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Abstract

In this work we introduce the first steps towards the def-
inition of an answer set semantics for residuated logic pro-
grams with negation.

1. Introduction

Twenty years later of the introduction of the stable model
semantics in classical logic programming, we are still see-
ing a number of different applications of this notion in dif-
ferent logical frameworks.

Answer set semantics is an intuitive and elegant gener-
alisation of the stable model semantics which provides a
powerful solution for knowledge representation and non-
monotonic reasoning problems. Originally, answer sets
were intended to deal with two negations, one strong nega-
tion and default negation. The use of these two types of
negation is advocated in many contexts of interest, in par-
ticular in [15] their use is justified in relation to web rules.

The overall framework of answer set programming has
important links with description logics and, hence, with the
semantic web, as stated in [5, 7, 9, 10]. This new paradigm
requires the introduction of new layers of semantics (on-
tologies, rules, logic, proofs) enriching the data stored in
the classical web; as a result, the problems underlying the
semantic web are, in some sense, similar to those of logic
programming: the logical organization of knowledge.

The present work can be seen as related to the frame-
work of query answering in the presence of uncertainty. It
is convenient to note that stable models were initially aimed
at formalizing the use of negation in logic programming as
negation-as-failure and, thus, are closely related to reason-
ing under uncertainty. For instance, the closed world as-
sumption for a given predicate P allows for extracting neg-
ative knowledge about P from the absence of positive in-
formation about it.

The ideal environment for developing a theory of man-
agement of uncertainty is fuzzy logic. Therefore, fuzzy

logic programming has become a target theory for a suit-
able generalization of answer set semantics.

In this paper, we focus on the initial definitions of sta-
ble model and answer set in the framework of residuated
logic programs [2], as a initial step towards an answer set
semantics for multi-adjoint logic programs, which were in-
troduced in [11].

2. Preliminaries

In this section we include the definitions needed to intro-
duce our approach to residuated logic programs with nega-
tion. Let us start with the definition of residuated lattice:

Definition 1 A residuated lattice is a tuple ((L,≤), ∗,←)
such that:

1. (L,≤) is a complete and bounded lattice with largest
element 1 and least element 0.

2. (L, ∗, 1) is a commutative monoid unit element 1.

3. ∗ and← form an adjoint pair, i.e:

z ≤ (x← y) iff y ∗ z ≤ x for all x, z ∈ L.

In residuated lattices one can interpret the operator ∗ like
a conjunction and the operator← like an implication.

In the rest of the paper we will consider a residuated lat-
tice enriched with two negation operators, (L, ∗,←,∼,¬).
The two negations will modelize the notions of strong nega-
tion ∼ and default negation ¬ often used in logic program-
ming. As usual, a negation operator, over L, is any decreas-
ing mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

The difference between strong and default negation in
our context is essentially semantical, and relates to the
method we use to infer the truth value of one negated propo-
sitional symbol: The strong negation operator will be used
in order to define a measure of consistency of a fuzzy L-
interpretation, whereas the default negation will be used
during the construction of a reduct (or program division).
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In order to introduce our logic programs, we will assume
a set Π of propositional symbols. If p ∈ Π, then both p
and ∼ p are called literals. We will denote arbitrary literals
with the symbol ` (possible subscripted), and the set of all
literals as Lit.

Definition 2 Given a residuated lattice with negations
(L, ∗,←,∼,¬), a general residuated logic program P is a
set of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

where ϑ is an element of L and `, `1, . . . , `n are literals.

Rules will be frequently denoted as 〈` ← B; ϑ〉. As usual,
the formula B is called the body of the rule whereas ` is
called its head. We consider facts as rules with empty body,
which are interpreted as a rule 〈`← 1; ϑ〉.

Definition 3 A fuzzy L-interpretation is a mapping
I : Lit→ L; note that the domain of the interpretation can
be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈`← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the domain of our interpretations is the whole
set of literals Lit, hence we are following an approach
which is compositional wrt the default negation, whereas
needs not be compositional wrt the strong negation.

A general residuated logic program P is said to be:

• positive if it does not contain negation operators.

• normal if it does not contain strong negation, but might
contain default negation.

• extended if it does not contain default negation but it
might contain strong negation.

3. Fuzzy stable sets

Our aim in this section is to adapt the approach given
in [6] to the normal residuated logic programs just defined
in the section above.

Let us consider a normal residuated logic program P to-
gether with a fuzzy L-interpretation I . To begin with, we
will construct a new normal program PI by substituting
each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉
1Note the overloaded use of the negation symbol, as a syntactic func-

tion in the formulas and as the algebraic negation in the truth-values.

