to ensure the existence (under
some constraints) of monotone Galois connections between fuzzy
preordered sets.
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I. INTRODUCTION

Monotone Galois connections (also called adjunctions) be-
tween two mathematical structures provide a means of linking
both theories allowing for mutual cooperative advantages.
They, together with their antitone counterparts, have played
an important role in computer science because its many
applications, both theoretical and practical, and in mathematics
because of its ability to link apparently very disparate worlds;
this is why Denecke, Erné, and Wismath stated in their
monograph [14] that Galois connections provide the structure-
preserving passage between two worlds of our imagination.

Finding a monotone Galois connection (or Galois connec-
tion) between two fields is extremely useful, since it provides
a strong link between both theories allowing for mutual
synergistic advantages. The algebraic study of complexity of
valued constraints, for instance, has been studied in terms of
establishing a Galois connection [10].

A number of results can be found in the literature concern-
ing sufficient or necessary conditions for a Galois connection
between ordered structures to exist. The main result of this
paper is related to the existence and construction of the right
adjoint to a given mapping f , but in a more general framework.
It is worth to recall that, in a fuzzy setting, reflexivity and
antisymmetry are conflicting properties [4] and, whereas some
authors [20] opted for dropping reflexivity, our choice in this
case has been to ignore antisymmetry and, therefore, consider
fuzzy preorders.

Hence, our initial setting is to consider a mapping f : A→
B from a fuzzy preordered set A into an unstructured set B,
and then characterize those situations in which B can be fuzzy
preordered and an isotone mapping g : B → A can be built
such that the pair (f, g) is a monotone Galois connection.

In a previous work [25], we provided the set of necessary
conditions for a monotone Galois connection to exist between
fuzzy preordered sets. The main contribution in this paper is
to prove that the necessary conditions are also sufficient.

The structure of this work is the following: in the next
section, we introduce the preliminary definitions and results,

essentially notions related to fuzzy preorderings and to Galois
connections, and some results which will be later needed.
Section III introduces several lemmas which allow to simplify
the presentation of the proof of the main result in Section IV,
where the construction of the right adjoint is given based on
the set of necessary conditions already known from [25].

II. PRELIMINARIES

As usual, as underlying structure for considering the gen-
eralization to a fuzzy framework, we will consider a resid-
uated lattice L = (L,∨,∧,>,⊥,⊗,→), i.e. (L,∨,∧, 0, 1)
is a bounded lattice, (L,⊗, 1) is a commutative monoid and
(⊗,→) is an adjoin pair (a⊗ b ≤ c iff a ≤ b→ c).

An L-fuzzy set is a mapping from the universe set, say X , to
the lattice L, i.e. X : U → L, where X(u) means the degree
in which u belongs to X .

Given X and Y two L-fuzzy sets, X is said to be included
in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of
U × U , that is ρU : U × U → L, and it is said to be:
• Reflexive if, for each a ∈ U ,

ρU (a, a) = >

• Transitive if, for each a, b, c ∈ U ,

ρU (a, b)⊗ ρU (b, c) ≤ ρU (a, c)

• Symmetric if, for each a, b ∈ U ,

ρU (a, b) = ρU (b, a)

• Antisymmetric if, for each a, b ∈ U ,
ρU (a, b) = ρU (b, a) = > implies a = b

Definition 1 (Fuzzy poset / fuzzy preordered set): • An
L-fuzzy poset is a pair U = (U, ρU ) in which ρU is a
reflexive, antisymmetric and transitive L-fuzzy relation
on U .

• An L-fuzzy preordered set is a pair U = (U, ρU ) in which
ρU is a reflexive and transitive L-fuzzy relation on U .

• A crisp (pre-)ordering can be given in U by a ≤U b if
and only if ρU (a, b) = >.

From now on, when no confusion arises, we will omit the
prefix “L-”.

Definition 2: For every element a ∈ U , the extension to
the fuzzy setting of the notions of upset and downset of the



element a are defined by a↑, a↓ : U → L where a↓(u) =
ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

An element a ∈ U is an upper bound for a fuzzy set X if
X ⊆ a↓. The (crisp) set of upper bounds of X is denoted by
UB(X). An element a ∈ U is a maximum for a fuzzy set X
if it is an upper bound and X(a) = >.

The definitions of lower bound and minimum are similar.
Note that, because of antisymmetry, maximum and minimum
elements are necessarily unique.

Definition 3: Let A = (A, ρA) and B = (B, ρB) be fuzzy
posets.

1) A mapping f : A → B is said to be isotone if
ρA(a1, a2) ≤ ρB(f(a1), f(a2)) for each a1, a2 ∈ A.

