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Galois connections between a fuzzy preordered
structure and a general fuzzy structure

I.P. Cabrera, P. Cordero, F. Garcı́a-Pardo, M. Ojeda-Aciego, B. De Baets

Abstract—We continue the study of (isotone) Galois con-
nections, also called adjunctions, in the framework of fuzzy
preordered structures, which generalize fuzzy preposets by
considering underlying fuzzy equivalence relations. Specifically,
we present necessary and sufficient conditions so that, given
a mapping f : A → B from a fuzzy preordered structure
A = 〈A,≈A, ρA〉 into a fuzzy structure 〈B,≈B〉, it is possible
to construct a fuzzy relation ρB that induces a suitable fuzzy
preorder structure on B and such that there exists a mapping
g : B → A such that the pair (f, g) constitutes an Galois
connection.

Index Terms—Galois connection, Preorder, Fuzzy sets

I. INTRODUCTION

Galois connections (both in isotone and in antitone forms)
can be found in different areas, and it is common to find papers
dealing with them either from a practical or a theoretical point
of view. In the literature, one can find numerous papers on
theoretical developments on Galois connections [1], [2], [9],
[25], [27] and also on applications thereof [19], [20], [29],
[32], [35], [36], [38], [44].

Concerning the generalization to the fuzzy case, to the
best of our knowledge, the first approach was due to
Bělohlávek [1]. Later, a number of authors have introduced
different approaches to so-called fuzzy (isotone or antitone)
Galois connections; see [6], [20], [21], [25], [27], [30], [45]. It
is remarkable that the mappings forming the Galois connection
in all the above-mentioned approaches are crisp rather than
fuzzy. In our opinion the term ‘fuzzy Galois connection’
should be reserved for the case in which the involved mappings
are actually fuzzy mappings, and that is why we prefer to
stick to the term ‘Galois connection’ rather than ‘fuzzy Galois
connection’, notwithstanding the fact that we are working in
the context of fuzzy structures.

In previous works, some of the present authors have studied
the problem of constructing a right adjoint (or residual map-
ping) associated to a given mapping f : A → B where A is
endowed with some order-like structure and B is unstructured:
in [24], we consider A to be a crisp partially (pre)ordered set
〈A,≤A〉; later, in [10], we considered A to be a fuzzy preposet
〈A, ρA〉.

In this paper, we consider the case in which there are two
underlying fuzzy equivalence relations in both the domain and
the codomain of the mapping f , more specifically, f is a
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morphism between the fuzzy structures 〈A,≈A〉 and 〈B,≈B〉
where, in addition, 〈A,≈A〉 is a fuzzy pre-ordered structure.
Firstly, we have to characterize when it is possible to endow
B with the adequate structure (namely, enrich it to a fuzzy
pre-ordered structure) and, then, construct a mapping g from
B to A compatible with the fuzzy equivalence relations such
that the pair (f, g) forms a Galois connection.

Although all the results will be stated in terms of the exis-
tence and construction of right adjoints (or residual mappings),
they can be straightforwardly modified for the existence and
construction of left adjoints (or residuated mappings). On
the other hand, it is worth remarking that the construction
developed in this paper can be extended to the different types
of Galois connections (see [22]).

Galois connections (both in a crisp and in a fuzzy setting)
have found applications in areas such as (fuzzy) Mathe-
matical Morphology [14]–[16], in which the (fuzzy) erosion
and (fuzzy) dilation operations are known to form a Galois
connection [7], [26], [39], [40]; another important source of
applications of Galois connections is within the field of Formal
Concept Analysis, in which the concept-forming operators
form either an antitone or isotone Galois connection (depend-
ing on the specific definition); in this research direction, one
still can find recent papers on the theoretical background of
the discipline [3]–[5], [11], [31], [37], [42] and a number of
applications [13], [33], [34].

The structure of the paper is as follows. In Section II, some
preliminary notions on Galois connections between fuzzy pre-
ordered structures used in the rest of the paper are introduced.
Then, in Section III we study the canonical decomposition
of Galois connections in our framework, followed by an
analysis of conditions for the existence of the right adjoint
in Sections IV and V. As a consequence of the canonical
decomposition, we propose a two-step procedure for verifying
the existence of the right adjoint in a constructive manner; this
is studied in detail in Section VI. Finally, in Section VII, we
state the conclusions and prospects for future work.

II. GALOIS CONNECTIONS BETWEEN FUZZY PREORDERED
STRUCTURES

The most common underlying structure for considering
fuzzy generalizations of Galois connections is that of a com-
plete residuated lattice L = (L,≤,>,⊥,⊗,→). As usual,
supremum and infimum will be denoted by ∨ and ∧, re-
spectively. An L-fuzzy set X on a universe U is a mapping
X : U → L from U to L, where X(u) denotes the degree to
which u belongs to X . Given two L-fuzzy sets X and Y , X is
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said to be included in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u)
for all u ∈ U .

A mapping R : U × U → L is a (binary) L-fuzzy relation
on U . An L-fuzzy relation R is said to be:
(i) Reflexive if R(a, a) = > for all a ∈ U .

(ii) ⊗-Transitive if R(a, b) ⊗ R(b, c) ≤ R(a, c) for all
a, b, c ∈ U .

(iii) Symmetric if R(a, b) = R(b, a) for all a, b ∈ U .
From now on, when no confusion arises, we will omit the

prefixes “L-” and “⊗-”.
Definition 1: A fuzzy relation ≈ on A is said to be a:

(i) Fuzzy equivalence relation if it is reflexive, symmetric
and transitive.

(ii) Fuzzy equality relation if it is a fuzzy equivalence relation
such that ≈ (a, b) = > implies a = b, for all a, b ∈ A.

We will use the infix notation for a fuzzy equivalence rela-
tion, that is: for a fuzzy equivalence relation ≈ : A×A→ L,
we write a1 ≈ a2 to refer to ≈(a1, a2).

Definition 2: For a fuzzy equivalence relation ≈ : A×A→
L, the equivalence class of an element a ∈ A is the fuzzy set
[a]≈ : A→ L defined by [a]≈(u) = (a ≈ u) for all u ∈ A.

Remark 1: Note that [x]≈ = [y]≈ if and only if (x ≈
y) = >. Indeed, if [x]≈ = [y]≈, then (x ≈ y) = [x]≈(y) =
[y]≈(y) = >, by reflexivity; conversely, if (x ≈ y) = >, then
[x]≈(u) = (x ≈ u) = (y ≈ x) ⊗ (x ≈ u) ≤ (y ≈ u) =
[y]≈(u), for all u ∈ A by transitivity; the converse inequality
follows in the same way.

Definition 3:
(i) A fuzzy structure A = 〈A,≈A〉 is a set A endowed with

a fuzzy equivalence relation ≈A.
(ii) A morphism between two fuzzy structures A and B is

a mapping f : A → B such that for all a1, a2 ∈ A the
following inequality holds: (a1 ≈A a2) ≤ (f(a1) ≈B

f(a2)). In this case, we write f : A → B, and we say
that f is compatible with ≈A and ≈B .

It is worth mentioning that fuzzy structures and their mor-
phisms form a category and, in fact, in this categorical frame-
work, our fuzzy structures are called global L-valued sets
associated to a GL-monoid L [28]. Furthermore, Demirci [18]
proved it to be a full subcategory of the so-called L-valued
sets (a generalized form of our notion of fuzzy structure just
introduced) which, in addition, coincides with the category
of Ld-pseudometric spaces, where Ld is the dual GL-monoid
associated with L, showing an essential duality between global
L-valued sets (fuzzy structures) and V-pseudometric spaces,
where V denotes a dual GL-monoid.

Definition 4: A morphism between two fuzzy structures A
and B is said to be
(i) ≈-injective if (f(a1) ≈B f(a2)) ≤ (a1 ≈A a2), for

all a1, a2 ∈ A (or, equivalently, (f(a1) ≈B f(a2)) =
(a1 ≈A a2), for all a1, a2 ∈ A.)

(ii) ≈-surjective if for all b ∈ B there exists a ∈ A such that
(f(a) ≈B b) = >.

(iii) a ≈-isomorphism if it is ≈-injective and ≈-surjective. In
such case, for all b1, b2 ∈ B, there exist a1, a2 ∈ A such
that (b1 ≈B b2) = (f(a1) ≈B f(a2)) = (a1 ≈A a2).

Remark 2: Consider a morphism f : 〈A,≈A〉 → 〈B,≈B〉.

(i) If f is surjective, then it is ≈-surjective (see Example 1
for a counterexample for the converse implication).
In addition, if ≈B is a fuzzy equality, then f is ≈-
surjective if and only if f is surjective.

(ii) The ≈-injectivity and the injectivity of f are independent
(see Examples 2 and 3).
Furthermore, if ≈A is a fuzzy equality and f is ≈-
injective, then it is injective. However, the converse
implication is false in general, as shown in Example 3.