Notice that the new program PI is positive , that is, does
not contain any negation; in fact, the construction closely
resembles that of a reduct in the classical case, this is why
we introduce the following:

Definition 4 The program PI is called the reduct of P wrt
the interpretation I .

As a result of the definition, note that given two fuzzy
L-interpretations I and J , then the reducts PI and PJ have
the same rules, and might only differ in the values of the
weights. By the monotonicity properties of ∗ and ¬, we
have that if I ≤ J then the weight of a rule in PI is greater
or equal than its weight in PJ .

It is not difficult to prove that every model M of the pro-
gram P is a model of the reduct PM .

Recall that a fuzzy interpretation can be interpreted as a
L-fuzzy subset. Now, as usual, the notion of reduct allows
for defining a stable set for a program.

Definition 5 Let P be a normal residuated logic program
and let I be a fuzzy L-interpretation; I is said to be a stable
set of P iff I is a minimal model of PI .

Theorem 1 Any stable set of P is a minimal model of P.

Thanks to Theorem 1 we know that every stable set is a
model, thus we have a suitable generalization of the concept
of stable model in this generalized framework. Hereafter,
specially in a semantic context, we will use the term stable
model to refer to a stable set.
Remark This approach to reducts and stable models is a
conservative extension of the classical approach.

In the following example we use a simple normal residu-
ated program with just one rule in order to show some subtle
differences generated by the extension to the fuzzy case:
Example Consider the following program with just one
rule P = {p ← ¬q}. In classical logic, for this program
there are exactly four different interpretations, and only one
of them is a stable model, namely, I(p) = 1 and I(q) = 0.

Now, let us consider the general version of the program-
rule above, 〈p← ¬q; ϑ〉, where the only difference is that
we can assign a weight to the rule and that the propositional
symbols are evaluated in a residuated lattice with negation.

Given a fuzzy L-interpretation I : Π→ L, the reduct PI

is the rule (actually, the fact) 〈p; ϑ ∗ ¬I(q)〉 for which
the least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0.
As a result, I is a stable model of P if and only if I(p) =
ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0. �

4. Fuzzy answer sets

In this section, we concentrate on strong negation and we
will consider extended residuated logic programs.
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Note that, as our interpretations are defined on the set
of literals, every extended program has a least model which
can be obtained, for instance, by iterating the immediate
consequence operator, see [2].

In the classical case, one has to take into account the in-
teraction between opposite literals in order to reject incon-
sistent models. The advantage of working in a fuzzy frame-
work is that one can allow that two opposite literals, such as
p and ∼ p, live together . . . under some requirements.

Our approach will be based on a generalization of the
concept of consistency which we have called coherence, to
distinguish it from other existing definitions of consistency
in a fuzzy setting.

Definition 6 A fuzzy L-interpretation I over Lit is coherent
if the inequality I(∼ p) ≤ ∼ I(p) holds for every proposi-
tional symbol p.

It is easy to check that our notion of coherence coincides
with consistency when applied in a classical framework.

The following properties, regarding the pointwise order-
ing between interpretations, will be used in the rest of the
section.

Proposition 1 Let I and J be two fuzzy L-interpretations
satisfying I ≤ J . If J is coherent, then I is coherent as
well.

Corollary 1 If M is a fuzzy coherent model of P, then any
other model T such that T ≤M is a coherent model.

As a consequence of the previous corollary we can intro-
duce the following definition:

Definition 7 Let P be an extended residuated logic pro-
gram, we say that P is coherent if its least model is coherent.

Example Consider the extended residuated logic program
over the unit interval and strong negation ∼x = 1− x:

〈p←; 1〉 〈∼ p←; 0′3〉

This program is not coherent because its unique minimal
model M = {(p, 1), (∼ p, 0′3)} is not a coherent interpre-
tation, since 0′3 = M(∼ p) > ∼M(p) = 0. �

Once the concept of coherence has been presented, we
can introduce the notion of fuzzy answer set. Such a set is
a fuzzy set of literals, similarly to the classical case, which
sometimes will be considered a fuzzy L-interpretation.

Definition 8 Let P be a coherent extended residuated logic
program; the fuzzy answer set of P is its least coherent
model of P.

If P is a positive program, then is coherent and the fuzzy
answer set of P is simply the least fuzzy model of P.

Now, the notion of fuzzy answer set for general resid-
uated logic programs is just a combination of that for ex-
tended programs and stable models, via construction of
reducts.