2) A mapping f : A → A is said to be inflationary if
ρA(a, f(a)) = > for all a ∈ A.

3) A mapping f : A→ A is deflationary if ρA(f(a), a) =
> for all a ∈ A.

Definition 4 (Monotone Galois connection): Let
A = (A, ρA) and B = (B, ρB) be fuzzy posets, and
two mappings f : A → B and g : B → A. The pair (f, g)
forms an monotone Galois connection between A and B,
denoted (f, g) : A � B if, for all a ∈ A and b ∈ B, the
equality ρA(a, g(b)) = ρB(f(a), b) holds.

Notation 1: From now on, we will use the following nota-
tion, for a mapping f : A → B and a fuzzy subset Y of B,
the fuzzy set f−1(Y ) is defined as f−1(Y )(a) = Y (f(a)),
for all a ∈ A.

Finally, we recall the following theorem which states dif-
ferent equivalent forms to define an adjunction between fuzzy
posets.

Theorem 1 ([24]): Let A = (A, ρA), B = (B, ρB) be fuzzy
posets, and two mappings f : A → B and g : B → A. The
following conditions are equivalent:

1) (f, g) : A� B.
2) f and g are isotone, g ◦ f is inflationary, and f ◦ g is

deflationary.
3) f(a)↑ = g−1(a↑) for all a ∈ A.
4) g(b)↓ = f−1(b↓) for all b ∈ B.
5) f is isotone and g(b) = max f−1(b↓) for all b ∈ B.
6) g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

The next theorem characterizes the situation in which a
mapping from a fuzzy poset to an unstructured set has a right
adjoint (between fuzzy posets).

Theorem 2 ([26]): Let (A, ρA) be a fuzzy poset and a
mapping f : A −→ B. Let Af be the quotient set over the
kernel relation a ≡f b iff f(a) = f(b).

Then, there exists a fuzzy order ρB in B and a map
g : B −→ A such that (f, g) : A � B if and only if the
following conditions hold:

1) There exists max[a]f for all a ∈ A.
2) ρA(a1, a2) ≤ ρA(max[a1]f ,max[a2]f ), for all a1, a2 ∈

A.

III. BUILDING MONOTONE GALOIS CONNECTIONS
BETWEEN FUZZY PREORDERED SETS

In this section we start the generalization of Theorem 2
above to the framework of fuzzy preordered sets.

The construction will follow that given in [28] as much as
possible. Therefore, we need to define a suitable fuzzy version
of the p-kernel relation.

Firstly, we need to set the corresponding fuzzy notion of
transitive closure of a fuzzy relation, and this is done via the
definition below:

Definition 5 (Transitive closure): Given a fuzzy relation
S : U ×U → L, for all n ∈ N, the iterations Sn : U ×U → L
are recursively defined by the base case S1 = S and, then,

Sn(a, b) =
∨
x∈U

(
Sn−1(a, x)⊗ S(x, b)

)
The transitive closure of S is a fuzzy relation Str : U×U → L
defined by

Str(a, b) =

∞∨
n=1

Sn(a, b)

The relation ≈A allows for gettting rid of the absence of
antisymmetry, by linking together elements which are ‘almost
coincident’; formally, the relation ≈A is defined on a fuzzy
preordered set (A, ρA) as follows:

(a1 ≈A a2) = ρA(a1, a2)⊗ ρA(a2, a1) for a1, a2 ∈ A

The kernel equivalence relation ≡f associated to a mapping
f : A→ B is defined as follows for a1, a2 ∈ A:

(a1 ≡f a2) =

{
⊥ if f(a1) 6= f(a2)

> if f(a1) = f(a2)

Definition 6 (Fuzzy p-kernel): Let A = (A, ρA) be a fuzzy
preordered set, and f : A→ B a mapping. The fuzzy p-kernel
relation ∼=A is the fuzzy equivalence relation obtained as the
transitive closure of the union of the relations ≈A and ≡f .
Notice that the fuzzy equivalence classes [a]∼=A

: A → L are
fuzzy sets, whose definition is the following:

[a]∼=A
(x) = (x ∼=A a)

Lemma 1: Let A = (A, ρA) be a fuzzy preordered set, and
f : A → B a mapping. Then, a1 ∼=A a2 = > if and only if
[a1]∼=A

= [a2]∼=A
.

