
On the Measure of Incoherent Information in
Extended Multi-Adjoint Logic Programs

Nicolás Madrid
Centre of Excellence IT4Innovations—University of Ostrava

IRAFM—Ostrava, Czech Republic
Email: nicolas.madrid@osu.cz

Manuel Ojeda-Aciego
Dept. Matemática Aplicada
University of Málaga, Spain

Email: aciego@uma.es

Abstract—In this paper we continue analyzing the introduction
of negation into the framework of residuated logic program-
ming [8], [10]; specifically, we focus on extended programs, that
is we consider programs with strong negation. The classical
approach to extended logic programs consists in considering
negated literals as new, independent, ones and, then apply the
usual monotonic approach (based on the fix-point semantics and
the TP operator); if the least fix-point so obtained is inconsistent,
then the approach fails and no meaning is attached to the
program. This paper introduces several approaches to measure
consistency (under the term coherence) into a multi-adjoint
setting.

I. INTRODUCTION AND PRELIMINARY DEFINITIONS

Inconsistency and conflictive information arise naturally in
many situations; e.g. Medical Databases [2], Economics [7],
Text Processing [5], etc. Although it is usually considered to be
an undesirable feature of logic programs, the right approach
is to learn to deal with it, since obtaining a inconsistency-
free knowledge-base is not always possible. For instance,
if you build a knowledge-base containing information from
various newspaper reports about some political event, then the
consistence of the knowledge-base is unlikely. As a result,
tolerating inconsistency is advisable instead of rejecting it [1].
In fact, conflictive information can be useful by itself: consider
a negotiation meeting where each part is searching for a hidden
goal; then, the conflictive information in the negotiation could
give an idea about the goal of each party.

This paper deals with measures of inconsistency in gener-
alized logic programming. It is worth mentioning that most
of the papers in this framework require at least three truth
values {True, False, Inconsistent} to deal with conflictive
information. Yet the multi-valued and fuzzy logic seems a
more flexible and advisable environment to develop incon-
sistent tolerance approaches.

Inconsistency can be seen as composed of two different
levels [10]: “lack of models” (called instability) and “con-
tradictory models” (called incoherence). The former occurs
when a set of incompatible rules appears in the logic program,
whereas the latter occurs when the existing models assign
contradictory values to p and ∼p.

Our approach in this paper measures the conflictive informa-
tion, in terms of incoherence, contained in an extended multi-
adjoint logic program. Previous results have already been
obtained by the authors in the residuated case [8]–[10], the

novelty in this paper is to provide new measures to the more
general and flexible framework of extended multi-adjoint logic
programs, which allows for using a greater set of connectives
and, especially important in this paper, a number of different
negation operators.

In the rest of this section, we recall the preliminary syntactic
and semantic definitions related to extended multi-adjoint logic
programs.

Definition 1: A multi-adjoint lattice L is a tuple (L,≤
, ∗1,←1, ∗2,←2, . . . , ∗n,←n) such that for all x, y, z ∈ L:

1) (L,≤) is a complete bounded lattice, with top and
bottom elements 1 and 0.

2) for all i ∈ {1, . . . , n}, it holds 1 ∗i x = x ∗i 1 = x.
3) for all i ∈ {1, . . . , n} the tuple (∗i,←i) forms an adjoint

pair, i.e. z ≤ (x←i y) iff y ∗i z ≤ x.
In multi-adjoint lattice frameworks, L represents the set of

truth-values, operators ∗i are interpreted as conjunctions and
operators ←i as implications. Hereafter, we will use (L,≤
, ∗i,←i) to denote multi-adjoint lattices.

As usual, a negation operator over L is any decreasing
mapping n : L → L satisfying n(0) = 1 and n(1) = 0. In
the rest of the paper we will consider a multi-adjoint lattice
enriched with negation operators ∼j , i.e (L,≤, ∗i,←i,∼j). In
order to introduce our logic programs, we will asume a set Π
of propositional symbols. Literals are defined inductively as
follows: any propositional symbol is a literal; if ` is a literal
then ∼j` is also a literal for any negation ∼j ∈ L. Note
that under this definition of literals we allow multiply negated
propositional symbols; i.e. if p ∈ Π, then p and ∼1(∼2p) are
literals. Arbitrary literals will be denoted with the symbol `
(possible subscripted), and the set of all literals as Lit.

Definition 2: Given a multi-adjoint lattice with negations
(L,≤, ∗i,←i,∼j), an extended1 multi-adjoint logic pro-
gram P is a finite set of weighted rules of the form 〈F ;ϑ〉
satisfying the following conditions:
• F is a formula of the form ` ←i B where ` is a literal

(called the head of F) and B (called the body of F) is
built from literals `1, . . . , `n and operators ∗i.

• the weight ϑ is an element of the underlying multi-adjoint
lattice L.

1Note that the use of extended refers to the fact that no default negation is
allowed oin our programs, only strong negations.

Rules will be frequently denoted as 〈` ← B; ϑ〉. We
consider facts as rules with empty body, which are interpreted
as a rule 〈`← 1; ϑ〉.

The semantics for extended multi-adjoint logic programs is
given as follows.

Definition 3: An L-interpretation is a mapping I : Lit →
L; note that the domain of the interpretation is the set of
literals, and it can be lifted to any rule by homomorphic
extension.

We say that I satisfies a rule 〈` ← B; ϑ〉 if and only if
I(B) ∗ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B). Finally, I is
a model of P if it satisfies all rules (and facts) in P.

Note that the order relation in the lattice (L,≤) can be
extended over the set of all L-interpretations as follows: Let
I and J be two L-interpretations, then I ≤ J if and only if
I(`) ≤ J(`) for all literal ` ∈ Lit.