A general residuated logic program P will be trans-
formed into a new general logic program P+ in which we
simply “forget” that the rules in the program are constructed
from literals, and consider negative literals as new, indepen-
dent, propositional symbol.

Formally, for any propositional symbol p occurring in P,
let p′ be a new symbol, which will be called the positive
form of the negative literal ∼ p. Every positive literal is, by
definition, its own positive form. The positive form of the
literal ` will be denoted by `+ and P+ will stand for the
extended program obtained from P by replacing each rule

`← `1 ∗ `2 ∗ ... ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n

by

`+ ← `+1 ∗ `+2 ∗ ... ∗ `+m ∗ ¬`+m+1 ∗ · · · ∗ ¬`+n

The transformation above can be easily applied to fuzzy
L-interpretations, in that, an interpretation I such that
I(∼ p) = ϑ is transformed into a fuzzy L-interpretation
I+ such that I+(p′) = ϑ. As a consequence, we obtain in a
straightforward way the following lemma.

Lemma 1 M is a model of P iff M+ is a model of P+.

It is easy to see that program P+ is normal and, thus, we
can consider its stable models. This leads to our definition
of fuzzy answer set for a general program.

Definition 9 Given a general residuated logic program P,
a fuzzy answer set for P is a stable model for P+.

Now, it is convenient to show that the different defi-
nitions made for particular classes of programs coincide
(whenever it makes sense to establish such a comparison).

To begin with, in the following proposition, we state the
relationship between the concepts of fuzzy answer sets for
an extended program and stable model for a positive pro-
gram.

Proposition 2 Let P be an extended residuated logic pro-
gram and I a coherent fuzzy L-interpretation; then I is a
fuzzy answer set of P if and only if I+ is a stable model
of P+.

It is clear, on the other hand, that the concept of fuzzy
stable model for a normal program coincides with the least
model of a positive one; simply, because the latter does not
contain negation (neither strong nor default).

262262



At this point it should be clear that there exists another
“reasonable” possibility for defining a fuzzy answer set for
a general program; namely, the construction of reduct2 to be
directly applied on a general program, PI , and then, com-
pute its least model. If this least model coincides with I .
The natural question here is whether I is a fuzzy answer set
for P, in the sense of Definition 9.

Lemma 2 Let P be a general residuated logic program,
then (PI)+ = (P+)I+ .

From the above lemma, we can compute a fuzzy answer
set for a general logic program P by means of, abusing a
little bit of terminology, the general stable models.

Formally, we have the following theorem:

Theorem 2 Let P a general residuated logic program. A
coherent fuzzy L-interpretation I is a fuzzy answer set of P
if and only if I is a general stable model of P.

5. A detailed example

Let us assume that we are the local chairs of a confer-
ence, and we want to provide information about hotels close
to the venue. The degree of closeness of each hotel will be
made in terms of its quality and its reachability which, in
turn, is determined regarding its distance to the venue and
the existence of public transport. The conference will be
held in the new buildings of our department but it is not
clear that the new tube station will be operative.

The rules below define a fuzzy predicate Unlikely(x)
which assigns a degree of unlikeliness to each hotel in terms
of how far is from the venue and the existence of tube con-
nection.

Unlikely(x)← Tube(x), Far(x) ; 0.3
Unlikely(x)←¬Tube(x), Far(x) ; 0.5
Unlikely(x)←¬∼Tube(x), Far(x) ; 0.5
Unlikely(x)←∼Tube(x), Far(x) ; 0.7

GoTo(x)← Quality(x), ¬Unlikely(x) ; 0.8

Far(A) ; 0.2 Quality(A) ; 0.4
Far(B) ; 0.4 Quality(B) ; 0.6
Far(C) ; 0.6 Quality(C) ; 0.8

If we are not assuming information about the existence
of tube connection, the only fuzzy stable model assigns

Unlikely(A) ; 0.1 Unlikely(B) ; 0.2 Unlikely(C) ; 0.3
GoTo(A) ; 0.288 GoTo(B) ; 0.384 GoTo(C) ; 0.448

But consider that we take into account the information avail-
able about the likeliness that that tube is finished by the
dates of the conference (according to the builder), as well

2We write PI to remark that P needs not be a normal program; anyway,
the construction of the reduct is the same.

as its unlikeliness (according to the newspapers), and incor-
porate the following facts:

Tube(A) ; 0.7 Tube(B) ; 0.5 Tube(C) ; 0.6
∼Tube(A) ; 0.4 ∼Tube(B) ; 0.4 ∼Tube(C) ; 0.9

In this case, the new results that we obtain are the following

Unlik.(A) ; 0.06 Unlik.(B) ; 0.12 Unlik.(C) ; 0.378
GoTo(A) ; 0.300 GoTo(B) ; 0.422 GoTo(C) ; 0.398

in which we see that Hotel C is penalized due to the high
risk that the tube connection is not ready.