Some examples are worked out below in order to illustrate
the previous remarks. All of them are based on the standard
residuated lattice structure generated by the product t-norm on
the real unit interval, that is L = ([0, 1], sup, inf, 1, 0, ·,→).

Example 1: Consider two fuzzy structures A = 〈{o, p},≈A

〉 and B = 〈{o, p, q},≈B〉, where ≈A and ≈B are the fuzzy
equivalence relations given by the tables below:

≈A o p
o 1 0.9
p 0.9 1

≈B o p q
o 1 0.9 0.9
p 0.9 1 1
q 0.9 1 1

The inclusion mapping i : A → B is obviously a morphism
which, in addition, is also ≈-surjective, since (o ≈B i(o)) = 1,
(p ≈B i(p)) = 1 and (q ≈B i(p)) = 1. However, it is not
surjective.

Example 2: Consider two fuzzy structures
A = 〈{o, p, q, r},≈A〉 and B = 〈{o, p, q},≈B〉, where
≈A and ≈B are the fuzzy equality relations given by the
tables below:

≈A o p q r
o 1 0.5 0.7 1
p 0.5 1 0.5 0.5
q 0.7 0.5 1 0.7
r 1 0.5 0.7 1

≈B o p q
o 1 0.5 0.7
p 0.5 1 0.5
q 0.7 0.5 1

The mapping f : A → B defined by f(o) = o, f(p) = p,
f(q) = q and f(r) = o is a ≈-injective morphism; however,
it is not injective.

Example 3: Consider two fuzzy structures
A = 〈{a, b, c},≈A〉 and B = 〈{o, p, q},≈B〉, where
≈A and ≈B are the fuzzy equality relations given by the
tables below:

≈A a b c
a 1 0.8 0.7
b 0.8 1 0.6
c 0.7 0.6 1

≈B o p q
o 1 0.9 0.8
p 0.9 1 0.8
q 0.8 0.8 1

and consider the mapping f : A → B with f(a) = o, f(b) = p
and f(c) = q. It is easy to check that f is a morphism, and
an injective but not ≈-injective mapping, since (a ≈A b) =
0.8 < 0.9 = (f(a) ≈B f(b)).

Concerning our underlying ordered structure, in [10] we
worked with the notion of fuzzy preposet defined below:

Definition 5: A fuzzy preposet is a pair A = 〈A, ρA〉 in
which ρA is a reflexive and transitive fuzzy relation on A.

The additional consideration of an underlying fuzzy equiv-
alence relation suggests considering the following notions:
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Definition 6 ( [8]): Let ≈A be a fuzzy equivalence relation
on A. A fuzzy relation ρA : A×A→ L is said to be
(i) ≈A-reflexive if (a1 ≈A a2) ≤ ρA(a1, a2) for all

a1, a2 ∈ A.
(ii) ⊗-≈A-antisymmetric if ρA(a1, a2) ⊗ ρA(a2, a1) ≤

(a1 ≈A a2) for all a1, a2 ∈ A.
Definition 7: Given a fuzzy structure A = 〈A,≈A〉, the

pair A = 〈A, ρA〉 will be called a ⊗-≈A- fuzzy preordered
structure or simply fuzzy preordered structure (when there is
no risk of confusion), if ρA is a fuzzy relation that is ≈A-
reflexive, ⊗-≈A-antisymmetric and ⊗-transitive.

If the underlying fuzzy structure is not clear from the
context, we will sometimes write a fuzzy preordered structure
as a triplet A = 〈A,≈A, ρA〉.

Remark 3: Note that although in the above definition the
fuzzy relation ρA is required to be ⊗-≈A-antisymmetric, this
condition serves to establish a natural correspondence between
the fuzzy equivalence relation ≈A and the fuzzy relation ρA,
and should by no means be seen as playing the same role as
the usual antisymmetry condition satisfied by an order relation
(in such a case, we would at least have to restrict to a fuzzy
equality relation ≈A). For the same reason, we consider the
name fuzzy order relation not suitable for a fuzzy relation
that is reflexive, ⊗-≈A-antisymmetric and ⊗-transitive, with
≈A a fuzzy equivalence relation, and advocate that such fuzzy
relations should rather be seen as particularly interesting fuzzy
pre-order relations.

A reasonable approach to introduce the notion of Galois
connection between fuzzy preordered structures A and B
would be the following

Definition 8: Let A and B be two fuzzy preordered struc-
tures. Given two morphisms f : A → B and g : B → A, the
pair (f, g) is said to be a Galois connection between A and B
(briefly, (f, g) : A � B) if the following conditions hold for
all a, a1, a2 ∈ A and b, b1, b2 ∈ B:

(G1) (a1 ≈A a2)⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b) ;
(G2) (b1 ≈B b2)⊗ ρB(f(a), b1) ≤ ρA(a,g(b2)) ;

The mapping f is said to be the left adjoint of g and,
reciprocally, g is said to be the right adjoint of f .

Proposition 1 shows that the previous definition is strongly
related to the definition given in [10] which straightforward
generalizes the usual notion of Galois connection between
posets (namely, a ≤ g(b) if and only if f(a) ≤ b) in the
same line of [1], [45].

For convenience, the definition used in [10] is recalled
below:

Definition 9: Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy
preposets. A pair of mappings f : A → B and g : B → A
forms a Galois connection between A and B, denoted (f, g) :
A � B if, for all a ∈ A and b ∈ B, the equality ρA(a, g(b)) =
ρB(f(a), b) holds.

Proposition 1: Consider two fuzzy preordered structures
A = 〈A, ρA〉 and B = 〈B, ρB〉, and two mappings f : A→ B
and g : B → A. It holds that the pair (f, g) is a Galois
connection between A and B if and only if both mappings
are morphisms and ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A
and b ∈ B.

As a consequence of the previous theorem we obtain the
following result linking Galois connections between fuzzy
preordered structures and Galois connections between fuzzy
preposets.

Corollary 1: If a pair (f, g) is a Galois connection between
two fuzzy preordered structures 〈A,≈A, ρA〉 and 〈B,≈B , ρB〉,
then (f, g) is also a Galois connection between the two fuzzy
preposets 〈A, ρA〉 and 〈B, ρB〉.

Conversely, if a pair (f, g) is a Galois connection between
two fuzzy preposets 〈A, ρA〉 and 〈B, ρB〉, then (f, g) is also a
Galois connection between the two fuzzy preordered structures
〈A,=, ρA〉 and 〈B,=, ρB〉, where = denotes the standard
(crisp) equality.

Definition 10: Let A = 〈A, ρA〉 be a fuzzy preordered
structure. The upset and the downset of an element a ∈ A
are defined as the fuzzy sets a↑, a↓ : A→ L where

a↓(u) = ρA(u, a) and a↑(u) = ρA(a, u) for all u ∈ A .

An element m ∈ A is called a quasi-maximum of a fuzzy set
X : A→ L if

(i) X(m) = > and
(ii) X ⊆ m↓, i.e., X(u) ≤ ρA(u,m) for all u ∈ A.

The definition of quasi-minimum is similar.
Observe that, given two quasi-maxima x1, x2 of a fuzzy set

X in a fuzzy preordered structure, we obtain ρA(x1, x2) =
> = ρA(x2, x1) and by ⊗-≈A-antisymmetry, also (x1 ≈A

x2) = >. This fact justifies both the use of the adjective
preordered (even when a form of antisymmetry holds), the
use of the prefix quasi- and, hence, the notation qmaxA(X)
(resp., qminA(X)) to refer to the crisp set of quasi-maxima
(resp. quasi-minima).

Example 4: Consider the Łukasiewicz residuated lattice
and the fuzzy preordered structure 〈A,≈A, ρA〉 where A =
{a1, a2, a3, a4}, and ≈A and ρA are the fuzzy relations given
by the tables below:

≈A a1 a2 a3 a4
a1 1 0.4 0 0.4
a2 0.4 1 0.2 1
a3 0 0.2 1 0.2
a4 0.4 1 0.2 1

ρA a1 a2 a3 a4
a1 1 1 1 1
a2 0.4 1 0.4 1
a3 0 0.3 1 0.3
a4 0.4 1 0.4 1

Then, for instance, we have

qmaxA({(a1, 1), (a2, 1), (a3, 0.7), (a4, 1)}) = ∅
qmaxA({(a1, 1), (a2, 1), (a3, 0.2), (a4, 1)}) = {a2, a4}

qmaxA({(a1, 1), (a2, 0.9), (a3, 0.2), (a4, 1)}) = {a4}.

Definition 11: Let A = 〈A, ρA〉 be a fuzzy preordered
structure. A mapping f : A → A is said to be inflationary
if ρA(a, f(a)) = > for all a ∈ A. Similarly, a mapping f is
said to be deflationary if ρA(f(a), a) = > for all a ∈ A.