For the sake of clarity, hereafter we write interpretation
instead of L-interpretation and program instead of extended
multi-adjoint logic program.

II. LEAST MODEL SEMANTICS AND COHERENCE

In logic programming (in both crisp and multi-valued frame-
works), it is usual to consider two different negation operators:
the strong negation2 and default negation. The difference
between both negations is purely semantical and is related
with the way we infer the truth-value of a negated statement.
Specifically, a default negated formula ¬φ is true if and only
if φ is not true, whereas a strong negated statement ∼φ is true
if and only if ∼φ can be inferred by the knowledge base.
In other words, the truth-value of φ determines the truth-
value of ¬φ but does not determine the value of ∼φ; i.e.
¬ is compositional but ∼ is not. In this paper we are only
concerned with programs including strong negations.

In the classical case, the semantics of extended programs
is given by the least fix-point of the immediate consequence
operator considering the negated literals as ‘new’ propositional
symbols [4]. Hence, when the obtained fix-point turns out
to be inconsistent, then the program has no meaning. In
fuzzy logic, the semantics is obtained in a similar way by
iterating the immediate consequence operator defined in [11]
for multi-adjoint logic programs. The crux of the matter now
is when one should reject the obtained model. The notion of
consistence (or inconsistence) has to be generalized in order
to answer this question.

There are many ideas underlying the notion of inconsistence
(conflicting inference, inferring contradiction formulas, lack of
models, etc) and, astonishingly, each of them entails a different
generalization of inconsistency in fuzzy or multi-valued logics.
We choose the notion of coherence as a convenient generaliza-
tion of the notion of consistency. It is worth mentioning that
coherence is closely related to the notions of N -contradictory
fuzzy sets [14] and consistency in bilattices [3]. The term
coherence was considered in order to not overlap with other

2Not to be confused with the notion of strong negation [14] on fuzzy sets,
where strong negation is defined as any involutive operator.

definitions of fuzzy-consistency in the literature [13]. The
notion of coherent interpretation is given below:

Definition 4: Let L be a multi-adjoint lattice. An L-
interpretation I is coherent if the inequality I(∼i`) ≤ ∼̇iI(`)
holds for every literal ` and all strong negation ∼i ∈ L.

Note that coherence allows that two opposite literals, such as
p and ∼p, live together . . . under some requirements. Among
all reasons supporting that coherence is a good generalization
of consistency in fuzzy and multi-valued logic programming
frameworks, we allude to just three. Firstly, it is easy to
implement, because it only depends on a negation operator;
secondly, it allows lack of knowledge (for instance, I such
that I(`) = 0 for all ` ∈ Lit is always coherent); finally, our
notion of coherence coincides with consistency in the classical
framework.

As stated above, given an extended multi-adjoint logic
program P we can obtain its least model by considering the
negated literals as new, independent, propositional symbols
and then, iterating the immediate consequence operator. So,
the notion of coherence applies to programs as follows:

Definition 5: Let P be an extended residuated logic pro-
gram, we say that P is coherent if its least model is coherent.

Although the definition of coherent program might look
like as a hard restriction, the following property of coherent
interpretations shows that a program is coherent if and only if
it has, at least, one coherent model.

Proposition 1: Let I and J be two interpretations satisfying
I ≤ J . If J is coherent, then I is coherent as well.

Corollary 1: An extended multi-adjoint logic program is
coherent if and only if it has one coherent model.

In order to continue with other mathematical properties of
the notion of coherence, take into account that an interpretation
I assigns a truth-degree to any negative literal ∼i` indepen-
dently from the negation operator ∼i ∈ L. This way, if we
have two different multi-adjoint lattices (L1 and L2), and each
of them with two different negation operators to determine
the coherence of ∼i` (∼1

i and ∼2
i), we can talk about the

coherence of one interpretation w.r.t. any of these structures.
The following result establishes that the lesser the negation
operators in L the most restrictive the condition imposed by
coherence.

Proposition 2: Let L1 and L2 be two multi-adjoint lattices
such that ∼1

j ≤ ∼2
j for all ∼1

j ∈ L1 and ∼2
j ∈ L2. Then

any interpretation I that is coherent w.r.t. L1 is also coherent
w.r.t. L2.

We can also define an ordering among extended residuated
logic programs as follows: Let P1 and P2 be two extended
programs, then P1 ⊆ P2 if and only if for each rule 〈ri;ϑ1〉 in
P1 there exists another rule3 〈ri;ϑ2〉 in P2 such that ϑ1 ≤ ϑ2.

Proposition 3: Let P1 ⊆ P2 be two extended programs then
the least model of P1 is smaller than the least model of P2.

Therefore we can say that a bigger program provides more
information. Now, the following proposition holds easily.

3Note that the only difference between both rules is the assigned weight.

Somehow that holds because incoherence represents an excess
of information [9].

Proposition 4: Let P1 ⊆ P2 be two extended programs. If
P2 is coherent then P1 is coherent as well.

In the rest of the paper we use MP to denote the least model
of an extended residuated logic program P (either coherent or
not).

On the use of various connectives

Once the semantics for extended logic programs has been
presented, we can give the reasons why we consider different
operators to interpret syntactic logic connectives (conjunctions,
disjunctions, implications, strong negations, etc). The motiva-
tion in the use of different t-norms, aggregators, implications,
etc. is widely studied in [12]: roughly speaking, we can simply
say that it is a matter of greater flexibility. In this section, we
only include motivation on the use of different strong negation
operators.