Of course, one could argue that the assumed values for
the existence or non-existence of tube are greatly contradic-
tory and, thus, the result is questionable.

In this respect, we have to say that, certainly, the tube-
related information is not coherent regarding the standard
negation, but it is possible to assume a suitable algebraic
negation operator with respect to which the resulting output
is a coherent fuzzy answer set.

6. Related approaches to fuzzy ASP

Several approaches have been developed in order to cope
with negation in a fuzzy logic programming setting. In this
section we briefly overview some of them although, due to
lack of space, a thorough comparison cannot be included
and is subject of future work.

To the best of our knowledge, one of the first studies
of negation in fuzzy logic programming was introduced
in [14], which developed a compositional approach to en-
compass strong negation (one in which interpretations are
homomorphic with respect to strong negation, that is, the
equality I(∼ p) = ∼ I(p) holds for all interpretation I),
in opposition to the well-known but non-compositional ap-
proach of [3].

In [4] a foundation for fuzzy logic programming was
developed, but his approach was not based on implication
rules, but on Horn clauses on which negation is interpreted
as default negation. Simultaneously, [1] introduced the so-
called antitonic logic programs, for which a well-founded
and a stable model semantics was developed; antitonic logic
programs are based, as our programs, on a residuated lat-
tice, but their rules must satisfy the condition that their bod-
ies should be either increasing in all variables or decreas-
ing in all variables and, thus, they cannot accomodate rules
containing both positive and negative literals in their bod-
ies. Moreover, they consider partial interpretations, in the
form of pairs of interpretations in order to keep track of the
information about truth and non-falsity. This use of two in-
terpretations could be related to our use of interpretations
from the set of literals I : Lit→ L, as the union of a pair of
interpretations, one for the positive literals and another one
for the negative literals.
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There are other works with the similar spirit, such as the
approach to answer sets based on annotated multiple-valued
logic [12]. In this paper, the underlying truth-values set is a
complete lattice, and the main difference is that interpreta-
tions assign an interval to literals (similar to [1]).

The rest of approaches included in this section have not
been compared thoroughly with our approach, and their re-
lationship with our contribution is subject of future work:

An approach to fuzzy answer set programming has been
introduced in [13] which allows a very form of the logic
programs and, thus, provides a parametric highly config-
urable framework to meet the needs of the user. In prin-
ciple, this approach is not directly applicable to residuated
logic programs, since the programs they considered did not
have weights, but a thorough comparison with our approach
is still missing.

Finally, there are several works in which answer set se-
mantics is applied to fuzzy description logic. Regarding
its application to the semantic web we have, for instance,
the fuzzy dl-programs in [10] which generalize, on the one
hand, the fuzzy disjunctive logic programs and, on the other
hand, fuzzy description logics. This framework is further
extended in [9], with the consideration of normal fuzzy dl-
programs as a generalization of normal description logic
programs under the answer set semantics by fuzzy vague-
ness and imprecision in both the description logic and the
logic program component.

7. Conclusions and future work

In this paper we have set the initial definitions in order to
start a thorough study of the answer set semantics of general
residuated logic programs. The definitions of fuzzy stable
model for normal program and of fuzzy answer set for a
coherent extended program are used in order to provide the
definition of fuzzy answer set for a general fuzzy program.
Finally, we conclude with the result that fuzzy answer sets
can, equivalently, be computed by means of general stable
models.

A number of issues still have to be studied within this
research line. In this paper, we have only taken into ac-
count that the resulting fuzzy answer sets should be vali-
dated against some consistency-related notion, namely, co-
herence:the fact that the choice of an adequate algebraic op-
erator for strong negation is crucial for the coherence of the
resulting fuzzy answer sets is an important aspect related to
future work on this topic which, due to lack of space, will
be studied elsewhere. Moreover, it is interesting to know
better the epistemological implications of the concept of co-
herence.

Other piece of future work should lead towards imbri-
cating this notion with threshold computation which turns
out to be an important issue for negation-as-failure. For in-

stance, the absence of evidence of p could be interpreted
that the value of p is at most a threshold value which cannot
be detected by the sensors which provide our information.

Last but not least, it is important to relate our approach
with other existing approaches, and study their possible in-
teractions, advantages and disadvantages.
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