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Abstract—We introduce a sufficient condition which guaran-
tees the existence of stable models for a normal residuated logic
program interpreted on the truth-space [0, 1]n. Specifically, the
continuity of the connectives involved in the program ensures
the existence of stable models. Then, we focus on the assignment
of a fuzzy stable model semantics to inconsistent classical logic
programs on the basis of the separation of the notion of
inconsistence and uncertainty.

I. INTRODUCTION

We propose to apply a certain fuzzy semantics to interpret
a crisp logic program, in some sense in the style of the well-
founded semantics, which assigns one tri-valued stable model
to a given crisp normal logic program.

Note, however, that the well-founded semantics does not
provide a clear distinction between instability (absence of
stable models) and uncertainty. The following example shows
that feature.

P1 = {p← ¬p ; q ← ¬q}
P2 = {p← ¬q ; q ← ¬p}

have the same well-founded model WF = {(p, u), (q, u)}
(where u represents the value unknown). In the former case,
the undefinedness is due to the explicit contradiction in the
rules of the program whereas, in the latter case, u represents
the uncertainty in knowing whether p is false and q true or
vice versa.

In order to obtain a more expressive approach, one can
consider the stable model semantics, which allows to repre-
sent the uncertainty regarding the value of the propositional
symbols by considering several possibilities, one per existing
stable model. However, in general, the existence of stable
models cannot be guaranteed, and necessary conditions to
ensure the existence of stable models have been widely studied
in classical logic programming. In fact, a syntactic condition
on crisp normal programs to have stable models can be found
in [1]. Similarly to classical logic programming, the existence
of fuzzy stable models cannot be guaranteed for an arbitrary
normal residuated logic program [2].

Moreover the characterization in the fuzzy framework is
much more complicated since it involves two different dimen-
sions: the syntactic one “the structure of the normal program”
and semantic one “the choice of suitable connectives in the
residuated lattice”.
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In classical logic programming only syntactic conditions are
available since the connectives are fixed. However, for normal
residuated logic program the semantic dimension plays also a
crucial role; for example the program with only one rule

P = {〈p← ¬p; 1〉}

has a stable model if and only if the operator associated with
¬ has a fixpoint. As far as we know, establishing semantic
conditions for guaranteeing the existence of stable models
has not been directly attempted, although sufficient conditions
underlie in some approaches; for example [3] proves that every
normal logic program has stable models in the 3-valued Kleene
logic and, more generally, [4], [5] show that every normal
residuated logic program has stable models if the underlying
residuated lattice has an appropriate bilattice structure [6].

In this paper, firstly, we provide another condition on the
residuated lattice to ensure the existence of stable models,
more specifically: if the lattice selected is an Euclidean space
and the connectives ∗ and ¬ in the residuated lattice are
continuous, then the existence of at least a fuzzy stable model
is guaranteed. Then, given a crisp logic program, we embed
it into a residuated structure which guarantees the existence
of stable models, and a preference among these stable models
is introduced such that: (1) if the crisp program has stable
models, the “residuated” semantics coincides with the classical
one, and (2) otherwise, the residuated stable models allow to
establish a clear distinction between instability and uncertainty.

II. PRELIMINARIES

Let us start this section by recalling the definition of
residuated lattice, which fixes the set of truth values and the
relationship between the conjunction and the implication (the
adjoint condition) occurring in our logic programs.

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such
that:

1) (L,≤) is a complete bounded lattice, with top and
bottom elements 1 and 0.

2) (L, ∗, 1) is a commutative monoid with unit element 1.
3) (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y∗z ≤

x ∀x, y, z ∈ L.

Remark 1. The adjoint pair is uniquely determined by the
chosen t-norm ∗. In other words, fixed a left-continuous t-
norm ∗, the unique operator ← which forms an adjoint pair
together ∗, is that defined by:

x← y = sup{z ∈ L : y ∗ z ≤ x}



This is the reason why we usually present residuated lattices
by simply mentioning the operator ∗.