One interesting feature of the notion of coherence is its link
with the notion of N -contradiction and with computation with
antonyms [15]. In this way, each ∼ip can be identified with
an antonyms of p. Hence, allowing different strong negations
in a extended program allows as well to deal with different
antonyms. The following example shows how to incorporate
antonyms in logic programming via strong negations. The
example also show that a priori, there are neither relation
between two different strong negated literals of p nor relation
with p and a double strong negation ∼i(∼jp).

Example 1: Let us begin by providing the following se-
mantical identifications of literals: p ≡ “the car is big”;
∼1p ≡ “the car is small”; and ∼2p ≡ “the car is tiny”. Note
that, obviously, p is an antonym of both ∼p1 and ∼p2. How
does coherence represent this antonym relationship? Simply by
determining upper bounds of the truth-values of ∼1p and ∼2p
by fixing the truth-value of p. Moreover, the use of negation
operators to determine these upper bounds imply that “the
greater the truth-value of p, the lesser the truth-values allowed
for ∼1p and ∼2p”; and somehow, also vice versa.

With such meanings of ∼1p and ∼2p, it seems convenient
to establish a direct relationship between both negative literals;
i.e. the greater the value of ∼1p, the greater the value of ∼2p;
and vice versa. This relation can be done by incorporating the
following two rules into the program:

〈∼1p← ∼2p ;ϑ1〉

〈∼2p← ∼1p ;ϑ2〉

Let us consider now the following semantical identification
of ∼3p: “the car is medium-sized”. In this case we have
another antonym of p . . . but clearly in a lower degree
than ∼1p. That feature requires the use of different negation
operators for ∼1 and ∼3; i.e. to determine two different upper
bounds of the truth-values of ∼1p and ∼3p. Note also that in
this case, “medium-sized” can be considered also an antonym
of “small”. Hence, somehow we can identify ∼3p with a

literal with the form ∼4(∼1p) by incorporating to the program
the following two rules:

〈∼4(∼1p)← ∼3p ; 1〉
〈∼3p← ∼4(∼1p) ; 1〉

Therefore, between ∼1p and ∼3p there is not a direct
relationship, but inverse. In conclusion, firstly we need differ-
ent negations to represent different antonyms. Secondly, two
strong negations of the same literal are not related a priori; nei-
ther directly (in this example ∼1p and ∼p3) nor inversely (in
this example ∼1p and ∼p2). Thirdly, there is not necessarily a
direct relation between a literal and its double negation (in this
example between p and ∼4(∼1p) ≡ ∼3p). Finally note that,
although we use fuzzy terminology throughout this example,
it can be interpreted in a crisp environment. So, also in crisp
logic programming the equality ∼(∼p) = p is not necessarily
true; this feature exhibits a clear difference between strong
negation and classical negation. �

III. INCOHERENCE W.R.T. LITERALS

Here, we deal with the atomic pieces of incoherence con-
tained in each literal. Basically, the purpose of this section is
to generalize the measure of incoherence defined on literals
in [10]. In a multi-adjoint framework we have two ways to
do that: on the one hand, we can measure the incoherence
associated with each negated literal by taking into account
only its negation; on the other hand, we can define a measure
of incoherence of a literal by considering all its possible
negations. Let us begin by the former.

A. Incoherence on each negated literals

We will measure the incoherence generated by one interpre-
tation I on each pair (`,∼i`). First of all we need to define
when a pair (`,∼i`) is considered to be coherent (respectively,
incoherent) w.r.t. an interpretation I .

Definition 6: Let L be a multi-adjoint lattice and let I be
an interpretation. We say that (`,∼i`) is coherent w.r.t. I if
and only if the inequality I(∼i`) ≤ ∼̇iI(`) holds. Otherwise
the pair (`,∼i`) is called incoherent.

Hereafter we will simply state (`,∼i`) is coherent (resp. in-
coherent) without mentioning the interpretation, provided it is
not ambiguous. Note that the definition above somehow de-
termines a crisp measure of incoherence for the pair (`,∼i`);
1 if it is incoherent and 0 otherwise. However, this crisp
way to measure incoherence is unable to represent degrees of
incoherence that, somehow, are inherent to the pairs (`,∼i`).
To represent such limitation, consider the following two inter-
pretations with the same simple domain {p,∼p}:

I1(p) = 0.5 I1(∼p) = 0.6
I2(p) = 1 I2(∼p) = 0.9

and consider the usual negation ∼(x) = 1−x as the operator
used to determine the coherence. Certainly, the pair (p,∼p) is
incoherent w.r.t. both I1 and I2. By using the crisp measure
of incoherence above, the incoherence of (p,∼p) is 1 in both

cases. However, the pair (p,∼p) seems to be more incoherent
w.r.t. I2 than w.r.t. I1 since I2 makes the pair (p,∼p) to break
the coherence condition to a “bigger degree” than I1.

To measure such degree of incoherence, we propose to
assign a value to each element in the lattice corresponding to
the inherent information it contains. Such assignment is done
by associating an information measure (definition below) to
the multi-adjoint lattice.

Definition 7: Let (L,≤) be a lattice, an information mea-
sure is an operator m : L→ R+ such that the following holds:
• m(x) = 0 if and only if m(x) = 0.
• m is monotonic.
• m(sup(x, y)) ≥ m(x) + m(y) − m(inf(x, y)) for all
x, y ∈ L.

The two first conditions required by the definition of infor-
mation measure need little explanation: the only element in
the lattice which provides no information is 0 and the closer
the element to 1, the greater the information inherent in it.
The third condition needs a more elaborated explanation. It
represents that the information contained in the supremum
of two elements should reflect the amount of information
contained in each element separately; therefore, m(sup(x, y))
should be greater than m(x) +m(y)−m(inf(x, y)), since the
latter part is counted twice when adding m(x) and m(y). Note
that the third item imposes no restriction if the lattice is linear.
Note finally that the notion of information measure is related
with fuzzy measures [16].

