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We focus on a possible generalisation of the theory of congruences on a lattice

to a more general framework. In this paper, we prove that the set of congruences
on an m-distributive multilattice forms a complete lattice and, moreover, show

that the classical relationship between homomorphisms and congruences can

be adequately adapted to work with multilattices.
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1. Introduction

The problem of providing suitable fuzzifications of crisp concepts is an im-
portant topic which attracts the attention of a number of researchers. Since
the inception of fuzzy sets and fuzzy logic, there have been approaches to
consider underlying sets of truth-values more general than the unit interval;
for instance, consider the L-fuzzy sets introduced by Goguen,1 where L is
a complete lattice.

This paper is part of a research line aimed at investigating L-fuzzy sets
where L has the structure of a multilattice. The concepts of ordered and
algebraic multilattice were introduced by Benado2 in 1954. A multilattice
is an algebraic structure in which the restrictions imposed on a (complete)
lattice, namely, the “existence of least upper bounds and greatest lower
bounds” are relaxed to the“existence of minimal upper bounds and maximal
lower bounds”.

Much more recently, Cordero et al.3,4 proposed an alternative algebraic
definition of multilattice which is more closely related to that of lattice,
allowing for natural definitions of related structures such that multisemi-
lattices and, in addition, is better suited for applications. For instance,
Medina et al.5 developed a general approach to fuzzy logic programming
based on a multilattice as underlying set of truth-values for the logic.

Several papers have been published on the lattice of fuzzy congruences
on different algebraic structures,6–10 and in this paper we initiate research
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in this direction. Specifically, we focus on the theory of congruences on a
multilattice, as this is a necessary step prior to considering the multilattice-
based generalization of the concept of L-fuzzy congruence.

The structure of this paper follows, as much as possible, the development
presented in Gratzer’s General Lattice Theory.11 After some preliminary
results, we prove that the set of congruences on a multilattice which sat-
isfies a sort of distributivity, that we have called m-distributivity, forms a
complete lattice. Finally, we show that the classical relationship between
homomorphisms and congruences can be adequately adapted to work with
multilattices.

2. Preliminary definitions

We need some previous concepts that allow us to introduce the multilattice
structure:

Given (M,≤) a partially ordered set (henceforth poset) and B ⊆ M , a
multi-supremum of B is a minimal element of the set of upper bounds of
B and Multi-sup(B) denote the set of multi-suprema of B. Dually, we define
the multi-infima.

Definition 2.1. A poset, (M,≤), is an ordered multilattice if and only
if it satisfies that, for all a, b, x ∈ M with a ≤ x and b ≤ x, there exists
z ∈ Multi-sup({a, b}) such that z ≤ x and its dual.a

Similarly to lattice theory, if we define a∨ b = Multi-sup{a, b} and define
a∧ b = Multi-inf{a, b}, it is possible to define multilattices algebraically and,
conversely, if we define a ≤ b if and only if a ∨ b = b it is possible to
obtain the ordered version of multilattice. Both definitions of multilattice
are proved to be equivalent (see [3, Theorem 2.11]).

In the category of lattices, factor objects are determined by congruence
relations, that is, equivalence relations which are compatible with the oper-
ations. As a result, it is worth to investigate congruences in the framework
of multilattices.

Firstly, we will introduce a notation which will be useful hereafter. LetR
be a binary relation in M and X, Y ⊆M then X R̂Y denotes that, for all
x ∈ X, there exists y ∈ Y such that xRy and for all y ∈ Y there exists
x ∈ X such that xRy.

Definition 2.2. Let (M,∨,∧) be a multilattice, a congruence on M is

aNote that the definition is consistent with the existence of two incomparable elements
without any multisupremum. In other words, Multi-sup({a, b}) can be empty.
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an equivalence relation ≡ which for all a, b, c ∈ M satisfies that if a ≡ b,
then a ∨ c ≡̂ b ∨ c and a ∧ c ≡̂ b ∧ c.

3. On the lattice of congruences

In the rest of the paper, unless stated otherwise, we will always assume that
our relations are defined on a multilattice (M,∧,∨). The following results
are consequences from the definition:

Lemma 3.1. Let ≡ be a congruence relation and [a] be the equivalence
class of an element a.