By Proposition 1, we can easily adapt the existing equiv-
alences between different alternative definitions of a Galois
connection. In the theorem below, as it could be expected,
the general structure of all the definitions is preserved, but
those concerning the actual definition of Galois connection and
inverse image have to be modified: in the former case, by using
the notions of quasi-maximum and quasi-minimum and, in the
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latter case, for a mapping f : A→ B and a fuzzy subset Y of
B, the fuzzy set f−1(Y ) is defined as f−1(Y )(a) = Y (f(a)),
for all a ∈ A.

Proposition 2 ( [22]): Consider two fuzzy preordered
structures A = 〈A, ρA〉, B = 〈B, ρB〉, and two morphisms
f : A → B and g : B → A. The following statements are
equivalent:

1) (f, g) : A � B.
2) f and g are isotone, g ◦ f is inflationary, and f ◦ g is

deflationary.
3) f(a)↑ = g−1(a↑) for all a ∈ A.
4) g(b)↓ = f−1(b↓) for all b ∈ B.
5) f is isotone and g(b) ∈ qmaxA

(
f−1(b↓)

)
for all b ∈ B.

6) g is isotone and f(a) ∈ qminB

(
g−1(a↑)

)
for all a ∈ A.

Theorem 1: Consider two fuzzy preordered structures A
and B. If the pair (f, g) is a Galois connection between A and
B, then

(
fgf(a) ≈B f(a)

)
= > and

(
gfg(b) ≈A g(b)

)
= >,

for all a ∈ A and b ∈ B.
Corollary 2: Consider two fuzzy preordered structures A

and B. If the pair (f, g) is a Galois connection between A
and B then, for all a1, a2 ∈ A and b1, b2 ∈ B, the following
equalities hold:

1)
(
f(a1) ≈B f(a2)

)
=
(
gf(a1) ≈A gf(a2)

)
.

2)
(
g(b1) ≈A g(b2)

)
=
(
fg(b1) ≈B fg(b2)

)
.

III. THE CANONICAL DECOMPOSITION

In this section, we show that the canonical decomposition
of a mapping f : A→ B can be used in order to find its right
adjoint (whenever it exists) by building the right adjoints to
the canonical projection and the canonical embedding.

Recall that a given mapping f : A→ B can be canonically
decomposed as the composition if ◦ϕf where ϕf : A→ f(A)
is the canonical projection defined by ϕf (a) = f(a) and
if : f(A) → B is the canonical embedding defined by
if (b) = b; by construction, ϕf is surjective and if is injective.
Moreover, if f : 〈A,≈A〉 → 〈B,≈B〉 is a morphism, then
ϕf is a surjective (and hence ≈-surjective due to Remark 2)
morphism and if is both injective and ≈-injective morphism.

Theorem 2: Consider two fuzzy preordered structures A
and B, and two morphisms f : A → B and g : B → A.
We have that (f, g) : A � B if and only if there exist
(ϕf , ψ) : A � f(A) and (if , h) : f(A) � B, where f(A) =
〈f(A),≈B , ρB〉, such that for all a ∈ A and b ∈ B it holds
that(

ifϕf (a) ≈B f(a)
)

= > and
(
ψh(b) ≈A g(b)

)
= > . (1)

In the statement of the previous theorem, a given Galois
connection (f, g) : A � B has been decomposed through
f(A) into two Galois connections (ϕf , ψ) : A � f(A) and
(if , h) : f(A) � B, which we will call the canonical decom-
position of (f, g) in which ϕf is the canonical projection and
if is the canonical embedding.

The following result introduces some properties of the
corresponding morphisms involved in the decomposition.

Theorem 3: Given a Galois connection (f, g) : A � B
and its corresponding canonical decomposition (ϕf , ψ) : A �
f(A) and (if , h) : f(A) � B, the following conditions hold:

(i) ϕf and h are ≈-surjective mappings.
(ii) ψ and if are ≈-injective mappings.
The preceding result enables to divide the analysis of

the existence of a right adjoint into two parts, based on
the canonical projection and the canonical embedding. The
key properties of these mappings are ≈-surjectivity and ≈-
injectivity; in Section V, the existence of a right adjoint will
be studied in these frameworks.

IV. NECESSARY CONDITIONS FOR THE EXISTENCE OF A
RIGHT ADJOINT

In order to provide necessary conditions for the existence
of a right adjoint, the following notions are needed.

Definition 12: Let A and B be two fuzzy structures and let
f : A → B be a morphism. The fuzzy kernel relation ≡f : A×
A→ L associated with f is defined as follows, for a1, a2 ∈ A,

(a1 ≡f a2) =
(
f(a1) ≈B f(a2)

)
.

The fuzzy kernel relation trivially is a fuzzy equivalence
relation, and the equivalence class of an element a ∈ A is the
fuzzy set [a]f : A→ L defined by [a]f (u) = (f(a) ≈B f(u))
for all u ∈ A.

The following definitions rephrase the notion of Hoare
ordering [43, pag. 166] including weak (W) and strong (S)
versions between crisp subsets (that is, C vH D iff for all
c ∈ C there exists d ∈ D such that c ≤ d), and the subsequent
lemma proves that all of them coincide and can be computed
in an extremely easy manner when comparing sets of quasi-
maxima.

Definition 13: Let A be a fuzzy preordered structure. For
crisp subsets C and D of A, we define the following fuzzy
relations
(i) (C vW D) =

∨
c∈C

∨
d∈D

ρA(c, d) ;

(ii) (C vH D) =
∧
c∈C

∨
d∈D

ρA(c, d) ;

(iii) (C vS D) =
∧
c∈C

∧
d∈D

ρA(c, d) .

Lemma 1: Consider a fuzzy preordered structure A, and
crisp subsets X,Y of A such that qmaxA(X) 6= ∅ 6=
qmaxA(Y ). It holds that(
qmaxA(X) vW qmaxA(Y )

)
=
(
qmaxA(X) vH qmaxA(Y )

)
=
(
qmaxA(X) vS qmaxA(Y )

)
= ρA(x, y)

for any x ∈ qmaxA(X) and y ∈ qmaxA(Y ).
Recall that given a fuzzy preordered structure A and two

crisp subsets X,Y ⊆ A, for all x1, x2 ∈ qmaxA(X) and
y1, y2 ∈ qmaxA(Y ) we have (x1 ≈A x2) = > = (y1 ≈A y2).
Therefore, we can write

(x1 ≈A y1) = (x2 ≈A x1)⊗ (x1 ≈A y1)⊗ (y1 ≈A y2)

≤ (x2 ≈A y2)

= (x1 ≈A x2)⊗ (x2 ≈A y2)⊗ (y2 ≈A y1) ≤ (x1 ≈A y1)

and obtain that (x1 ≈A y1) = (x2 ≈A y2).
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Definition 14: Consider a fuzzy preordered structure A =
〈A,≈A, ρA〉, and crisp subsets X,Y of A. The fuzzy relations
≈A and ρA can be extended to the sets of quasi-maxima as
follows: (

qmaxA(X) ≈A qmaxA(Y )
) def

= (x ≈A y)

ρA
(
qmaxA(X), qmaxA(Y )

) def
= ρA(x, y)

for any x ∈ qmaxA(X), y ∈ qmaxA(Y ).
Note that the above definition makes sense, since, by

Lemma 1 and the preceding result, it does not depend of the
specific choice of the elements x and y.

The preceding definitions allow us to state necessary condi-
tions on f in order to have a right adjoint in a more compact
form which essentially follows the scheme already obtained
in [10] and [24].

Theorem 4 (Necessary conditions): Consider two fuzzy
preordered structures A and B, together with two morphisms
f : A → B and g : B → A. If (f, g) is a Galois connection
between A and B, then

1) qmaxA([a]f ) is not empty for all a ∈ A.
2) ρA(a1, a2) ≤ ρA

(
qmaxA([a1]f ), qmaxA([a2]f )

)
, for all

a1, a2 ∈ A.
3) (a1 ≡f a2) ≤

(
qmaxA([a1]f ) ≈A qmaxA([a2]f )

)
, for

all a1, a2 ∈ A.
It is worth remarking that, due to Corollary 2, the third

condition actually becomes an equality, that is,

(a1 ≡f a2) =
(
qmaxA([a1]f ) ≈A qmaxA([a2]f )

)
.

for all a1, a2 ∈ A.

V. EXISTENCE OF A RIGHT ADJOINT OF ≈-SURJECTIVE OR
≈-INJECTIVE MORPHISMS

We show now that the necessary conditions in Theorem 4
are sufficient in the case of a ≈-surjective mapping. After-
wards, we also identify necessary and sufficient conditions in
the case of a ≈-injective mapping.