From now on we will assume that our multi-adjoint lattices
have an associated information measure m. To measure the
degree of incoherence of a pair (`,∼i`) w.r.t. I we focus on
the minimal amount of information we have to remove from
I(`) and I(∼i`) in order to recover the coherence of the pair
(`,∼i`). To do that, we define previously the set of coherent
pairs w.r.t. one negation operator ∼i as:

∆∼i = {(x, y) ∈ L× L : y ≤ ∼̇i(x) }

Basically, ∆∼i determines the values that an interpretation can
assign to a pair of literals (`,∼i`) in order to keep coherence.
Actually, this definition entails the following characterization
of coherent interpretations.

Proposition 5: Let L be a multi-adjoint lattice with nega-
tions and let I be an L-interpretation. Then, I is coherent if
and only if the pair (I(`), I(∼i`)) ∈ ∆∼i for all ` ∈ Lit and
all ∼i ∈ L.

Once the set of coherent pairs w.r.t. a negation operator has
been presented, we define the measure of incoherence of a pair
(`,∼i`) w.r.t. one interpretation I (denoted by IL((`,∼i`); I))
as follows:

inf
(x,y)∈∆∼i

(x,y)≤(I(`),I(∼i`))

{
m(I(`))−m(x)+m(I(∼i`))−m(y)

}
(1)

where the ordering within ∆∼i is considered componentwise.
As we stated above, the idea underlying the definition

of IL((`,∼i`); I) is to determine the minimum amount of
information that has to be removed from I(`) and I(∼`) in

order to recover coherence. If we remove a certain amount of
information α from I(`), and a certain amount of information
β from I(∼`), then we actually modify information for an
amount of α + β. Therefore, the measure IL((`,∼i`); I)
determines, in some sense, the least amount of information that
has to be removed in order to turn the pair (`,∼i`) coherent
w.r.t. I . Note that IL((`,∼i`); I) ≥ 0 since m(I(`)) ≥ m(x)
and m(I(∼i`)) ≥ m(y) for all (x, y) ≤ (I(`), I(∼i`)).

Example 2: For the interpretation I1 and I2 given above to
motivate this measure, we obtain IL(I(p), I(∼p), I1) = 0.1
and IL(I(p), I(∼p), I2) = 0.9 by considering the information
measure induced by the Euclidean norm. �

Remark 1: The definition of IL((`,∼i`); I) collapses to an
extremely simple and intuitive form in the specific case of the
unit interval (L = [0, 1]), the information measure induced by
the Euclidean norm, and ∼i(x) = 1− x:

IL((`,∼i`); I) =
{

0 if (`,∼i`) is coherent
I(∼i`)− ∼̇iI(`) otherwise

Below we present some properties of the measure
IL((`,∼i`); I).

Proposition 6: If the pair (`,∼i`) is coherent w.r.t. I then
IL((`,∼i`); I) = 0.

The converse is not true in general.
Example 3: Consider the lattice [0, 1] with the information

measure induced by the Euclidean norm and the following
negation operator

∼̇(x) =
{

0 if x ≥ 0.5
1 if x < 0.5

Then the pair (p,∼p) w.r.t. the interpretation I(p) = 0.5,
I(∼p) = 0.5 is incoherent and IL((p,∼p); I) = 0. The reason
of the null measure is because we can recover the coherence of
the pair (p,∼p) by removing a piece of information as small
as we want from I . �

Although the equivalence between null measure of inco-
herence and coherence is not true in general, there exist
frameworks in which both notions coincide:

Proposition 7: Assume that the multi-adjoint lattice is fi-
nite and the information measure used is injective. Then,
IL((`,∼i`); I) = 0 if and only if (`,∼i`) is coherent w.r.t. I .

Proposition 8: On the unit interval [0, 1] and under a
continuous and injective information measure; if the oper-
ator associated to strong negation ∼i is continuous, then
IL((`,∼i`); I) = 0 iff (`,∼i`) is coherent w.r.t. I .

The following result relates the ordering between L-
interpretations and the measure of incoherence for pairs of
literals: the greater an L-interpretation the more incoherent
information assigns to literals.

Proposition 9: Let I ≤ J be two L-interpretations. Then
IL((`,∼i`); I) ≤ IL((`,∼i`); J) for all pair of literals
(`,∼i`).

The following proposition shows that IL((`,∼i`); I) is
bounded by the inherent information in I(`) and I(∼i`):

Proposition 10: Let I be an L-interpretation, then

IL((`,∼i`); I) ≤ min
{
m(I(∼i`)),m(I(`))

}

As a consequence of the proposition above, m(1) is actually
an upper bound for the value of each measure IL((`,∼i`); I).