Proof: Consider a1, a2 ∈ A such that a1 ∼=A a2 = >,
and let us prove that [a1]∼=A

(u) = [a2](u) for all u ∈ A.
Given u ∈ A, by using the neutral element of the product,
and symmetry and transitivity of ∼=A, we have that

(a1 ∼=A u) = >⊗ (a1 ∼=A u)

= (a2 ∼=A a1)⊗ (a1 ∼=A u) ≤ (a2 ∼=A u)

Similarly, (a2 ∼=A u) ≤ (a1 ∼=A u) and, therefore,
[a1]∼=A

(u) = [a2]∼=A
(u) for all u ∈ A.

All the preliminary notions about fuzzy posets introduced
in the previous section carry over fuzzy preordered sets. Note,
however, that there is an important difference which justifies



the introduction of special terminology concerning maximum
or minimum element of a fuzzy subset X: due to the absence
of antisymmetry, there exists a crisp set of maxima (resp.
minima) for X , not necessarily a singleton, which we will
denote p-max(X) (resp., p-min(X)).

The following theorem states the different equivalent char-
acterizations of the notion of adjunction between fuzzy pre-
ordered sets. As expected, the general structure of the defini-
tions is preserved, but those concerning the actual definition
of the adjoints have to be modified by using the notions of
p-maximum and p-minimum.

Theorem 3 ([24]): Let A = (A, ρA) and B = (B, ρB) be
two fuzzy preordered sets, and f : A → B and g : B → A be
two mappings. The following statements are equivalent:

1) (f, g) : A� B.
2) f and g are isotone, and g ◦ f is inflationary, f ◦ g is

deflationary.
3) f(a)↑ = g−1(a↑) for all a ∈ A.
4) g(b)↓ = f−1(b↓) for all b ∈ B.
5) f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.
6) g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.
The following definitions recall the notion of Hoare ordering

between crisp subsets, and then we introduce an alternative
statement in the subsequent lemma:

Definition 7: Given a fuzzy preordered set (A, ρA), and
C,D crisp subsets of A, we define the following relations
• (C vW D) =

∨
c∈C

∨
d∈D

ρA(c, d)

• (C vH D) =
∧
c∈C

∨
d∈D

ρA(c, d)

• (C vS D) =
∧
c∈C

∧
d∈D

ρA(c, d)

Lemma 2 ([25]): Consider a fuzzy preordered set (A, ρA),
and X,Y ⊆ A such that p-minX 6= ∅ 6= p-minY , then(

p-minX vW p-minY
)

=
(

p-minX vH p-minY
)

=
(

p-minX vS p-minY
)

and their value coincides with ρA(x, y) for any x ∈ p-minX
and y ∈ p-minY .

In [27], given a crisp poset (A,≤A) and a map f : A→ B,
it was proved that there exists an ordering ≤B in B and a
map g : B → A such that (f, g) is a crisp adjunction between
posets from (A,≤A) to (B,≤B) if and only if

(I) There exists max([a]≡f
) for all a ∈ A.

(II) a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

), for
all a1, a2 ∈ A.

where ≡f is the kernel relation associated to f .
These two conditions are closely related to the different

characterizations of the notion of adjunction, as stated in
Theorem 1 (items 5 and 6); specifically, condition (I) above
states that if b ∈ B and f(a) = b, then necessarily g(b) =
max([a]≡f

), whereas condition (II) is related to the isotonicity
of both f and g.

Later, in [28], the previous result was extended to give
necessary and sufficient conditions to ensure similar result in

the framework of crisp preordered sets. Specifically, it was
proved that given any (crisp) preordered set A = (A,.A) and
a mapping f : A → B, there exists a preorder B = (B,.B)
and g : B → A such that (f, g) forms a crisp adjunction
between A and B if and only if there exists a subset S of
A such that the following conditions hold:

(i) S ⊆
⋃
a∈A

p-max[a]∼=A

(ii) p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

(iii) For a1, a2 ∈ A, if a1 .A a2 then(
p-min(UB[a1]∼=A

∩ S)
)
vH

(
p-min(UB[a2]∼=A

∩S)
)

It is worth to mention that in the conditions above all the
notions used are the corresponding crisp versions of those
defined in this paper.

In some sense, the conditions (i), (ii), (iii) reflect the con-
siderations given in the previous paragraph, but the different
underlying ordered structure leads to a different formalization.
Formally, condition (I) above is split into (i) and (ii), since in
a preordered setting, if b ∈ B and f(a) = b, then g(b) needs
not be in the same class as a but being maximum in its class,
as (i) states. However, the latter condition is too weak and (ii)
provides exactly the remaining requirements needed in order
to adequately reproduce the desired properties for g. Now,
condition (iii) is just the rephrasing of (II) in terms of the
properties described in (ii).