Theorem 5 (Sufficient conditions): Consider a fuzzy pre-
ordered structure A, a fuzzy structure B = 〈B,≈B〉, and a
≈-surjective morphism f : A → B. If the following conditions
hold

1) qmaxA([a]f ) is not empty for all a ∈ A;
2) ρA(a1, a2) ≤ ρA

(
qmaxA([a1]f ), qmaxA([a2]f )

)
, for all

a1, a2 ∈ A;
3) (a1 ≡f a2) ≤

(
qmaxA([a1]f ) ≈A qmaxA([a2]f )

)
, for

all a1, a2 ∈ A;
then there exists a ≈B-reflexive, ⊗-≈B-antisymmetric and ⊗-
transitive fuzzy relation ρB on B and a morphism g : B →
A such that (f, g) is a Galois connection between the fuzzy
preordered structures A and B = 〈B, ρB〉.

The problem of finding a right adjoint of a ≈-injective
morphism can be reduced to the case of embeddings. For this
aim, we introduce the notion of contraction, which allows to
characterize this problem, as stated in Theorem 6 below.

Definition 15: Let B = 〈B,≈B〉 be a fuzzy structure, and
consider a crisp subset X ⊆ B. A mapping h : B → X is said

to be a contraction if it is a morphism h : B → 〈X,≈B〉 and
h(x) = x for all x ∈ X .

Theorem 6: Consider two fuzzy preordered structures A =
〈A, ρA〉 and B = 〈B, ρB〉. For a ≈-injective morphism
f : A → B, the following statements are equivalent:

1) There exists a morphism g : B → A such that (f, g) :
A � B.

2) There exist a contraction h : 〈B,≈B〉 → 〈f(A),≈B〉
and a fuzzy relation ρf(A) defined as
ρf(A)(f(a1), f(a2)) = ρA(a1, a2) such that the pair
(i, h) is a Galois connection between 〈f(A),≈B , ρf(A)〉
and 〈B,≈B , ρB〉, where i : f(A) → B denotes the
canonical embedding.

The previous theorem allows to reduce the problem of find-
ing a right adjoint to the case of embedding morphisms. That
is, given a subset X 6= ∅ of a fuzzy structure B = 〈B,≈B〉
together with a ≈B-reflexive, ⊗-≈B-antisymmetric and ⊗-
transitive fuzzy relation ρX on 〈X,≈B〉, we study necessary
and sufficient conditions guaranteeing the existence of a fuzzy
relation ρB with the required properties and a contraction
h : B → X such that (i, h) : 〈X,≈B , ρX〉� 〈B,≈B , ρB〉.

In order to analyze the existence of an appropriate extension
ρB of a given ρX , we consider the notion of h-reflexive closure
of ρX introduced below.

Definition 16: Given a fuzzy structure B = 〈B,≈B〉, a
nonempty crisp subset X ⊆ B, a ≈B-reflexive, ⊗-≈B-
antisymmetric and ⊗-transitive fuzzy relation ρX on 〈X,≈B〉,
and a contraction h : B → X , the h-reflexive closure of ρX is
the fuzzy relation µh : B ×B → L defined as follows

µh(b1, b2) =

{
ρX(b1, h(b2)) , if b1 ∈ X ,
b1 ≈B b2 , if b1 /∈ X .

The term h-reflexive closure makes sense since µh is ≈B-
reflexive, as will be shown below, and, moreover, any suitable
fuzzy relation ρB which extends B = 〈B,≈B〉 to a fuzzy
preordered structure for which there exists a contraction h
such that (i, h) : 〈X,≈B , ρX〉 � 〈B,≈B , ρB〉 should satisfy
µh ≤ ρB .

Lemma 2: The fuzzy relation µh is ≈B-reflexive.
Although µh is ≈B-reflexive, it might fail to be ⊗-transitive,

as shown in Example 5. Therefore, the transitive closure of µh,
denoted µt

h, should be contained in ρB as well.

>

`1 `2

⊥
Fig. 1. The lattice (L,≤)

Example 5: Consider the residuated lattice L = (L,≤
,>,⊥,⊗,→) where (L,≤) is depicted in Figure 1 and the
product ⊗ is the meet operation.



6

Consider B = {x1, x2, b}, the subset X = {x1, x2} and the
two L-fuzzy relations below:

≈B x1 x2 b
x1 > `2 `1
x2 `2 > `2
b `1 `2 >

ρX x1 x2
x1 > `2
x2 `2 >

For the contraction h : B → X , where h(x1) = h(b) = x1
and h(x2) = x2, the h-reflexive closure of ρX is given in the
following table:

µh x1 x2 b
x1 > `2 >
x2 `2 > `2
b `1 `2 >

Note that µh is not ⊗-transitive, since µh(b, x2)⊗µh(x2, x1)
and µh(b, x1) are not comparable.

Concerning ⊗-≈B-antisymmetry, if a fuzzy relation ρB
is ⊗-≈B-antisymmetric, then any other relation µ such that
µ ≤ ρB is also ⊗-≈B-antisymmetric. If there were a Galois
connection (i, h) : 〈X,≈B , ρX〉 � 〈B,≈B , ρB〉 for a con-
traction h and a suitable fuzzy relation ρB , we would have
µt
h ≤ ρB , and then µt

h would be ⊗-≈B-antisymmetric and,
therefore, that is a necessary condition for µt

h.
Lemma 3: Let X 6= ∅ be a subset of B such that 〈X,≈B

, ρX〉 is a fuzzy preordered structure and let h : B → X be
a contraction. The h-reflexive closure of ρX (i.e. µh) satisfies
the following properties:

1) µh(b1, b2) ≤ µ2
h(b1, b2) for all b1, b2 ∈ B.

2) µ2
h(x, b) = µh(x, b) for all x ∈ X and b ∈ B.

3) µ2
h(b1, b2) = µ3

h(b1, b2) for all b1, b2 ∈ B.
4) µ2

h is the transitive closure of µh.
Theorem 7: Consider a nonempty subset X of a fuzzy

structure B = 〈B,≈B〉 together with a ≈B-reflexive, ⊗-≈B-
antisymmetric and ⊗-transitive fuzzy relation ρX on X =
〈X,≈B〉. For a contraction h : B → X and its h-reflexive
closure µh, the following statements are equivalent:

1) There exists a ≈B-reflexive, ⊗-≈B-antisymmetric and
⊗-transitive fuzzy relation ρB on B such that the pair
(i, h) is a Galois connection between 〈X , ρX〉 and
〈B, ρB〉.

2) µ2
h is ⊗-≈B-antisymmetric.

According to Theorem 7 and Proposition 3 (below), the
necessary and sufficient condition for the existence of a fuzzy
preorder structure on B and the right adjoint of the embedding
i : X → B, for a subset X of B, is the existence of a
contraction h : B → X such that µ2

h is ⊗-≈B-antisymmetric.
In the rest of the section, we will identify suitable conditions

that guarantee this kind of antisymmetry.
Proposition 3: Consider a nonempty subset X of a fuzzy

structure B = 〈B,≈B〉 together with a ≈B-reflexive, ⊗-≈B-
antisymmetric and ⊗-transitive fuzzy relation ρX on X . For a
contraction h : B → X and its h-reflexive closure µh, it holds
that µ2

h is ⊗-≈B-antisymmetric if and only if the following
conditions are satisfied:

1) ρX(x, h(b)) ≤
∧
y∈X

((
(b ≈B y) ⊗ ρX(y, x)

)
→ (b ≈B

x)
)

for all x ∈ X and b /∈ X .

2) (b1 ≈B x)⊗ρX(x, h(b2))⊗(b2 ≈B y)⊗ρX(y, h(b1)) ≤
(b1 ≈B b2), for all x, y ∈ X and b1, b2 ∈ B rX .

Combining the previous results, we obtain the following
conclusive theorem.

Theorem 8: Consider a fuzzy preordered structure A =
〈A, ρA〉, a fuzzy structure B and a ≈-injective morphism
f : A → B. There exist a morphism g : B → A and a ≈B-
reflexive, ⊗-≈B-antisymmetric and ⊗-transitive fuzzy relation
ρB such that (f, g) : 〈A, ρA〉 � 〈B, ρB〉 if and only if there
exists a contraction h : 〈B,≈B〉 → 〈f(A),≈B〉 such that

1) ρf(A)(x, h(b)) ≤
∧

y∈f(A)

((
(b ≈B y) ⊗

ρf(A)(y, x)
)
→ (b ≈B x)

)
for all x ∈ f(A) and

b ∈ B r f(A).
2) ρf(A)(x, h(b2)) ⊗ ρf(A)(y, h(b1)) ≤

(
(b1 ≈B x) ⊗

(b2 ≈B y)
)
→ (b1 ≈B b2), for all x, y ∈ f(A) and

b1, b2 ∈ B r f(A).

where the fuzzy relation ρf(A) is defined as
ρf(A)(f(a1), f(a2)) = ρA(a1, a2).

VI. CONSTRUCTING THE RIGHT ADJOINTS

The results of the previous sections lead to the following
procedure for checking the existence and constructing a right
adjoint of a given morphism f :

(i) Firstly, consider the canonical projection ϕf and the
canonical embedding if of f , so that we have f =
if ◦ ϕf .