We provide below an example to illustrate how to calculate
the measure of incoherence IL

Example 4: Consider on the unit interval [0, 1] the interpre-
tation given by the following table:

x p ∼1p q ∼1q ∼2q r
I(x) 0.7 0.7 0.8 0.3 0.7 1

Let us interpret the strong negations by using the operators
∼1(x) = 1− x2 and ∼2(x) = 1− x. If we use the Euclidean
norm as the information measure of [0, 1], the incoherence
measure of the pair of literals (p,∼1p) is equivalent to achieve
the minimum of the mapping f(x, y) = 0.7− x+ 0.7− y =
1.4−x−y in the compact set {(x, y) ∈ [0, 0.7]× [0, 0.7] : y ≤
1 − x2}. Specifically IL((p,∼1p); I) = 0.15. Similarly, the
value IL((q,∼2q); I) = 0.5 is the minimum of the mapping
g(x, y) = 0.8−x+0.7−y in the compact {(x, y) ∈ [0, 0.8]×
[0, 0.7] : y ≤ 1− x}. The rest of pairs of opposite literals are
coherent, so in that case IL((`,∼i`); I) = 0. �

B. General measures on literals

The measure of incoherence given in the previous section
is defined on pairs of literals with the form (`,∼i`). Thus,
IL defines a degree of incoherence for each literal and each
strong negation ∼i. The aim of this section is to define a
general degree of incoherence just on literals without fixing a
strong negation; i.e. by considering all possible negations of
the literal. As above, first we define the notion of coherent
(resp. incoherent) literal w.r.t. one interpretation.

Definition 8: Let L be a multi-adjoint lattice and let I be
an interpretation. We say that a literal ` is coherent w.r.t. I if
and only if the inequality I(∼i`) ≤ ∼̇iI(`) holds for all strong
negation ∼i ∈ L. Otherwise the literal ` is called incoherent.

As in the case of coherent/incoherent pairs, hereafter we
will simply state ` is coherent/incoherent without mentioning
the interpretation, whenever it is not ambiguous. We can also
define a crisp measure of incoherence for literals by using
the definition above, but as in the case of coherent/incoherent
pairs of literals, this measure is not able to deal with inherent
degrees of incoherence in literals. So, we use the same idea
underlying IL: to determine the least amount of information
we have to remove from I in order to recover the coherence
of `. Hence, given a multi-adjoint lattice L = (L,≤) with
negations {∼1,∼2, . . . ,∼n}, we define the set of coherent
tuples w.r.t. L as

∆L = {(x, y1, . . . , yn) ∈ Ln+1 : yi ≤ ∼̇i(x) }

As ∆∼1 , the tuples in ∆L represent the allowed values on ev-
ery coherent L-interpretation to one literal ` and all its possible
negations ∼1`, . . .∼n`. Moreover, coherent interpretations can
be characterized by using ∆L as follows:

Proposition 11: Let L be a multi-adjoint lattice with nega-
tions {∼1,∼2, . . . ,∼n} and let I be an L-interpretation. Then,
I is coherent if and only if for all ` ∈ Lit the tuple
(I(`), I(∼1`), . . . , I(∼n`)) ∈ ∆L.

Now, we define a measure of incoherence for literals in
a similar way to IL but by considering the set ∆L instead
of ∆∼i . Formally, we define the measure of incoherence
IG(`; I) by:

inf
(x,yi)∈∆L

x≤I(`)
yi ≤I(∼i`)

{
m(I(`))−m(x)+

(n∑
i

m(I(∼i`))−m(yi)
)}

(2)

The subsequent result shows an intuitive connection be-
tween the measures IL and IG . Specifically, the least amount
of information necessary to be removed from the tuple
(I(`), I(∼1`), . . . , I(∼n`)) in order to recover the coherence
of `,∼1`, . . . ,∼n` is

• bigger or equal than the amount of information necessary
to be removed just from (I(`), I(∼i`)) in order to recover
the coherence only of the pair (`,∼i`).

• but lesser or equal than the sum of all amount of informa-
tion necessary to be removed from each (I(`), I(∼i`))
in order to recover (separately) the coherence of pair
(`,∼i`).

In other words, we need to remove a lesser amount of
information from I if we deal directly with the incoherence of
all negated literals {∼i`}i of ` than if we deal independently
with each incoherent pair (`,∼i`).

Proposition 12: Let L be a multi-adjoint lattice and let I
be an interpretation. Then for all ` ∈ Lit and ∼i ∈ L we have
that: ∑

∼j∈L
IL((`,∼j`); I) ≥ IG(`; I) ≥ IL((`,∼i`); I)

The proposition above entails two interesting corollaries.
Corollary 2: Let L be a multi-adjoint lattice, let I be an

interpretation and let ` be a literal. If IG(`; I) = 0 then
IL((`,∼i`); I) = 0 for all pair (`,∼i`).

Corollary 3: Let L be a multi-adjoint lattice, let I be an
interpretation and let ` be a literal. If IL((`,∼i`); I) = 0 for
all ∼i ∈ L then IG(`; I) = 0.

We introduce below one example on how to compute the
measure of incoherence IG(`; I).

Example 5: Consider the [0, 1]-interpretation given by the
following table:

x p ∼1p ∼2p
I(x) 0.8 0.64 0.7

Let us consider as well that the negation operators associ-
ated to ∼2 and ∼3 are ∼̇1(x) = 1 − x2 and ∼̇2(x) =
1 − x respectively. The values of IL((p,∼1p); I) = 0.4
and IL((p,∼2p); I) = 0.25 can be calculated by using a
similar approach as that in Example 4. On the other hand, the
calculation of the value IG(p; I) is equivalent to determine the

solution of the following non-linear optimization problem4:

min: 2.14− x− y − z
subject to : y ≤ 1− x2

z ≤ 1− x
0 ≤ x ≤ 0.8
0 ≤ y ≤ 0.64
0 ≤ z ≤ 0.7

where we obtain IG(p; I) = 0.5. Note that, as expected, the
chain of inequalities in Proposition 12 holds, with the values

0.4 + 0.25 = 0.65 ≥ 0.5 ≥ 0.4

�
The following results on IG reproduce the previous study

done on IL above. Actually, the following propositions are
the respective results linked with Propositions 6, 7, 8 and 9
given on IL. Let us begin by showing that coherence implies
a null measure of incoherence.