(1) If b ∈ [a] then ∅ 6= a ∨ b ⊆ [a] and ∅ 6= a ∧ b ⊆ [a]
(2) If there exists z ∈ a ∧ b and w ∈ a ∨ b such that z ≡ w, then a ≡ b

Lemma 3.2. Let ≡ be a congruence relation. If a ≤ b with a ≡ b then:

(1) For all z ∈ a ∧ t we have that ∅ 6= (b ∧ t) ∩ z↑⊆ [z].
(2) For all w ∈ b ∨ t we have that ∅ 6= (a ∨ t) ∩ w↓⊆ [w].

where z↑= {x | x ≥ z} and w↓= {x | x ≤ w}.

The following proposition will be useful in the characterisation of con-
gruences on a multilattice. Specifically, note that any congruence relation
in a multilattice satisfies the two hypotheses in the statement.

Proposition 3.1. Let R be a relation in a multilattice (M,∨,∧) satisfying
the following conditions for all x, y ∈M

C1 If there exist z ∈ x ∧ y and w ∈ x ∨ y such that zRw, then xRy

C2 If x ≤ y with xRy then

(a) z ∈ x ∧ t implies that there exists w ∈ y ∧ t such that zRw.
(b) w ∈ y ∨ t implies that there exists z ∈ x ∨ t such that zRw.

Then, if a ≤ x, y ≤ b and aRb then xRy.

Proof. Since (M,∨,∧) is a multilattice, if a ≤ x, y ≤ b then there exist
z ∈ x ∧ y and w ∈ x ∨ y such that a ≤ z ≤ w ≤ b. So a ≤ b, aRb and
a ∈ a∧w, by C2.a, there exists w ∈ b∧w with aRw. Now, as a ≤ w, aRw

and w ∈ w ∨ z, by C2.b, there exists z ∈ a ∨ z with zRw. Finally, by C1,
we have that xRy.

Lemma 3.3. Let ≡ be a congruence relation.

(1) If y ∈ x ∨ z and x ≡ y, then x ∨ z ⊆ [x] and ∅ 6= x ∧ z ⊆ [z]
(2) If y ∈ x ∧ z and x ≡ y, then x ∧ z ⊆ [x] and ∅ 6= x ∨ z ⊆ [z]
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Theorem 3.1. Let (M,∨,∧) be a multilattice and R be a binary relation.
Then R is a congruence relation if and only if the following conditions hold:

(1) R is reflexive
(2) xRy if and only if there exist z ∈ x ∧ y and w ∈ x ∨ y with zRw

(3) If x ≤ y ≤ z with xRy and yRz, then xRz

(4) If x ≤ y with xRy, then x ∧ t R̂ y ∧ t and x ∨ t R̂ y ∨ t.

Proof. If R is a congruence relation, then all the conditions are satisfied
using the previous results. Conversely, let us suppose that all the condi-
tions are satisfied. Firstly we will prove that R is an equivalence relation.
Symmetry is a straightforward consequence of (2). For the transitivity, let
us suppose that xRy and yRz. Then by (2) there exist u ∈ x∧y, w ∈ x∨y,
u′ ∈ y∧z and w′ ∈ y∨z such that uRw and u′Rw′. Since u ≤ w and uRw,
by (4), w′ = u∨w′R̂w ∨w′, thus,b there exists q ∈ w ∨w′ such that w′Rq.
Analogously, u∧u′ R̂w∧u′ = u′ so, there exists p ∈ u′ ∧u such that pRu′.
Since p ≤ u′ ≤ y ≤ w′ ≤ q and pRu′Rw′Rq, by (3), pRq. Finally, since
p ≤ x, z ≤ q and by Proposition 3.1, xRz.

Now let us prove the compatibility with the operations. If aRb, by (2)
there exist z ∈ a ∧ b and w ∈ a ∨ b such that zRw and so aRw. Then
using (4) we have that since a ≤ w then a∨ t R̂w ∨ t and since b ≤ w then
b ∨ t R̂w ∨ t. Then we have that a ∨ t R̂ b ∨ t.

It is well-known that, for every set A, the set of equivalence relations
on A, Eq(A), with the inclusion ordering (in the powerset of A × A) is a
complete lattice in which the infimum is the meet and the supremum is the
transitive closure of the join. A suitable generalization of distributivity will
be proved to be a sufficient condition for the set of congruences being a
complete lattice.

Definition 3.1. A multilattice (M,∨,∧) is said to be m-distributive if
the following conditions hold, for all a, b ∈M with a ≤ b and t ∈M :

(1) b ∧ t ⊆ (a ∧ t) ∨ (b ∧ t) (2) a ∨ t ⊆ (a ∨ t) ∧ (b ∨ t)

Theorem 3.2. The set of the congruences in an m-distributive multilattice
M , Con(M), is a sublattice of Eq(M) and, moreover is a complete lattice
wrt the inclusion ordering.