In the rest of the paper we will consider a residuated lattice
enriched with a negation operator, (L, ∗,←,¬). The negation
¬ will model the notion of default negation often used in
logic programming. As usual, a negation operator, over L,
is any decreasing mapping n : L→ L satisfying n(0) = 1 and
n(1) = 0.

Definition 2. Given a residuated lattice with negation (L,≤
, ∗,←,¬), a normal residuated logic program P is a set of
weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional
symbols.

It is usual to denote the rules as 〈p ← B;ϑ〉. The formula
B is usually called the body of the rule, p is called its head
and ϑ is called its weight.

A fact is a rule with empty body, i.e facts are rules with this
form 〈p← ;ϑ〉. The set of propositional symbols appearing
in P is denoted by ΠP.

Definition 3. A fuzzy L-interpretation is a mapping I : ΠP →
L; note that the domain of the interpretation can be lifted to
any rule by homomorphic extension.

We say that I satisfies a rule 〈p ← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(p) or, equivalently, ϑ ≤ I(p← B). Finally, I is
a model of P if it satisfies all rules (and facts) in P.

Note that the ordering relation in the residuated lattice
(L,≤) can be extended over the set of all L-interpretations
as follows: Let I and J be two L-interpretations, then I ≤ J
if and only if I(p) ≤ J(p) for all propositional symbol p ∈ ΠP.

A. Immediate Consequence Operator

The immediate consequence operator was successfully gen-
eralized for positive residuated programs in [7] and can be
applied straightforwardly to normal residuated programs. Its
definition is as follows:

Definition 4. Let P be a normal residuated logic program. The
immediate consequence operator maps every L-interpretation
I to the L-interpretation TP(I) defined below:

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P}

where p ∈ P.

Similarly to the positive case, the operator TP can be used to
characterize the models of normal residuated logic programs:

Proposition 1. Let P be a residuated logic program and let
M be an L-interpretation. M is a model of P if and only if
TP(M) ≤M .

Proof: Let M be a model of P. Then for every rule 〈p←
B; ϑ〉 ∈ P:

M(p) ≥M(B) ∗ ϑ

That implies that for every propositional symbol p, M(p) is
an upper bound of the set {M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} and
thus:

M(p) ≥ sup{M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} = TP(M)(p)

Assume now that M(p) ≥ TP(M)(p) for every proposi-
tional symbol p, then for every rule 〈p← B; ϑ〉 in P:

M(p) ≥ TP(M)(p) = sup{M(B′) ∗ ϑ′ : 〈p← B′; ϑ′〉} ≥
≥M(B) ∗ ϑ

The immediate consequence operator is monotonic when is
defined on positive residuated logic programs [7]:

Theorem 1. Let P be a positive residuated logic program,
then TP is monotonic.

The theorem above together with Knaster-Tarski’s fix-point
theorem ensure that the operator TP has a least fix-point;
furthermore this least fix point coincides with the least model
of P.

The main difference in the case of normal residuated logic
programs, is that TP is not necessarily monotonic. That feature
implies that we cannot make use of the least model semantics
in arbitrary normal residuated logic programs.

Example 1. Consider the logic program 〈p ← ¬q ; 1〉
interpreted on the residuated lattice with negation ([0, 1],≤
,min,←, 1−x). Then the immediate consequence operator is
the mapping:

TP(I)(x) =

{
1− I(q) if x = p

0 otherwise

where I is a [0, 1]-interpretation. Clearly this mapping is
not monotonic with respect to the order between [0, 1]-
interpretations.

Certainly, the definition of TP can be simplified if for each
propositional symbol p, there exists only one rule whose head
is p, since the operator sup can be removed from the definition.
Although that condition on a program P does not usually
hold, we can always obtain a partition of P such that the
condition holds for each partition and, then, the immediate
consequence operator of P can be obtained by using the
immediate consequence operator of each partition. Formally:

Proposition 2. Let P be a normal residuated logic program.
Then there exist a partition {Pi}i∈I of the program P satisfy-
ing:

• For all i ∈ I , there are no rules in Pi with the same
head.