Proposition 13: If the literal ` is coherent w.r.t. I then
IG(`; I) = 0.

The following two results establish frameworks where co-
herence and null measure of incoherence are equivalent.

Proposition 14: Assume that the multi-adjoint lattice is
finite and the information measure used is injective. Then,
IG(`; I) = 0, if and only if ` is coherent w.r.t. I .

Proposition 15: On the unit interval [0, 1] and under a
continuous and injective information measure; if all operator
associated to strong negations is continuous, then IG(`; I) = 0
iff ` is coherent w.r.t. I .

In IG , as in the case of the measure IL, the greater an
L-interpretation the more incoherent information contains.

Proposition 16: Let I ≤ J be two L-interpretations. Then
IG(`; I) ≤ IG(`; J) for all literal `.

C. Degrees of concentration and dispersion of incoherence

To end this section, we present two new measures related
with incoherence just by comparing the measures IL and IG .
Note that the former represents a local degree of contradiction
by considering just a pair of opposite literals, whereas the latter
represents a global degree of contradiction by considering all
opposite literal of a fixed literal. Therefore it is interesting
to study the information that both measures can provide by
comparison. For instance we can measure how “local” is
the incoherence of IL((`,∼i`); I) with respect to the global
degree IG(`; I). That is, we define the degree of concentration
of coherence in (`,∼i`) w.r.t. an interpretation I as:

IC((`,∼i`); I) =

{
0 if IG(`; I) = 0
IL(∼i`;I)
IG(`;I)

Otherwise
(3)

On the other hand we can be interested in measuring
how “disperse” is the global incoherence of IG(`; I) among
the local incoherences IL((`,∼i`); I). Hence, we define the

4This kind of non-linear problem can be resolved by the well-known
Karush-Kuhn-Tucker method [6].

dispersion of the incoherence of the literal ` w.r.t. an interpre-
tation I as:

ID(`; I) =

{
0 if IG(`; I) = 0P
∼i∈L

IL(∼i`;I)

IG(`;I)
Otherwise

(4)

The following result states that zero concentration is equiv-
alent to local coherence, whereas zero dispersion is equivalent
to global coherence.

Proposition 17: Let L be a multi-adjoint lattice, let I be an
interpretation and let ` be a literal. Then:
• IC((`,∼i`); I) = 0 if and only if IL((`,∼i`); I) = 0
• ID(`; I) = 0 if and only if IG(`; I) = 0
Example 6: Reconsider Example 5. The measure of con-

centration and dispersion of coherence for the case of p are:

IC((p,∼1p); I) =
0.4
0.5

= 0.8 IC((p,∼2p); I) =
0.25
0.5

= 0.5

ID(p; I) =
0.65
0.5

= 1.3

�

IV. INCOHERENCE ON EXTENDED PROGRAMS

As the main goal of the paper is to define measures of
incoherence on extended logic programs, in this section, we
will provide some extensions of the measures IL and IG
already defined on literals in Section III. The idea underlying
in the extension consists in identifying each program P with
its least model MP.

In principle, there are three ways to extend such measures in
an extended program P: either estimating the average number
of incoherent literals (resp. pair of literals), or estimating the
maximal size of incoherence, or estimating the average size of
incoherence in the least model of P. For the former, we denote
the number of incoherent literals w.r.t. MP (Definition 8) as
NI(P) and the number of incoherent pairs of opposite literals
w.r.t. MP (Definition 6) as NIP(P). So we can consider
the measures of incoherence IL1 (P) and IG1 (P) defined on an
extended programs P as:

IL1 (P) =
NIP(P)
|LitP| − |ΠP|

(5)

IG1 (P) =
NI(P)
|LitP|

(6)

The formula for IG1 does not need explanation. For IL1 , on
the other hand, the value |LitP| − |ΠP| is just the number of
negative literals occurring in P. It is clear that the number
of literals is always greater or equal than the number propo-
sitional variables occurring in P, and the measure IL1 (P) is
undefined when |LitP| = |ΠP|, but this happens just when
the strong negation does not appear in P and therefore, the
measure of incoherence makes no sense. Anyway, we can
extend the domain of IL1 to every extended program by
defining IL1 (P) = 0 if P does not contain strong negations.

Note finally that the values of IL1 and IG1 belong to the unit
interval [0, 1]. If IL1 (P) = 0 (resp. IG1 (P) = 0) then there are

no incoherent literals in P, that is, P is a coherent program.
However, if IL1 (P) = 1 (resp. IG1 (P) = 1) then every pair of
opposite literals (resp. every literal) is incoherent in P.

Obviously, the measures IL1 and IG1 are unable to deal with
the inherent degree of incoherence measured by IL and IG on
literals. Therefore it is necessary to introduce new measures
of incoherence. The measures IL2 and IG2 focus on estimating
the maximal size of incoherence in P. So, given an extended
program P, we consider:

IL2 (P) = max
∼i`∈LitP

{I((`,∼i`);MP)} (7)

and
IG2 (P) = max

`∈LitP
{IG(`;MP)} (8)

The following relationship between IL2 (P) and IG2 (P) is a
consequence of Proposition 12.