(ii) Since ϕf is surjective and, thus, ≈-surjective, we can
verify the sufficient conditions of Theorem 5 and, in case
of fulfillment, construct a right adjoint ψ of ϕf . In case
the conditions do not hold, by Theorem 4, there does
not exist a right adjoint of ϕf and then the procedure
ends since, by Theorem 2 , there does not exist a right
adjoint of f either.

(iii) If the previous strategy was successful, since if is
injective and ≈-injective, we proceed by verifying the
necessary and sufficient conditions of Theorem 8. In
case of fulfillment, we construct a right adjoint h of if
and construct the right adjoint of f as the composition
ψ ◦h. Obviously, in case the conditions do not hold, the
procedure ends again unsuccessfully.

The preceding procedure can be more formally stated as
Algorithm 1.

In the following examples we consecutively illustrate sev-
eral cases of application of this procedure: an example in
which the existence of a right adjoint of ϕf fails, then an
example in which ϕf has a right adjoint but if does not
and, finally, and example in which both parts of the canonical
decomposition have a right adjoint.

Example 6: Consider the underlying truth-values set L to
be the real unit interval with its residuated lattice structure
induced by the Łukasiewicz t-norm.

Consider the following fuzzy preordered structure A =
〈A,≈A, ρA〉 where A = {a1, a2, a3} and the fuzzy relations
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Algorithm 1: Building Galois Connection
Data: A finite fuzzy preordered structure 〈A,≈A, ρA〉, a

finite fuzzy structure 〈B,≈B〉 and a morphism
f : 〈A,≈A〉 → 〈B,≈B〉.

Result: A morphism g : 〈B,≈B〉 → 〈A,≈A〉 and a
≈B-reflexive, ⊗-≈B-antisymmetric and
⊗-transitive fuzzy relation ρB such that
(f, g) : 〈A,≈A, ρA〉� 〈B,≈B , ρB〉 if they exist,
or the message “It is not possible to build a
Galois connection” otherwise.

1 Compute the relation ≡f on A defined by
(a1 ≡f a2) := (f(a1) ≈B f(a2))

2 foreach a ∈ A do
3 Compute qmaxA([a]f ) where [a]f is the equivalence

class of a w.r.t. ≡f

4 if qmaxA([a]f ) = ∅ then return “It is not possible
to build a Galois connection”

5 else Let b = f(a) and consider an arbitrary element
ψ(b) from qmaxA([a]f )

6 foreach a1, a2 ∈ A do
7 if ρA(a1, a2) 6≤ ρA(ψf(a1), ψf(a2)) or

(a1 ≡f a2) 6≤ (ψf(a1) ≈A ψf(a2)) then
8 return “It is not possible to build a Galois

connection”

9 Define ρf(A) as ρf(A)(b1, b2) := ρA(ψ(b1), ψ(b2)) for
each b1, b2 ∈ f(A)

10 foreach contraction h : B → f(A) do
11 Define µh in B as:
12 µh(b1, b2) := ρf(A)(b1, h(b2)) if b1 ∈ f(A) and

µh(b1, b2) := (b1 ≈B b2) otherwise
13 Compute ρB := µ2

h and g := ψ ◦ h
14 if ρB is ⊗-≈B-antisymmetric then return g and ρB
15 return “It is not possible to build a Galois connection”

≈A and ρA given below:

≈A a1 a2 a3
a1 1 0.5 0
a2 0.5 1 0.5
a3 0 0.5 1

ρA a1 a2 a3
a1 1 1 1
a2 0.5 1 1
a3 0 0.5 1

Now, consider B = {b1, b2, b3} and the fuzzy equivalence
relation ≈B given below:

≈B b1 b2 b3
b1 1 0.7 0.8
b2 0.7 1 0.7
b3 0.8 0.7 1

Finally, consider the morphism f : A → B defined by f(a1) =
f(a2) = b1 and f(a3) = b2.

We proceed to the construction of a right adjoint of f as
described above by considering the canonical decomposition
of f as if ◦ ϕf ; so, let us check the conditions of Theorem 5
for the morphism ϕf : A → 〈f(A),≈B〉.

The equivalence classes w.r.t. the fuzzy kernel relation are
the following: [a1]ϕf

= [a2]ϕf
= {(a1, 1), (a2, 1), (a3, 0.7)}

and [a3]ϕf
= {(a1, 0.7), (a2, 0.7), (a3, 1)}. It is straightfor-

ward to check that qmaxA([a1]ϕf
) is empty and, hence, there

is not a right adjoint of ϕf . Therefore, we conclude that there
does not exist a right adjoint of f .

Example 7: Consider the same residuated lattice L and the
fuzzy preordered structure A given in the previous example,
but consider the (different) fuzzy equivalence relation on B
defined by

≈B b1 b2 b3
b1 1 0.5 0.8
b2 0.5 1 0.7
b3 0.8 0.7 1

It is not difficult to check that the mapping f in the previous
example is also a morphism between the fuzzy structures
A and 〈B,≈B〉. Once again, we consider the canonical
decomposition of f as if ◦ ϕf .

In this case, the morphism ϕf : A → 〈f(A),≈B〉 fulfills
the conditions of Theorem 5: the equivalence classes w.r.t. the
fuzzy kernel relation are the following:
[a1]ϕf

= [a2]ϕf
= {(a1, 1), (a2, 1), (a3, 0.5)} and [a3]ϕf

=
{(a1, 0.5), (a2, 0.5), (a3, 1)}. Observe that qmaxA([a]ϕf

) is
not empty for all a ∈ A since qmaxA([a1]ϕf

) =
qmaxA([a2]ϕf

) = {a2} and qmaxA([a3]ϕf
) = {a3}.

Furthermore, condition 2 of Theorem 5 holds since

ρA(a1, a3) = 1 ≤ ρA
(
qmaxA([a1]ϕf

), qmaxA([a3]ϕf
)
)

= ρA(a2, a3) = 1

and the remaining cases are straightforward.
Condition 3 of Theorem 5 is also fulfilled since

(a1 ≡ϕf
a3) =

(
ϕf (a1) ≈B ϕf (a3)

)
= 0.5

≤
(
qmaxA([a1]ϕf

) ≈A qmaxA([a3]ϕf
)
)

= (a2 ≈A a3) = 0.5

and the remaining cases are similar.
Thus, according to Theorem 5, it is possible to define ρf(A)

as follows:
ρf(A) b1 b2
b1 1 1
b2 0.5 1

and the right adjoint of ϕf as ψ(b1) = a2 and ψ(b2) = a3.
Now, we will use Theorem 8 for studying the existence of

a right adjoint of the canonical embedding if . In this case, no
contraction can be defined from B to f(A), therefore there
does not exist a right adjoint of the canonical embedding and
as a consequence, a right adjoint of the initial mapping f does
not exist either.

Example 8: Continuing with the same residuated lattice L
and the fuzzy preordered structure A given in the previous
example, consider a third fuzzy equivalence relation in B
defined by

≈B b1 b2 b3
b1 1 0.5 0
b2 0.5 1 0.5
b3 0 0.5 1

The mapping f given in the previous example is still a
morphism between the fuzzy structures A and 〈B,≈B〉.
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Following the first steps of the previous example, we obtain
the same right adjoint of the canonical projection. For the
canonical embedding, we will consider the mapping h : B →
f(A) given by h(b1) = b1, h(b2) = b2 and h(b3) = b1, which
is a contraction since

(b2 ≈B b3) = 0.5 ≤
(
h(b2) ≈B h(b3)

)
= (b2 ≈B b1) = 0.5 .

For condition 1 of Theorem 8 two cases have to be consid-
ered: to begin with, given b3 ∈ B r f(A) and b2 ∈ f(A) we
have ρf(A)(b2, h(b3)) = ρf(A)(b2, b1) = 0.5 and(

(b3 ≈B b1)⊗ ρf(A)(b1, b2)→ (b3 ≈B b2)
)

∧
(
(b3 ≈B b2)⊗ ρf(A)(b2, b2)→ (b3 ≈B b2)

)
=
(
(0⊗ 1)→ 0.5

)
∧
(
(0.5⊗ 1)→ 0.5

)
= 1 .

For the other possible case, b3 ∈ B r f(A) and b1 ∈ f(A),
we proceed analogously.

As condition 2 of Theorem 8 holds trivially, we obtain that
the canonical embedding has a right adjoint as well, for which
the fuzzy relation ρB is given by µ2

h, with µh the h-reflexive
closure of ρf(A). More specifically, µh and ρB are given by
the following tables:

µh b1 b2 b3
b1 1 1 1
b2 0.5 1 0.5
b3 0 0.5 1

µ2
h b1 b2 b3
b1 1 1 1
b2 0.5 1 0.5
b3 0 1 1

The right adjoint of the canonical embedding if is the con-
traction h given above.