• TP(I)(p) = supi∈I{TPi
(I)(p)}.

Proof: The finest partition of P satisfies the statement of
the proposition. Explicitly, for each rule ri ∈ P we consider the
normal residuated logic program with just one rule Pi = {ri}.



Then the partition {Pi}i∈I satisfies the first item. Now, for
each Pi the immediate consequence operator has the form

TPi(I)(x) =

{
I(B) ∗ ϑ if x = p

0 otherwise

where 〈p← B; ϑ〉 is the only rule in Pi. Then:

TP(I)(p) = sup{I(B)∗ϑ : 〈p← B; ϑ〉 ∈ P} = sup
i∈I
{TPi(I)(p)}

B. Stable Models

We recall here the approach given in [8], which generalizes
the stable model semantics [9] to normal residuated logic
programs.

Let us consider a normal residuated logic program P to-
gether with a fuzzy L-interpretation I . To begin with, we will
construct a new normal program PI by substituting each rule
in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive, that is, does
not contain any negation; in fact, the construction closely
resembles that of a reduct in the classical case, this is why
we introduce the following:

Definition 5. The program PI is called the reduct of P wrt
the interpretation I .

As a result of the definition, note that given two fuzzy L-
interpretations I and J , then the reducts PI and PJ have the
same rules, and might only differ in the values of the weights.
By the monotonicity properties of ∗ and ¬, we have that if
I ≤ J then the weight of a rule in PI is greater or equal than
its weight in PJ .

It is not difficult to prove that every model M of the program
P is a model of the reduct PM .

Recall that a fuzzy interpretation can be interpreted as an
L-fuzzy subset. Now, as usual, the notion of reduct allows for
defining a stable set for a program.

Definition 6. Let P be a normal residuated logic program and
let I be a fuzzy L-interpretation; I is said to be a stable set
of P iff I is a minimal model of PI .

Theorem 2. Any stable set of P is a minimal model of P.

Thanks to Theorem 2 we know that every stable set is
a model, therefore we will be able to use the term stable
model to refer to a stable set. Obviously, this approach is a
conservative extension of the classical approach.

In the following example we use a simple normal logic
program with just one rule in order to clarify the definition of
stable set (stable model).

1Note the overloaded use of the negation symbol, as a syntactic function
in the formulas and as the algebraic negation in the truth-values.

Example 2. Consider the program 〈p ← ¬q ;ϑ〉. Given a
fuzzy L-interpretation I : Π → L, the reduct PI is the rule
(actually, the fact) 〈p ;ϑ ∗ ¬I(q)〉 for which the least model
is M(p) = ϑ∗¬I(q), and M(q) = 0. As a result, I is a stable
model of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and
I(q) = 0. �

An important feature of the stable models that holds as well
in our extended framework is that a stable model is always a
minimal fix-point of TP.

Proposition 3. Any stable model of P is a minimal fix-point
of TP.

Proof: We will refer here a rule 〈p ← p1 ∗ · · · ∗ pm ∗
¬pm+1 ∗ · · · ∗¬pn; ϑ〉 by writing 〈p← B+ ∗B−; ϑ〉 where
B+ is identified with p1 ∗ · · · ∗ pm and B− is identified with
¬pm+1 ∗ · · · ∗ ¬pn. With this notation, the reduct PI can be
seen as the transformation which substitutes each rule 〈p ←
B+ ∗ B−; ϑ〉 in P by 〈p← B+; I(B−) ∗ ϑ〉.

Let us see firstly that for every L-interpretation I , TP(I) =
TPI

(I):

TP(I)(p) =

= sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+ ∗ B−; ϑ〉 ∈ P} =

= sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+; I(B−) ∗ ϑ〉 ∈ PI} =

= TPI(I)(p)

Now, let M be a stable model of P. Then, by definition,
M = TPM

(M). By using the equality above, we obtain
M = TPM

(M) = TP(M); in other words, M is a fix-point
of TP.