Proposition 18: Let P be an extended program. Then
IL2 (P) ≤ IG2 (P)

On the other hand, other measures IL3 and IG3 can be defined
by focusing on estimating the average size of incoherence in
P. In this case, given an extended program P, we can consider:

IL3 (P) =

∑
∼i`∈LitP

I((`,∼i`);MP)∑
∼i`∈LitP

I((`,∼i`); I>)
(9)

and

IG3 (P) =

∑
`∈LitP

IG(`;MP)∑
`∈LitP

IG(`; I>)
(10)

The quotients in the definition of IL3 and IG3 represent the
maximal degree of incoherence between extended programs;
since Propositions 9 and 16 entail that the interpretation I>
(defined by I>(`) = 1 for all ` ∈ Lit) assigns to every literal
the maximal degree of incoherence. Thus, for all extended
program P the measures I3(P) and IG3 (P) belong to the unit
interval [0, 1]. However, due to the syntactic structure of an
extended program, it could be suitable to consider different
quotients; the following example illustrates this fact.

Example 7: Consider the following multi-adjoint lattice
with negations L = ([0, 1],≤, ∗P ,←P , ∗Ł,←Ł, ∗G,←G,
∼1(x) = 1 − x2,∼2(x) = 1 − x,∼3(x) = 1 −

√
x), and

the extended program P defined by:5

〈∼1p←P q ∗G ∼3s ; 0.8〉 〈∼2p←Ł ∼3s ; 0.7〉
〈p←G t ; 0.8〉 〈∼3s←Ł ; 1〉
〈q ←P ; 0.8〉 〈t←G ; 0.9〉

The least model of P is given by the following table:

x p ∼1p ∼2p q t ∼3s
MP(x) 0.8 0.64 0.7 0.8 0.9 1

The only incoherent literal in P is p and the only incoherent
pairs of opposite literals are (p,∼1p) and (p,∼2p). This
implies that the measures of incoherence IL and IG are null

5The subscripts of the operators indicate the usual product, Łukasiewicz
and Gödel connectives.

for the rest of literals and pairs of opposite literals. Thus we
have:

IL1 (P) =
2
3
≈ 0.66 IG1 (P) =

1
6
≈ 0.16

Note that in Example 5 we already computed the measures
IL(∼1p;MP) = 0.4, IL(∼2p;MP) = 0.25 and IG(p;MP) =
0.5. Therefore, the measures I2(P) = 0.4 and IG2 (P) = 0.5
are easily obtained. To compute the values of the measures IL3
and IG3 , we have to take into account that I(∼1`; I>) = 0.75
and that I(∼2`; I>) = I(∼3`; I>) = IG(p;>) = 1 (such
values are obtained in a similar way as in Example 5). Hence:

IL3 (P) =
0.65
2.75

≈ 0.23 IG3 (P) =
0.5
6
≈ 0.08

The big difference between the values IL1 (P) and IL3 (P)
with respect to IG1 (P) and IG3 (P) is due to the quotients
considered in such measures. The measures based on IL
use pairs of opposite literals, whereas the measures based
on IG consider just literals. Thus, somehow, IL1 (P) and
IL3 (P) consider only the atomic pairs in which incoherence
can be measured by ignoring the non-negated literals in the
program. For instance, in this example IL1 (P) and IL3 (P)
ignore, among others, all the pairs of opposite literals built
from the propositional symbols q and t. However, IG1 (P) and
IG3 (P) consider all literals in the program. Obviously, this
is not a bad feature, but sometimes we could be interested
just in literals which, by the syntactic structure of P, could
contain incoherence. For instance, in this example there are
no negations of q and t in P, so these propositional symbols
cannot be incoherent. Hence, one could consider appropriate
to remove these literals from the quotient of IG1 (P) and IG3 (P)
to estimate the average of the size of incoherence. �

As a consequence of the example above, it seems interesting
to be able to substitute the quotients in IL3 (P) and IG3 (P) by
another value to represent different aspects of incoherence,
for instance, if we were interested in estimating the average
of the size of incoherence just with respect to the literals
“susceptible” of being incoherent. Aiming at this goal, in a
general way, leads to the definition of weighted measure of
incoherence. Thus, given an extended program P and a set of
weights (with the form {ϑ(`,∼i`)}, resp. {ϑ`}, with ` ∈ LitP)
we consider:

IL4 (P; {ϑ(`,∼i`)}) =
∑

∼i`∈LitP

ϑ(`,∼i`) ·I
L((`,∼i`);MP) (11)

and
IG4 (P; {ϑ`}) =

∑
`∈LitP

ϑ` · IG(`;MP) (12)

As one could expect, these new measures of incoherence
generalize IL3 and IG3 , as stated in the proposition below:

Proposition 19: Let P be an extended program defined on a
multi-adjoint lattice L. Then, if we consider the set of weights
{ϑ(`,∼i`)} (reps. {ϑ`}) defined by

ϑ(`,∼i`) =
1∑

∼i`∈LitP

I(∼i`; I>)
and ϑ` =

1∑
`∈LitP

IG(`; I>)

for all ` ∈ LitP we obtain the equalities:

IL3 (P) = IL4 (P; {ϑ(`,∼i`)}) and IG3 (P) = IG4 (P; {ϑ`}).

In the following example we apply the weighted measures
of incoherence IL4 and IG4 to the program described in
Example 7. The aim of the example is to obtain a value
which represents the average size of incoherence between the
negative literals appearing in P.