Finally, the right adjoint of the initial morphism f is the
composition of ψ and h which is given by g(b1) = ψ(h(b1)) =
a2, g(b2) = ψ(h(b2)) = a3 and g(b3) = ψ(h(b3)) = ψ(b1) =
a2.
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VII. CONCLUSIONS AND FUTURE WORK

Given a mapping f : A → B from a fuzzy preordered
structure A into a fuzzy structure 〈B,≈B〉, we have char-
acterized when it is possible to construct a fuzzy relation ρB
that induces a suitable fuzzy preorder structure on B and such
that there exists a mapping g : B → A such that the pair (f, g)
constitutes a Galois connection. In the case of existence of
right adjoint, it is worth remarking that the right adjoint need
not be unique since, actually, its construction is given with
several of degrees of freedom, in particular for extending the
fuzzy ordering from the image of f to the entire codomain.
Although a convenient extension has been given, our results
do not imply that every right adjoint can be constructed in this
way, and there may exist other constructions that are adequate
as well. This is a first topic for future work.

This paper continues the line of [23] where we consider
a mapping f : 〈A, ρA〉 → B (and ρA is a fuzzy relation

satisfying reflexivity, ⊗-transitivity and the weakest form of
antisymmetry, namely, ρA(a, b) = ρA(b, a) = > implies
a = b, for all a, b ∈ A); a further step was given in [10] for
the same case f : 〈A, ρA〉 → B, in which antisymmetry was
dropped. Both cases above can be seen as fuzzy preordered
structures, in the sense of this paper, just by considering the so-
called symmetric kernel relation (the conjunction of ρA(a, b)
and ρA(a, b)); the relationship between these and other kinds
of structures can be found in [46]. Summarizing, the problem
in [10] can be seen as constructing a right adjoint of a mapping
f : 〈A,≈A, ρA〉 → B which involves the construction of both
≈B and ρB , whereas in this paper our problem is to find
a right adjoint to a mapping f : 〈A,≈A, ρA〉 → 〈B,≈B〉 in
which the fuzzy equivalence ≈B is already given and has to
be preserved; therefore, the main result in [10] is not exactly
a particular case. We have considered a fuzzy mapping as
a morphism 〈A,≈A〉 → 〈B,≈B〉 between fuzzy structures,
adopting the approach of [17], while our long-term goal is
to study fuzzy Galois connections constituted of truly fuzzy
mappings.

As stated in the introduction, Galois connections have found
applications in areas such as formal concept analysis, where
the intent and extent operators form a Galois connection,
and in mathematical morphology, where the erosion and
the dilation operations are often required to form a Galois
connection as well (one of the approaches not requiring this
can be seen in [41]). The results presented in this work pave
the way to build specific settings of mathematical morphology
parameterized by a fixed candidate to be an erosion (or
dilation) operator; and the same approach would also apply to
the development of new settings of formal concept analysis.
In general, the construction of new Galois connections is
of interest in fields in which there are two approaches to
certain reality and one has more information about one of
them, since the existence of a Galois connection allows to
retrieve the unknown information in the other approach. In
this respect, as future work, we will explore the application of
the obtained results in the area of compression of data (images,
signals, etc.) in which the existence of the right adjoint of a
given compressing mapping might allow to recover as much
information as possible.

Last but not least, it is worth to study the two following
extensions of the present work: on the one hand, we could
consider an even more general notion of fuzzy mapping, for
instance that proposed in [12]; on the other hand, we could
consider L-valued sets as a suitable generalization of our fuzzy
structures.
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P. Hájek and P. Pudlak (eds) Logic Colloquium’98, Lecture Notes in
Logic 13, 2000.

[29] J. Järvinen. Pawlak’s information systems in terms of Galois connections
and functional dependencies. Fundamenta Informaticae, 75:315–330,
2007.

[30] J. Konecny. Isotone fuzzy Galois connections with hedges. Information
Sciences, 181(10):1804–1817, 2011.

[31] J. Konecny and M. Krupka. Block relations in formal fuzzy concept
analysis. Intl. J. of Approximate Reasoning, 73:27–55, 2016.

[32] S. Kuznetsov. Galois connections in data analysis: Contributions from
the Soviet era and modern Russian research. Lect. Notes in Computer
Science, 3626:196–225, 2005.

[33] S.-T. Li and F.-C. Tsai. A fuzzy conceptualization model for text mining
with application in opinion polarity classification. Knowledge-Based
Systems, 39:23–33, 2013.

[34] T. Martin and A. Majidian. Finding fuzzy concepts for creative
knowledge discovery. Intl. J. of Intelligent Systems, 28(1):93–114, 2013.

[35] A. Melton, D. A. Schmidt and G. E. Strecker. Galois connections
and computer science applications. Lect. Notes in Computer Science,
240:299–312, 1986.

[36] S.-C. Mu and J. Oliveira. Programming from Galois connections. J. of
Logic and Algebraic Programming, 81(6):680–704, 2012.

[37] J. Pócs. Note on generating fuzzy concept lattices via Galois connec-
tions. Information Sciences, 185(1):128–136, 2012.

[38] J. Propp. A Galois connection in the social network. Mathematics
Magazine, 85(1):34–36, 2012.

[39] Y. Shi, M. Nachtegael, D. Ruan and E. Kerre. Fuzzy adjunctions
and fuzzy morphological operations based on implications, Intl. J. of
Intelligent Systems, 24(12):1280–1296, 2009.

[40] P. Sussner. Lattice fuzzy transforms from the perspective of mathemat-
ical morphology, Fuzzy Sets and Systems, 288:115–128, 2016.

[41] P. Sussner and M.E. Valle. Classification of fuzzy mathematical mor-
phologies based on concepts of inclusion measure and duality, Journal
of Mathematical Imaging and Vision, 32:139–159, 2008.
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APPENDIX

PROOFS OF THE RESULTS

Proof of Proposition 1: Assume that f and g are
morphisms and the equality ρA(a, g(b)) = ρB(f(a), b) holds
for all a ∈ A and b ∈ B.

Let a1, a2 ∈ A and b ∈ B. Since f is a morphism, it holds

(a1 ≈A a2)⊗ρA(a2, g(b)) ≤ (f(a1) ≈B f(a2))⊗ρA(a2, g(b)).

By the hypothesis, we obtain that

(f(a1) ≈B f(a2))⊗ ρA(a2, g(b))

= (f(a1) ≈B f(a2))⊗ ρB(f(a2), b).

As ρB is ≈B-reflexive and transitive, we have that

(f(a1) ≈B f(a2))⊗ ρB(f(a2), b)

≤ ρB(f(a1), f(a2))⊗ ρB(f(a2), b) ≤ ρB(f(a1), b).

Therefore, (a1 ≈A a2) ⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b) for all
a1, a2 ∈ A and b ∈ B and Condition (G1) holds. Condition
(G2) follows similarly.

Conversely, assume now that (f, g) is a Galois connection,
then conditions (G1) and (G2) hold and f and g are mor-
phisms. Applying condition (G1), for a ∈ A and b ∈ B, we
have that (a ≈A a) ⊗ ρA(a, g(b)) ≤ ρB(f(a), b). As ≈A is
reflexive, we obtain that ρA(a, g(b)) ≤ ρB(f(a), b) for all
a ∈ A and b ∈ B. The inequality ρB(f(a), b) ≤ ρA(a, g(b))
follows similarly.

Proof of Theorem 1: Since f is isotone and g ◦ f
inflationary, > = ρA(a, gf(a)) ≤ ρB(f(a), fgf(a)), thus,
ρB(f(a), fgf(a)) = >. Moreover, ρB(fgf(a), f(a)) =
ρA(gf(a), gf(a)) = >. Therefore, by ⊗-≈B-antisymmetry,
we obtain that

(
fgf(a) ≈B f(a)

)
= >.
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Proof of Corollary 2: We will only prove the first item,
since the second is similar.

Since g is a morphism, given a1, a2 ∈ A, we have(
f(a1) ≈B f(a2)

)
≤
(
gf(a1) ≈A gf(a2)

)
. Moreover, since

f is a morphism, we also have(
gf(a1) ≈A gf(a2)

)
≤
(
fgf(a1) ≈B fgf(a2)

)
.

Now, by Theorem 1, we have that
(
f(a) ≈B fgf(a)

)
= >,

for all a ∈ A. Finally, the ⊗-transitivity of ≈B leads to(
fgf(a1) ≈B fgf(a2)

)
≤
(
f(a1) ≈B f(a2)

)
.

Proof of Theorem 2: Assume (f, g) : A � B, and
consider the mappings ϕf : A → f(A) and ψ : f(A) → A
to be, respectively, the corresponding restriction of f and g to
f(A), that is ϕf (a) = f(a) for all a ∈ A, and ψ(x) = g(x) for
all x ∈ f(A). It is straightforward to see that ψ is a morphism
and the pair (ϕf , ψ) is a Galois connection between A and
f(A) because, for each a ∈ A and x ∈ f(A), we have that

ρA(a, ψ(x)) = ρA(a, g(x)) = ρB(f(a), x) = ρB(ϕf (a), x).