Finally, in [25], it was proved that the natural extension of
the previous conditions to the fuzzy case are also necessary
conditions to ensure the existence of a monotone Galois
connection between fuzzy preordered sets. Specifically,

Theorem 4: Given fuzzy preordered sets A = (A, ρA) and
B = (B, ρB), and mappings f : A → B and g : B → A such
that (f, g) : A� B then

1) gf(A) ⊆
⋃
a∈A

p-max[a]∼=A

2) p-min(UB[a]∼=A
∩ gf(A)) 6= ∅, for all a ∈ A.

3) For all a1, a2 ∈ A, ρA(a1, a2) ≤
(

p-min(UB[a1]∼=A
∩

gf(A)) vH p-min(UB[a2]∼=A
∩ gf(A))

)
.

As a consequence of the previous theorem, a necessary
condition for f to be a left adjoint is the existence of a
subset S ⊆ A such that the following conditions hold for
all a, a1, a2 ∈ A:

S ⊆
⋃
a∈A

p-max[a]∼=A
(1)

ϕS(a) 6= ∅, (2)

ρA(a1, a2) ≤
(
ϕS(a1) vH ϕS(a2)

)
(3)

where
ϕS(a)

def
= p-min(UB[a]∼=A

∩ S). (4)

Remark 1: Notice that, by Lemma 2,
(
ϕS(a1) vH

ϕS(a2)
)

= ρA(x, y) for any x ∈ ϕS(a1) and y ∈ ϕS(a2),
and this justifies that, in order to simplify the notation, we
write ρA(ϕS(a1), ϕS(a2)) instead of

(
ϕS(a1) vH ϕS(a2)

)
.



The main contribution in this paper is to show the converse,
namely, that the conditions above are also sufficient so that f
is a left adjoint.

IV. CONSTRUCTION OF THE RIGHT ADJOINT

In this section, given f : A→ B with the conditions above,
we will construct a fuzzy preordering on B together with a
mapping g : B → A, which will turn out to be a right adjoint
to f .

Definition 8: Consider a fuzzy preordered set A = (A, ρA)
together with a mapping f : A → B and a subset S ⊆ A
satisfying the ambient hypotheses (1), (2) and (3).

For all a0 ∈ A, we define the fuzzy relation ρa0

B : B×B →
L as follows

ρa0

B (b1, b2) = ρA(ϕS(a1), ϕS(a2))

where ai ∈ f−1(bi) if f−1(bi) 6= ∅ and ai = a0 otherwise,
for each i ∈ {1, 2}.

Notice that the definition might depend largely on the pos-
sible choices of ai; the following lemma, based on Remark 1,
shows that the value of ρa0

B actually is independent of these
choices.

Lemma 3: The fuzzy relation ρa0

B is well-defined, and it is
a fuzzy preordering in B.

Proof: The definition does not depend on the choice of
preimages ai since, if other preimages āi would have been
chosen, then (ai ≡f āi) = > and, hence, by Lemma 1, the
fuzzy sets corresponding to the equivalence classes [ai]∼=A

and
[āi]∼=A

would coincide and ϕS(ai) = ϕS(āi). Moreover, by
Remark 1, we have that

ρA(ϕS(a1), ϕS(a2)) = ρA(x, y)

for any x ∈ ϕ(a1) and y ∈ ϕ(a2), whose value is independent
from the choice of x and y.

From the reflexivity of ρA, it is straightforward that ρa0

B is
reflexive. Finally, it is just a matter of easy computations to
check that ρa0

B is transitive.
We can now focus on the definition of suitable mappings

g : B → A such that (f, g) forms an adjoint pair.
Lemma 4: Let A = (A, ρA) be a fuzzy preordered set,

f : A → B be a mapping and S be a subset of A satisfying
the ambient hypotheses (1), (2) and (3). Given a0 ∈ A, then
there exists a mapping g : B → A such that (f, g) : (A, ρA)�
(B, ρa0

B ) where ρa0

B is the fuzzy preordering introduced in
Definition 8.

Proof: There is a number of suitable definitions of
g : B → A, and all of them can be specified as follows:

(C1) If b ∈ f(A), then g(b) is any element in ϕS(xb) for
some xb ∈ f−1(b).

(C2) If b /∈ f(A), then g(b) is any element in ϕS(a0).
The existence of g is clear by the axiom of choice, since for all
b ∈ f(A), the sets f−1(b) are nonempty (so xb can be chosen
for all b ∈ f(A)) and, moreover, by ambient hypothesis (2),
ϕS(xb) and ϕS(a0) are nonempty as well.