Let us prove the minimality of M . Let N be a fix-point of
TP such that N ≤ M , then by Proposition 1 N is a model
of P. Finally, by Theorem 2, N = M .

Notice, however, that a minimal fix-point of TP is not
necessarily a stable model of P, as shown in the following
example:

Example 3. Let P = {〈p ← p; 1〉, 〈q ← ¬p; 1〉} be a
normal residuated logic program defined on ([0, 1],≤,min,←
, 1 − x). Let us obtain firstly the stable models of P. Let
I = {(p, α), (q, β)} be a [0, 1]-interpretation, then the reduct
PI is the program PI = {〈p← p; 1〉, 〈q ←; 1−α〉}. The least
model of PI is the [0, 1]-interpretation M = {(p, 0), (q, 1−α}.
So I is a stable model of P if and only if I = M , that is, if
and only if I = {(p, 0), (q, 1)}.

Let us obtain now the set of fix-points of TP. The immediate
consequence operator of P is:

TP(I)(x) =

{
I(p) if x = p

1− I(p) if x = q

A [0, 1]-interpretation I = {(p, α), (q, β)} is a fix-point of TP
if and only if I(p) = I(p) and I(q) = 1− I(p). Therefore the
set of fix-points of TP is Fp = {Iα = {(p, α), (q, 1−α)} : α ∈
[0, 1]}. Note that every [0, 1]-interpretation in Fp is a minimal
fix-point but only one of them is a stable model. �



III. ON THE EXISTENCE OF STABLE MODELS IN [0, 1]

The existence of stable models can be guaranteed by simply
imposing conditions on the underlying residuated lattice:

Theorem 3. Let L ≡ ([0, 1],≤, ∗,←,¬) be a residuated
lattice with negation. If ∗ and ¬ are continuous operators,
then every finite normal program P defined over L has at
least a stable model.

Proof: The idea is to apply Brouwer’s fix-point theorem.
Specifically, we show that the operator assigning each inter-
pretation I the interpretation R(I) = lfp(TPI

) is continuous.
Note that this operator can be seen as a composition of two
operators F1(I) = PI and F2(P) = lfp(TP). Actually, we will
show that F1 and F2 are continuous.

To begin with, note that F1 can be seen as an operator from
the set of [0, 1]-interpretations to the Euclidean space [0, 1]k

where k is the number of rules in P. This is due to the fact
that F1 just changes the weights of P, and nothing else. Now,
the continuity of F1 is trivial since the weight of each rule in
P is changed only by using the continuous operator ¬.

Concerning F2, the syntactic part of P can be considered
fixed and positive. This is due to the fact that its only inputs
are of the form PI , therefore, the number of rules is fixed,
negation does not occur in P, and the only elements which
can change are the weights. As a result, F2 can be seen as a
function from [0, 1]k to the set of interpretations. Note that
this restriction over F2 does not disallow the composition
between F1 and F2. To prove that F2 is continuous note,
firstly, that the immediate consequence operator is continuous
with respect to the weights in P, since every operator in the
definition of TP (namely sup and ∗) is continuous. Secondly,
a direct consequence of the termination result introduced
in [10, see Cor. 29] ensures that if P is a finite positive
program, then lfp(TP) can be obtained by iterating finitely
many times the immediate consequence operator; in other
words, lfp(TP) = T kP (I⊥) where k is the number of rules
in P. Therefore, as the operator F2 is a finite composition of
continuous operators, F2 is also continuous.