Consider now the embedding if : f(A) → B such that
if (x) = x for all x ∈ f(A) and h : B → f(A) such that
h(y) = f(g(y)) for all y ∈ B. Since f and g are morphisms,
the composition h is a morphism as well.

We will now prove that ρB(x, h(y)) = ρB(if (x), y) for all
x ∈ f(A) and y ∈ B. Since f ◦ g is deflationary, we have
ρB(fg(y), y) = > and, then

ρB(x, h(y)) = ρB(x, fg(y))

= ρB(x, fg(y))⊗ ρB(fg(y), y) ≤ ρB(if (x), y).

On the other hand, since x ∈ f(A), there exists a ∈ A such
that f(a) = x = if (x) and, using the fact that the pair (f, g)
is a Galois connection, we obtain

ρB(if (x), y) = ρB(f(a), y)

= ρA(a, g(y)) ≤ ρB(f(a), fg(y)) = ρB(x, h(y)).

Having proved that both (ϕf , ψ) and (if , h) are Galois con-
nections, we will prove the identities in (1):
(i) Using the reflexivity of ≈B , for all a ∈ A, we have that

> =
(
f(a) ≈B f(a)

)
=
(
ifϕf (a) ≈B f(a)

)
.

(ii) By Theorem 1, for all b ∈ B, we have that(
ψh(b) ≈B g(b)

)
=
(
gfg(b) ≈B g(b)

)
= >.

Conversely, assume (ϕf , ψ) : A � f(A) and (if , h) : f(A) �
B, and consider the pair of morphisms (if ◦ϕf , ψ ◦h), which
obviously forms a Galois connection between A and B since

ρA(a, ψh(b)) = ρB(ϕf (a), h(b)) = ρB(ifϕf (a), b) .

Finally, the identities in (1) imply that, for all a ∈ A and
b ∈ B, ρA(a, g(b)) = ρA(a, ψh(b)) and ρB(ifϕf (a), b) =
ρB(f(a), b). Therefore, we obtain that (f, g) : A � B.

Proof of Theorem 3: The properties of ϕf and if were
stated before.

(i) The mapping h is ≈-surjective because, for all x ∈
f(A), there exists a ∈ A with f(a) = x and, by
Theorem 1,

(
h(x) ≈B x

)
=
(
hf(a) ≈B f(a)

)
=(

fgf(a) ≈B f(a)
)

= >.
(ii) Let us prove that ψ is ≈-injective. Consider x1, x2 ∈

f(A) and a1, a2 ∈ A such that f(a1) = x1 and
f(a2) = x2. Since (f, g) is a Galois connection,
by Corollary 2, we obtain

(
ψ(x1) ≈A ψ(x2)

)
=(

gf(a1) ≈A gf(a2)
)

=
(
f(a1) ≈B f(a2)

)
and, hence,

ψ is ≈-injective.

Proof of Lemma 1: Recalling that ρA(x, x̄) = > =
ρA(x̄, x) for all x, x̄ ∈ qmaxA(X), and using the transitivity
of ρA, we have that

ρA(x, y) = ρA(x̄, x)⊗ ρA(x, y)⊗ ρA(y, ȳ) ≤ ρA(x̄, ȳ) .

Similarly, ρA(x̄, ȳ) ≤ ρA(x, y). Therefore, ρA(x, y) =
ρA(x̄, ȳ), for any x, x̄ ∈ qmaxA(X) and y, ȳ ∈ qmaxA(Y ),
and it turns out that all the elements computed in the defini-
tions of the Hoare ordering collapse to the same value.

Proof of Theorem 4:
1) We will show that g(f(a)) ∈ qmaxA([a]f ).

By Theorem 1, we have
(
f(a) ≈B fgf(a)

)
= >. On

the other hand, using ≈B-reflexivity and that (f, g) is a
Galois connection, for all u ∈ A, it follows that

[a]f (u) =
(
f(u) ≈B f(a)

)
≤ ρB

(
f(u), f(a)

)
= ρA

(
u, g(f(a))

)
= g(f(a))↓(u) .

2) By Proposition 2, f and g are isotone maps, thus

ρA(a1, a2) ≤ ρA
(
g(f(a1)), g(f(a2))

)
for all a1, a2 ∈ A. We have just shown that
g(f(a)) ∈ qmaxA([a]f ) for all a ∈ A, thus,
from Lemma 1, we obtain that ρA(a1, a2) ≤
ρA
(
qmaxA([a1]f ), qmaxA([a2]f )

)
for all a1, a2 ∈ A.

3) Since g is a morphism, it holds that

(a1 ≡f a2) =
(
f(a1) ≈B f(a2)

)
≤
(
g(f(a1)) ≈A g(f(a2))

)
.

Finally, by Condition 1, g(f(ai)) ∈ qmaxA([ai]f ) for
i ∈ {1, 2}.

Proof of Theorem 5: We define the fuzzy relation
ρB : B ×B → L as follows

ρB(b1, b2) =
(
qmaxA([a1]f ) vH qmaxA([a2]f )

)
= ρA

(
qmaxA([a1]f ), qmaxA([a2]f )

)
where ai ∈ A satisfies (f(ai) ≈B bi) = > for each i ∈ {1, 2}.

First, given b ∈ B, since f is a ≈-surjective mapping, there
exists a ∈ A such that (f(a) ≈B b) = >, so the previous
construction makes sense. Furthermore, the definition of ρB
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does not depend on the choice of ai because, if (f(āi) ≈B

bi) = >, then (āi ≡f ai) = (f(āi) ≈B f(ai)) = > and thus,
by Remark 1, [āi]f = [ai]f .

By Lemma 1, there always exists ci ∈ qmaxA([ai]f ) 6= ∅,
for i ∈ {1, 2}, such that ρB(b1, b2) = ρA(c1, c2). We will
use this equality in order to prove that ρB is ≈B-reflexive,
⊗-≈B-antisymmetric and ⊗-transitive.
• ≈B-reflexivity: By definition of quasi-maximum, for i ∈
{1, 2}, we have (f(ai) ≈B f(ci)) = > and (f(ai) ≈B

f(x)) ≤ ρA(x, ci), for all x ∈ A. Thus, since f is ≈-
surjective, we obtain

(b1 ≈B b2) =

(f(a1) ≈B b1)⊗ (b1 ≈B b2)⊗ (b2 ≈B f(a2))

≤ (f(a1) ≈B f(a2))

= (f(a2) ≈B f(a1))⊗ (f(a1) ≈B f(c1))

≤ (f(a2) ≈B f(c1))

≤ ρA(c1, c2) = ρB(b1, b2) .

• ⊗-≈B-antisymmetry: By definition of ρB and the ⊗-≈A-
antisymmetry property of ρA, we have

ρB(b1, b2)⊗ ρB(b2, b1) = ρA(c1, c2)⊗ ρA(c2, c1)

≤ (c1 ≈A c2) .

Since f is a morphism and using the fact that (f(ai) ≈B

f(ci)) = >, we obtain

(c1 ≈A c2) ≤ (f(c1) ≈B f(c2))

= (f(a1) ≈B f(c1))⊗ (f(c1) ≈B f(c2))⊗ (f(c2) ≈B f(a2))

≤ (f(a1) ≈B f(a2)) = (b1 ≈B b2) .

• ⊗-transitivity: From the transitivity of ρA, it is straight-
forward that ρB is transitive.

In order to define g : B → A, there are a number of suitable
possibilities all of which can be obtained as follows: given
b ∈ B, we choose g(b) as an element xb ∈ qmaxA([a]f )
where a ∈ A verifies (f(a) ≈B b) = >. The existence of xb
is guaranteed by the fact that f is ≈B-surjective and Condition
1, namely, qmaxA([a]f ) is not empty. Similarly as for ρB , it
is easy to prove that g(b) does not depend on the choice of a.

By Condition 3, given b1, b2, and for all ai such that
(f(ai) ≈B bi) = >, we have that

(b1 ≈B b2) = (f(a1) ≈B b1)⊗ (b1 ≈B b2)⊗ (b2 ≈B f(a2))

≤ (f(a1) ≈B f(a2)) = (a1 ≡f a2)

≤ (g(b1) ≈A g(b2)) ,

hence, g is a morphism.
Now, due to Proposition 1, it suffices to prove that

ρA(a, g(b)) = ρB(f(a), b), for all a ∈ A and b ∈ B.
Recall that, by Lemma 1, we have ρB(f(a), b) = ρA(u, v)
for all u ∈ qmaxA([a]f ) and v ∈ qmaxA([z]f ) where
(f(z) ≈B b) = >. By definition, g(b) ∈ qmaxA([z]f ), hence
ρB(f(a), b) = ρA(u, g(b)). Thus, we just have to prove that

ρA(u, g(b)) = ρA(a, g(b))

for all u ∈ qmaxA([a]f ).