Proof. Let {≡i}i∈Λ be a set of congruences in M , consider ≡∩ to be the
intersection and ≡tc be the transitive closure of union.

bWe are abusing the notation here, in that singletons are not written between braces.
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Since ≡∩ and ≡tc are equivalence relations, they satisfy the conditions
(1) and (3) of Theorem 3.1. On the other hand, condition (2) is a conse-
quence of Lemma 3.1. Thus, we have just to check condition (4) in order
to show that both ≡∩ and ≡tc are congruences.

Let us consider x ≤ y with x ≡∩ y. Lemma 3.2 ensures that, if z ∈ x∧ t,
then there exists w ∈ y ∧ t with z ≡∩ w. Conversely, if w ∈ y ∧ t, since M

is m-distributive, there exist z ∈ x∧ t and v ∈ y ∧ t such that w ∈ z ∨ v. In
particular, z ≤ w, which implies that w ≡i z, for all i ∈ Λ, by Lemma 3.2.

The proof for ≡tc follows by a routine calculation.

4. Homomorphisms and congruences

The notion of homomorphism is extended to the theory of multilattices as
follows: h : M → M ′ is a homomorphism if h(a ∨ b) ⊆ h(a) ∨ h(b) and
h(a ∧ b) ⊆ h(a) ∧ h(b).

Proposition 4.1. Let (M,∨,∧) be a multilattice and ≡ a congruence re-
lation, then M/≡ is a multilattice with

[a] ∨ [b] = {[x] | x ∈ a ∨ b} and [a] ∧ [b] = {[x] | x ∈ a ∧ b}

Moreover, the mapping h : M → M/≡ such that h(x) = [x] is a surjective
homomorphism.

Theorem 4.1. Let h : M →M ′ be a homomorphism between multilattices.
The relation in M given by a ≡ b⇔ h(a) = h(b) is a congruence iff:

(1) h(a) = h(b) implies a ∨ b 6= ∅ and a ∧ b 6= ∅
(2) h(a ∨ b) = h(a) implies a ∧ b 6= ∅
(3) h(a ∧ b) = h(a) implies a ∨ b 6= ∅

Proof. We prove just the converse implication, for which we will use the
characterisation given in Theorem 3.1.

It is obvious that ≡ is an equivalence relation. Now, let us consider
x, y ∈ M where x ≤ y and h(x) = h(y), and z ∈ x ∧ t. As z ≤ y and z ≤ t

there must be w ∈ y ∧ t with z ≤ w; consequently, h(z) ≤ h(w). On the
other hand, by properties of homomorphism, we have h(w) ∈ h(y ∧ t) ⊆
h(y) ∧ h(t) = h(x) ∧ h(t) and h(z) ∈ h(x ∧ t) ⊆ h(x) ∧ h(t). As a result,
h(z) = h(w), that is, z ≡ w.

Let us consider x, y, t ∈ M with x ≤ y, h(x) = h(y) and w ∈ y ∧ t.
Firstly, x ≤ y and w ≤ y so there must exists y′ ∈ x ∨ w with x ≤ y′ ≤ y.
As h is a homomorphism we have that h(x) ≤ h(y′) ≤ h(y) = h(x), that
is, h(y′) = h(x). As h(y′) = h(x) ∈ h(x) ∨ h(w) so h(x) ∨ h(w) = h(x). In
a nutshell, h(x ∨ w) = h(x).
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Furthermore, h(x∧w) ⊆ h(x)∧h(w) = h(w), thus h(x∧w) = h(w). By
condition (2), x ∧ w 6= ∅, so we can take x′ ∈ x ∧ w and, by definition of
multilattice, there exists z ∈ x∧t such that x′ ≤ z. Notice that h(x′) ≤ h(z)
and h(z), h(w) ∈ h(x) ∧ h(t); hence, we obtain that h(w) = h(z).

It is remarkable that in most of the applications of multilattices it is
the case that Multi-sup({a, b}) 6= ∅ 6= Multi-inf({a, b}) and, as a result, every
homomorphism defines a congruence.

5. Conclusions and future work

We have started the investigation of congruences on a multilattice, and
shown that the set of congruences of an m-distributive multilattice is a com-
plete latice and a sublattice of the set of its equivalence relations. Moreover,
the well-known relation between congruences and homomorphisms has been
shown to be preserved when considered in the framework of multilattices.

As future work, we are planning to investigate the multilattice-based
generalization of the concept of L-fuzzy congruence, following the line of
the several papers published on the lattice of fuzzy congruences on different
algebraic structures.6–10
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