Finally, as R(I) = lfp(TPI
) is a composition of two

continuous operators, R(I) is continuous as well. Hence we
can apply Brouwer’s fix-point theorem to R(I) and ensure
that it has at least a fix-point. To conclude, we only have to
note that every fix-point of R(I) is actually a stable model
of P. �

Example 4. The existence of stable model for the normal
residuated logic program below

〈p← ¬q ; 0.8〉
〈q ← ¬r ; 0.7〉
〈r ← ¬p ; 0.9〉

is not always guaranteed. For example, if we consider the
residuated lattice L = ([0, 1], ∗,←,¬) determined by x ∗ y =
x · y and

¬(x) =

{
0 if x > 0.5
1 if x ≤ 0.5

then the program has not stable models. However, if we
consider the residuated lattice L = ([0, 1], ∗,←,¬) determined
by x ∗ y = x · y and ¬(x) = 1−x the normal residuated logic
program has the following stable model

M = {(p, 0.4946808); (q, 0.3816489); (r, 0.4547872)}

Obviously, the sufficient condition provided in Theorem 3 is
not a necessary condition. Considering the residuated lattice
L = ([0, 1], ∗,←,¬) determined by

x ∗ y =

 x if y = 1
y if x = 1
0 otherwise

¬(x) =

{
0 if x > 0.9
1 if x ≤ 0.9

the program above has one stable model, M =
{(p, 0.8); (q, 0.7); (r, 0.9)}; although the connectives ∗
and ¬ are not continuous.

Remark 2. It is important to recall that most connectives in
fuzzy logic are defined on the unit interval [0, 1]. Thus the
condition about continuity on a Euclidean space as sets of
truth-values is not excessively restrictive. Moreover, most t-
norms used currently in fuzzy logic are continuous (Gödel,
Łukasiewicz, product, . . . ), therefore the theorem establishes
that in the most used fuzzy frameworks, the existence of fuzzy
stable models is always guaranteed.

IV. ASSIGNING SUITABLE FUZZY STABLE MODELS
TO INCONSISTENT CLASSICAL LOGIC PROGRAMS

As we have seen in the previous section, stable models are
guaranteed to exist when the underlying residuated lattice is
([0, 1],≤, ∗,←,¬) with ∗ and ¬ continuous. As a result, by a
suitable modification of the underlying lattice of truth-values,
it could be possible to assign a stable model semantics to a
normal program even when the program is unstable on its
original residuated structure. Although it is not difficult to
imagine how this is to be done, we specify below how a crisp
logic program P is embedded into a suitable residuated logic
program framework.

A crisp logic program P can be seen as a residuated logic
program under a residuated lattice (L,≤, ∗,←,¬) substituting
each rule in P

p← q1, . . . , qm,¬qm+1, . . . ,¬qn

by
〈p← q1 ∗ · · · ∗ qm ∗ ¬qm+1 ∗ · · · ∗ ¬qn ; 1〉

It is important to point out that this translation preserves
the set of existing crisp stable models when we consider the
embedded program into the residuated structure, in short, we
never lose existing crisp stable models but can obtain new
fuzzy stable models. This is formally specified as follows:

Proposition 4. Let P be a classical logic program and let
M be an L-interpretation such that M(p) ∈ {0, 1} for every
propositional symbol p. Then, M is a stable model of P in the
classical sense if and only if M is a fuzzy stable model of P
interpreted in the residuated lattice (L,≤, ∗,←,¬).



Proof: The equivalence stated by this Proposition follows
directly from the following two items:
• The fuzzy reduct PM is equivalent to the classical reduct.
• The least fixpoint of the fuzzy immediate consequence

operator TPM
coincides with that of the classical one.

To see the equivalence between reducts, consider a rule:

〈p← q1 ∗ · · · ∗ qm ∗ ¬qm+1 ∗ · · · ∗ ¬qn ; 1〉

in a program P. Then the corresponding rule in PM is:

〈p← q1 ∗ · · · ∗ qm ; ¬̇M(qm+1) ∗ · · · ∗ ¬̇M(qn)〉

which is equivalent to
1) Remove the rule if M assigns 1 to some negated

propositional symbol.
2) Remove the negative propositional symbols in the body

of the rule.
as stated the classical reduct.