Example 8: Let us consider the following subsets of literals
of an extended program P :

Ω(P) = {` ∈ LitP | ∼i` ∈ LitP, for some ∼i}

In other words, Ω(P) is the set of literals of P which also
appear negated in P. Note that only literals in Ω(P) can be
incoherent since if ` /∈ Ω(P) then either MP(`) = 0 or
MP(∼i`) = 0 for all ∼i ∈ L. We define the weights ϑ(`,∼i`)

and ϑ` as:

ϑ(`,∼i`) =

(∑

`∈Ω(P)
∼i`∈LitP

IL((`,∼i`); I>)
)−1

if ` ∈ Ω(P)

0 otherwise

and

ϑ` =

(∑

`∈Ω(P)

IG(`; I>)
)−1

if ` ∈ Ω(P)

0 otherwise

Note that in the specific case of the program P given in
Example 7, Ω(P) is the singleton {p}. So the weights above
are ϑ(p,∼1p) = ϑ(p,∼2p) = 1

0.75+1 = 1
1.75 , ϑp = 1, and 0

otherwise. Hence

IL4 (P; {ϑ(`,∼i`)}) =
0.65
1.75

≈ 0.37

and
IG4 (P; {ϑ`}`∈LitP) = 0.5

The difference between the values IG3 (P) = 0.08 and
IG4 (P; {ϑ`}`∈LitP) = 0.5 informs us that, although there is not
much incoherence in the whole program (IG3 (P) = 0.08), the
part of the program which can generate incoherence actually
produces a lot (IG4 (P; {ϑ`}`∈LitP) = 0.5). �

Note that the use of weights in the measures IL4 and IG4
allows us to establish a degree of importance between the
atomic incoherence of literals. For instance, in a control system
of a nuclear power plant, it is not so important an incoherence
related to the electric lightning system as an incoherence
related to the nuclear fusion in the reactor.

Last but not least, it is worth to mention that Propositions 6,
7, 8, 13, 14 and 15 given on IL and IG can be proved in the
framework of extended programs. So, we have that if P is a
coherent program, then ILi (P) = IGi (P) = 0 for all i = 1, 2, 3
and IL4 (P, {ϑ`}) = IG4 (P, {ϑ`}) = 0 for all set of weights
{ϑ`}. And the converse is true if we are working in one of
the frameworks described by Propositions 7 and 8.

V. CONCLUSIONS AND FUTURE WORK

We have introduced different measures of incoherence;
firstly at atomic level, a measure on pairs of opposite literals
(IL) and a measure on literals (IG); secondly, two different
measures, one of dispersion and another of concentration, have
been also defined by comparing these two atomic measures.
Finally, other various measures of incoherence on extended
multi-adjoint logic programs in the previous section by using
the atomic measures of incoherence IL and IG .

Concerning future work, the particular definition of mea-
sures IL4 and IL4 in terms of weights in order to represent
different aspects of incoherence, naturally leads to the possible
integration of OWA operators within this research line.

The initial study of the relation of strong negation with
antonyms in Section II motivates at least the use of chains of
two strong negations. Yet the admission of longer chains of
strong negations in literals encourages us to start a thorough
study of its meaning and, last but not least, the interaction
of the strong negations with default negation concerning
consistency in a multi-valued or fuzzy environment.

REFERENCES

[1] L. Bertossi, A. Hunter, and T. Schaub. Introduction to Inconsistency
Tolerance. In A. H. Leopoldo Bertossi and T. Schaub, editors, Incon-
sistency Tolerance, Lecture Notes in Computer Science 3300, pages 1
– 14. Springer Verlag, 2005.

[2] A. Ciabattoni, D. P. Muiño, T. Vetterlein, and M. El-Zekey. Formal
approaches to rule-based systems in medicine: The case of cadiag-2.
International Journal of Approximate Reasoning, 54(1):132 – 148, 2013.

[3] C. Damásio, N. Madrid, and M. Ojeda-Aciego. On the notions of
residuated-based coherence and bilattice-based consistence. Lecture
Notes in Computer Science, 6857:115–122, 2011.

[4] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

[5] S. Harabagiu, A. Hickl, and F. Lacatusu. Negation, contrast and
contradiction in text processing. In Proceedings of the 21st national
conference on Artificial intelligence - Volume 1, AAAI’06, pages 755–
762. AAAI Press, 2006.

[6] H. Huhn and A. W. Tucker. Nonlinear programming. In Proceedings
of the second Berkeley Symposium on Mathematical Statistics and
Probability, pages 481–492, 1951.

[7] F. E. Kydland and E. C. Prescott. Rules rather than discretion: The
inconsistency of optimal plans. Journal of Political Economy, 85(3):473–
492, 1977.

[8] N. Madrid and M. Ojeda-Aciego. On the measure of incoherence in
extended residuated logic programs. In IEEE Intl Conf on Fuzzy Systems
(FUZZ-IEEE’09), pages 598–603, 2009.

[9] N. Madrid and M. Ojeda-Aciego. Measuring instability in normal
residuated logic programs: discarding information. Communications in
Computer and Information Science, 80:128–137, 2010.

[10] N. Madrid and M. Ojeda-Aciego. Measuring inconsistency in fuzzy
answer set semantics. IEEE Transactions on Fuzzy Systems, 19(4):605–
622, 2011.

[11] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic program-
ming with continuous semantics. Lect. Notes in Artificial Intelligence,
2173:351–364, 2001.

[12] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification:
a multi-adjoint approach. Fuzzy Sets and Systems, 146(1):43–62, 2004.

[13] V. Novak, I. Perfilieva, and J. Mockor. Mathematical Principles of Fuzzy
Logic. Kluwer Academic Publishers, 1999.

[14] E. Trillas, C. Alsina, and J. Jacas. On contradiction in fuzzy logic. Soft
Computing, 3(4):197–199, 1999.

[15] E. Trillas, C. Moraga, S. Guadarrama, S. Cubillo, and E. Castiñeira.
Computing with antonyms. In Forging New Frontiers: Fuzzy Pioneers
I, volume 217 of Studies in Fuzziness and Soft Computing, pages 133–
153. Springer, 2007.

[16] Z. Wang and G. J. Klir. Fuzzy Measure Theory. Plenum Press, 1992.