Now, we have to prove that g is a right adjoint to f , that
is, for all a ∈ A and b ∈ B the following equality holds

ρa0

B

(
f(a), b

)
= ρA

(
a, g(b)

)
By definition of ρa0

B (see Definition 8), we have that

ρa0

B (f(a), b) = ρA(ϕS(a), ϕS(w))

where w satisfies either w ∈ f−1(b) if b ∈ f(A) (therefore,
we can choose w to be xb above) or, otherwise, w = a0. In
either case, g(b) ∈ ϕS(w) by construction (namely, (C1) and
(C2)). Thus,

ρa0

B (f(a), b) = ρA(x, g(b)) for any x ∈ ϕS(a) (5)

The proof will be finished if we show that, fixing x ∈ ϕS(a),
we can show the equality ρA(x, g(b)) = ρA(a, g(b)).

Firstly, by definition of ϕS , see (4), note that x ∈ ϕS(a)
implies ρA(a, x) = > and, hence, we have that

ρA
(
x, g(b)

)
= ρA(a, x)⊗ ρA

(
x, g(b)

)
≤ ρA

(
a, g(b)

)
(6)

For the other inequality, using ambient hypothesis (3), we
have

ρA
(
a, g(b)

)
≤ ρA

(
ϕS(a), ϕS

(
g(b)

))
= ρA(x, y) (7)

for any x ∈ ϕS(a) and y ∈ ϕS(g(b)).
Since y ∈ ϕS

(
g(b)

)
we have that ρA(y, α) = > for all

α ∈ UB[g(b)]∼=A
∩ S; on the other hand, since g(b) ∈ S

then g(b) ∈ p-max[g(b)]∼=A
, particularly g(b) ∈ UB[g(b)]∼=A

,
hence g(b) ∈ UB[g(b)]∼=A

∩ S. As a result, we obtain
ρA
(
y, g(b)

)
= >. Now, connecting expression (7) with tran-

sitivity of ρA,

ρA
(
a, g(b)

)
≤ ρA(x, y) = ρA(x, y)⊗ ρA

(
y, g(b)

)
(8)

≤ ρA
(
x, g(b)

)
(9)

for all x ∈ ϕS(a). Joining Equations (6) and (8) we obtain,
ρA(x, g(b)) = ρA(a, g(b)) and, finally, Equation (5) leads to

ρa0

B

(
f(a), b

)
= ρA(a, g(b)).

We can now conclude this section by stating the necessary
and sufficient conditions for the existence of right adjoint from
a fuzzy preorder to an unstructured set. In this statement, for
readability reasons, we do not use the syntactic sugared version
of the previous lemma (namely, ϕS) but, instead, state the
conditions directly in their low level appearance.

Theorem 5: Given a fuzzy preordered set A = (A, ρA)
together with a mapping f : A → B, there exists a fuzzy
preordering ρB in B and a mapping g : B → A such that
(f, g) : A � B if and only if there exists S ⊆ A such that,
for all a, a1, a2,∈ A:

1) S ⊆
⋃
a∈A

p-max[a]∼=A

2) p-min(UB[a]∼=A
∩ S) 6= ∅

3) ρA(a1a2) ≤
≤
(

p-min(UB[a1]∼=A
∩S) vH p-min(UB[a2]∼=A

∩S)
)

.
Proof: Necessity follows from [25, Thm. 4], considering

S = gf(A); sufficiency follows from Lemma 4.



V. CONCLUSIONS

Based on the set of necessary conditions for the existence
of right adjunction (between fuzzy preorders) to a mapping
f : (A, ρA) → B, we have proved that these conditions are
also sufficient.

It is remarkable the fact that the right adjoint is not unique.
In fact, there is a number of degrees of freedom in order to
define it: just consider the parameterized construction of g that
we have given in terms of an element a0 ∈ A (in the case of
non-surjective f ). Note, however, that our results do not imply
that every right adjoint should be like that; we simply chose a
convenient construction to extent the induced fuzzy ordering
on the image of f to the whole set B, and maybe other
constructions would be adequate as well (but this is further
work).

It is worth to note that there are different versions of
antisymmetry and reflexivity in a fuzzy environment (see, for
instance, [5], [7]). Accordingly, another line of future work
will be the adaptation of the current results to these alternative
definitions. Another source of future work will be to study the
potential relationship to other approaches based on adequate
versions of fuzzy closure systems [29].
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[2] R. Bělohlávek. Lattices of fixed points of fuzzy Galois connections.
Mathematical Logic Quartely, 47(1):111–116, 2001.
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