In order to prove the second item above, let I be an L-
interpretation such that I(p) ∈ {0, 1} for every propositional
symbol p. Then, by Definition 4,

TPM
(I)(p) = sup{I(B) ∗ 1: 〈p← B; 1〉 ∈ PM}

Note finally, that for each rule 〈p ← B; 1〉 ∈ PM , the value
I(B) is equal to 1 if and only if for every propositional symbol
q occurring in B we have that I(q) = 1; otherwise I(B) = 0.
This is equivalent to say that TPM

(I)(p) = 1 if and only if
there exists one rule whose head is p and every propositional
symbol q in its body satisfies I(p) = 1.

In the example below, we show the result of the embedding
into the unit interval of two different programs, and analyze
the resulting sets of fuzzy stable models with regard to the
corresponding sets of classical stable models.

Example 5. Consider the following crisp normal programs

P1 = {〈p← ¬q〉; 〈q ← ¬p〉}
P2 = {〈p← ¬p〉; 〈q ← ¬q〉}
P3 = {〈p← ¬q〉; 〈q ← ¬p〉, ; 〈r ← ¬r〉}

Firstly, we have that P1 has two stable models M1 and M2,
but P2 and P3 do not have any stable model. Specifically,

SM(P1) =
{
{(p, λ); (q, 1− λ)} | λ ∈ {0, 1}

}
SM(P2) = ∅
SM(P3) = ∅

On the other hand, when interpreted as fuzzy logic programs in
the unit interval under product logic and the standard negation
operator, ¬x = 1−x, then we obtain the following sets of fuzzy
stable models for programs P1 and P2:

FSM(P1) =
{
{(p, λ); (q, 1− λ)} | λ ∈ [0, 1]

}
FSM(P2) =

{
{(p, 1/2), (q, 1/2)}

}
FSM(P3) =

{
{(p, λ); (q, 1− λ); (r, 1/2)} | λ ∈ [0, 1]

}
Note that the residuated interpretation of program P1 pre-
serves the classical stable models and, moreover, provides

infinitely many other fuzzy stable models; concerning P2, the
residuated interpretation provides just one fuzzy stable models
which, moreover, turns out to “coincide” with the 3-valued
interpretation of the well-founded semantics; finally, for P3

we obtain a set of fuzzy stable models which contains the
corresponding to the well-founded semantics.

It is remarkable to note that in program P3 we obtain
models which are “partially classical” in that some, but not
all, propositional variables obtain boolean values.

We propose the use of an order relation in the set of fuzzy
stable models, in order to filter out those which are closer
to be classical, in the sense that assign a boolean value to a
maximal set of propositional variables. The motivation for this
is two-fold:

1) In the case of an inconsistent program, as our starting
point is a classical logic program, we would like to
consider those fuzzy stable models which are as close
to be classical as possible.

2) On the other hand, a beneficial effect can be obtained
when considering of partially classical models, as it
might be possible to isolate parts of the program which
are affected by either uncertainty or inconsistence.
Uncertainty arises when we can assign different Boolean
truth values (true or false) to a given propositional sym-
bol, whereas inconsistence arises when we cannot assign
a Boolean truth value to one propositional symbol.

We will define a pre-order relation on the set of L-
interpretations, with the underlying goal of representing the
notion of “being more classical”:

Definition 7. Let I and J be L-interpretations. We say that I
is more classical than J (denoted by J v I) if for every
propositional symbol p such that J(p) ∈ {0, 1} we have that
I(p) ∈ {0, 1}.

Moreover, we say that I is strictly more classical than J
(denoted by J @ I) if J v I and there is a propositional
symbol p such that I(p) ∈ {0, 1} and J(p) /∈ {0, 1}.

Note that v defines a pre-order relation in the set of L-
interpretations since it is obviously reflexive and transitive;
however, it fails to be antisymmetric. On the basis of this
preorder, we can state that a stable model M1 is accepted to
the stable model M2 if M2 v M1; as a result, our accepted
stable models are those M such that there is no fuzzy stable
model N such that M @ N .

A good property of this choice of stable models is that it
coincides with the classical stable model semantics when the
program considered is consistent (in the sense that it admits
stable models).

Corollary 1. Let P be a consistent classical logic program.
Then the set of accepted stable models over every residuated
lattice structure coincides with the set of classical stable
models.

The following example shows that, in the case of inconsis-
tent classical logic programs, the use of the preorder defined



above, can somehow distinguish among those propositional
sybols involved with uncertainty and those involved with
inconsistence.

Example 6. Continuing with Example 5, the accepted models
for P1 turn out to be its classical stable models; for P2 the
only choice is to consider the model {(p, 1/2), (q, 1/2)} as the
accepted stable model; finally, for P3, the accepted models are
two “partially classical” models, namely,

M1 ={(p, 1), (q, 0), (r, 1/2)}
M2 ={(p, 0), (q, 1), (r, 1/2)}

Note that the inconsistence of program P3 is due to the
propositional symbol r and, interestingly enough, in both
accepted stable models the non-Boolean truth-value 1/2 is
assigned only to r. On the other hand, the uncertainty related
to the values of p and q arises from the fact that there exist two
accepted stable models in which p and q somehow alternate
their values (and we do not have reasons to prefer one to the
other).

Note that the approach of building stable models in fuzzy
frameworks can be applied, in principle, in every residuated
lattice. However, we only can guarantee the existence of stable
models in structures such as Kleene’s 3-valued logic [3], in
residuated lattices allowing a bilattice structure [11], [5], or
residuated lattices satisfying the hypothesis of Theorem 3.
The advantage of choosing the former approach instead of,
for instance, Kleene’s 3-valued logic is that we have infinitely
many non-Boolean values to represent inconsistence.

Furthermore, note that even if we restrict our attention
only to residuated lattice defined on [0, 1], we have a lot
of possibilities to consider. Let us see a few examples to
show the different information provided by three different
residuated structures: minimum, product and Łukasiewicz with
the standard negation.

Example 7. Consider the following classical program

{〈p← ¬p〉; 〈q ← ¬q, p〉}

Under minimum logic, there is just one model MM =
{(p, 1/2), (q, 1/2)}, which coincides with its well-founded
model. If we consider the product logic, the program once
again has just one stable model (which is accepted) MP =
{(p, 1/2); (q, 1/3)}. Finally, if we consider the Łukasiewicz
connectives, the only stable model is MŁ = {(p, 1/2), (q, 1/4)}.

Note that in the two latter cases, the truth value of p is
greater than that of q, somehow denoting the fact that the
rule defining q is self-contradictory and, moreover, depends
on another inconsistent propositional symbol, that is, p.

Example 8. Consider the program

{〈p← ¬p〉; 〈r ← ¬s, p〉; 〈s← ¬r, p〉}

As in the previous example, under minimum logic there
is just one model namely MM = {(p, 1/2), (r, 1/2), (s, 1/2)},
the well-founded model. If we consider the product logic, the

program has once again one accepted stable model MP =
{(p, 1/2); (r, 1/3); (s, 1/3)}.

If we consider the Łukasiewicz connectives we obtain a
parameterized set of stable models

Mλ = {(p, 1/2); (r, λ); (s, 1/2− λ)} : λ ∈ [0, 1/2]

In this set of models, only two are accepted, namely

M0 = {(p, 1/2); (r, 0); (s, 1/2)}
M1/2 = {(p, 1/2); (r, 1/2); (s, 0)}

Note that for this program, the minimum logic assigns the
same non-Boolean truth-value for all propositional symbol
(indicating the inconsistence of all of them); product logic
assigns a different value to p than to r and s (indicating
the origin of the inconsistence) and in Łukasiewicz logic, the
inconsistence and uncertainty living (at same time) in r and s
is isolated by providing two different accepted stable models.

Example 9. Consider the following program

{〈p← ¬p〉; 〈q ← ¬q〉; 〈r ← p, q〉}

Once again the result depends on the choice of the un-
derlying residuated logic. The only accepted model co-
incides with the well-founded model, namely MM =
{(p, 1/2), (q, 1/2), (r, 1/2)}. If we consider the product logic, the
only stable model (and therefore the accepted one) is MP =
{(p, 1/2); (q, 1/2); (r, 1/4)}. If we consider the Łukasiewicz con-
nectives we obtain only the following stable model, MŁ =
{(p, 1/2); (q, 1/2); (r, 0)}.

As in previous examples, these three structures provide
different accepted stable models. In Gödel structure, every
propositional symbol gets the same truth value 1/2, which in-
dicates only the inconsistence of these propositional symbols.
In product logic, the value 1/4 assigned to r indicates that
its dependance on two inconsistent propositional symbols (p
and q). Finally, in Łukasiewicz logic, this difference is more
drastic, assigning 0 to r as a result of its dependance on the
inconsistent symbols p and q.

V. RELATED WORK

In recent years several extensions of the answer set se-
mantics to some non-classical logics have been developed.
We relate below our generalization to some approaches based
on Probabilistic Logic [12] [13] [14], Annotated Logic [15],
Antitonic Logic [16], Fuzzy Description Logic [17] [18] and
Fuzzy Logic [19].

The problem of non-existence of stable models has already
been considered in the literature. The existing works range
from the characterization of those logic programs admitting
stable models [1] to the definition of alternative semantics
[20], [21]; for instance, the latter defines partial stable models,
which are actually 3-valued interpretations in order to assign a
new semantics to normal programs. The present work follows
this approach.

Moreover, the use of preference orderings between the
newly generated stable models has already proved to be a



useful approach: Fitting [11] showed that the well-founded
model is the least four-valued stable model with respect a spe-
cific ordering (the knowledge ordering). So, the well-founded
model can be seen as an example in which a preference is
defined on the set of 3-valued stable models.

We can say that the well-founded semantics is related to this
paper, in the sense that it assigns a specific stable model in a
more general structure of the space of truth-values. However,
as stated in the introduction, it is not possible to know, in
principle, whether the third truth-value, unknown, represents
inconsistence (non-existence of answer sets) or uncertainty
with regard to the value of certain propositional symbols.

Technically, the present work considers to embed the clas-
sical program into a fuzzy framework where the existence of
stable model is guaranteed. This way, we can consider not
only a 3-valued [3] or a 4-valued logic [11], but any logic
in which we can guarantee the existence of stable models (in
our case on the unit interval by considering a fuzzy logic with
continuous connectives). As a result, we do not define just one
semantics but infinitely many semantics for a given classical
program.

Other approaches based on alternative semantics for normal
logic programs, such as the prioritized programs or preferred
answer sets, in which an ordering between the rules in the
program is established, are somehow related to the results in
this paper. In these frameworks, an ordering is defined on the
set of classical stable models according to the degree that
they satisfy the preference defined among the rules of the
program [22]. The similarity with our approach lies on the fact
that they include an ordering between (classical) models, the
difference is that in our approach we generalize the semantics
by considering partial fuzzy stable models.

Another source of related work is given by the preferred
semantics [23] defined for argumentative frameworks in terms
of preferred extensions. This semantics coincides with the
partial stable model semantics of [21] and, thus, it is a further
example of embedding into a more general structure.

VI. CONCLUSION

Given a classical normal logic program without stable mod-
els, we propose to consider an embedding into a residuated
lattice ([0, 1],≤, ∗,←,¬) with ∗ and ¬ continuous. In such
a context, the resulting program admits stable models, finally
the set of resulting fuzzy stable model semantics is filtered in
order to maintain just the “most classical” ones.

In some sense, our proposed approach allows to identify
parts of the program in terms of inconsistence and uncertainty,
and follows the line of previous works in which the notion of
inconsistence in fuzzy logic programs has been decomposed
into two different components: incoherence and instability,
see [24], [25], [26].
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