Given u ∈ qmaxA([a]f ), we have (f(a) ≈B f(u)) = >
and (f(a) ≈B f(x)) ≤ ρA(x, u), for all x ∈ A. In particular,
(f(a) ≈B f(a)) ≤ ρA(a, u), and then, since ≈A is reflexive,
we obtain ρA(a, u) = >. Therefore,

ρA(u, g(b)) = ρA(a, u)⊗ ρA(u, g(b)) ≤ ρA(a, g(b)) .

On the other hand, for any x ∈ A with (f(x) ≈B b) = >,
we have that g(b) ∈ qmaxA([x]f ), and thus [g(b)]f = [x]f .
Applying Condition 2, we obtain

ρA(a, g(b)) ≤ ρA
(
qmaxA([a]f ), qmaxA([g(b)]f )

)
= ρA

(
qmaxA([a]f ), qmaxA([x]f )

)
= ρB(f(a), b) .

Proof of Theorem 6: Assume that (f, g) : A � B.
Consider the embedding i : f(A) → B and the mapping
h : B → f(A) defined as follows:

h(x) =

{
x , if x ∈ f(A),

f(g(x)) , if x /∈ f(A) .

Let us prove that (b1 ≈B b2) ≤
(
h(b1) ≈B h(b2)

)
for all

b1, b2 ∈ B:
(i) If b1, b2 ∈ f(A), then (b1 ≈B b2) =

(
h(b1) ≈B h(b2)

)
.

(ii) If b1 = f(a1) ∈ f(A) and b2 /∈ f(A), then using the fact
that g is a morphism, f is ≈-injective, and Theorem 1,
we have that

(b1 ≈B b2) = (f(a1) ≈B b2)

≤ (g(f(a1)) ≈A g(b2))

= (f(g(f(a1))) ≈B f(g(b2)))

= (f(a1) ≈B f(g(f(a1))))⊗ (f(g(f(a1))) ≈B f(g(b2)))

≤ (f(a1) ≈B f(g(b2)))

= (b1 ≈B h(b2)) = (h(b1) ≈B h(b2)).

(iii) If b1, b2 /∈ f(A) then, using the fact that g and f are
morphisms, we have (b1 ≈B b2) ≤ (g(b1) ≈A g(b2)) ≤
(f(g(b1)) ≈B f(g(b2))) = (h(b1) ≈B h(b2)).

Therefore, the mapping h is a morphism. On the other hand,
it is straightforward that the embedding is a morphism.

Let us now show the properties of ρf(A). The relation is
≈B-reflexive by the ≈-injectivity of f and the ≈A-reflexivity
of ρA:

(f(a1) ≈B f(a2)) = (a1 ≈A a2)

≤ ρA(a1, a2) = ρf(A)(f(a1), f(a2)) .

The ⊗-≈B-antisymmetry of ρf(A) is a consequence of the
⊗-≈A-antisymmetry of ρA and the ≈-injectivity of f :

ρf(A)(f(a1), f(a2))⊗ ρf(A)(f(a2), f(a1)) ≤ (a1 ≈A a2)

= (f(a1) ≈B f(a2)).

Furthermore, the transitivity of ρf(A) is a direct consequence
of the definition of ρf(A) and the transitivity of ρA.

Next, we will prove that ρf(A)(b1, h(b2)) = ρB(i(b1), b2)
for all b1 = f(a1) ∈ f(A) and b2 ∈ B. First, we prove

ρf(A)(b1, h(b2)) = ρf(A)(f(a1), f(g(b2))) .
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If b2 6∈ f(A), it is straightforward from the definition of
h. In case b2 ∈ f(A), there exists a2 such that h(b2) =
b2 = f(a2) and by Corollary 2, ρf(A)(h(b2), f(g(b2))) =
ρf(A)(f(g(b2)), h(b2)) = >. Therefore, by transitivity of
ρf(A), it follows that

ρf(A)(b1,h(b2)) = ρf(A)(b1, h(b2))⊗ ρf(A)(h(b2), f(g(b2)))

≤ ρf(A)(f(a1), f(g(b2)))

= ρf(A)(f(a1), f(g(b2)))⊗ ρf(A)(f(g(b2)), h(b2))

≤ ρf(A)(b1, h(b2)) .

Finally, since (f, g) is a Galois connection between A and B,
we have

ρf(A)(f(a1),f(g(b2))) = ρA(a1, g(b2))

= ρB(f(a1), b2) = ρB(b1, b2) = ρB(i(b1), b2) .

Conversely, assume that there exists a contraction
h : 〈B,≈B〉 → 〈f(A),≈B〉 satisfying (i, h) : 〈f(A),≈B

, ρf(A)〉� 〈B,≈B , ρB〉.
By the axiom of choice, a number of suitable definitions of

g : B → A exist such that g(b) is an element of f−1(h(b)),
for each b ∈ B. That is, f(g(b)) = h(b) for each b ∈ B.

Since h is a contraction and f is ≈-injective, we have that
g is a morphism because, for all b1, b2 ∈ B,

(b1 ≈B b2) ≤ (h(b1) ≈B h(b2)) = (f(g(b1)) ≈B f(g(b2)))

= (g(b1) ≈A g(b2)) .

To conclude, again by the ≈-injectivity of f and using the
fact that (i, h) is a Galois connection between 〈f(A),≈B

, ρf(A)〉 and 〈B,≈B , ρB〉, we have

ρA(a, g(b)) = ρf(A)(f(a), f(g(b))) = ρf(A)(f(a), h(b))

= ρB(i(f(a)), b)) = ρB(f(a), b)

for all a ∈ A and b ∈ B.

Proof of Lemma 2: Given b1, b2 ∈ B, if b1 ∈ X , then

(b1 ≈B b2) ≤ (h(b1) ≈B h(b2))

≤ ρX(h(b1), h(b2)) = ρX(b1, h(b2)) = µh(b1, b2)

and if b1 /∈ X , we directly have (b1 ≈B b2) = µh(b1, b2).

Proof of Lemma 3:
1. If b1 ∈ X , then for all b2 ∈ B

µh(b1, b2) = ρX(b1, h(b2))

= ρX(b1, h(b2))⊗ ρX(h(b2), h(b2))

(∗)
= µh(b1, h(b2))⊗ µh(h(b2), b2)

≤
∨
x∈B

(µh(b1, x)⊗ µh(x, b2)) = µ2
h(b1, b2)

where (∗) follows since h(b2) ∈ X and h is a contraction
(and, hence, idempotent).

If b1 /∈ X , then

µh(b1, b2) = (b1 ≈B b2)

= (b1 ≈B b1)⊗ (b1 ≈B b2)

≤
∨
x∈B

((b1 ≈B x)⊗ (x ≈B b2))

(∗)
≤
∨
x∈B

(µh(b1, x)⊗ µh(x, b2)) = µ2
h(b1, b2)

where (∗) follows by ≈B-reflexivity of µh.
2. For x ∈ X and b ∈ B, let us see that µh(x, z) ⊗

µh(z, b) ≤ µh(x, b) for any z ∈ B.
In case z ∈ X , since h is a contraction and ρX is ⊗-

transitive, it follows that

µh(x, z)⊗ µh(z, b) = ρX(x, h(z))⊗ ρX(z, h(b))

= ρX(x, z)⊗ ρX(z, h(b))

≤ ρX(x, h(b)) = µh(x, b) .

In case z /∈ X , using the definition of µh, the fact that h is
a contraction and the ≈B-reflexivity of ρX , we have

µh(x, z)⊗ µh(z, b) = ρX(x, h(z))⊗ (z ≈B b)

≤ ρX(x, h(z))⊗ (h(z) ≈B h(b))

≤ ρX(x, h(z))⊗ ρX(h(z), h(b))

≤ ρX(x, h(b)) = µh(x, b) .

Therefore, µ2
h(x, b) =

∨
z∈B

(µh(x, z)⊗ µh(z, b)) ≤ µh(x, b).

3. Due to property 1 and the definition of µ3
h, it is clear

that µ2
h ≤ µ3

h. To prove the other inequality, that is µ3
h ≤ µ2

h,
we have to show that µ2

h(b1, z) ⊗ µh(z, b2) ≤ µ2
h(b1, b2), for

all b1, b2, z ∈ B and according to the definition of µ2
h, it

suffices to prove that µh(b1, x1)⊗ µh(x1, x2)⊗ µh(x2, b2) ≤
µ2
h(b1, b2), for all b1, x1, b2, x2 ∈ B.
Property 2 allows to reduce this to the case in which b1, x1 /∈

X , namely:
(i) x2 ∈ X and b1, x1 /∈ X:

µh(b1, x1)⊗ µh(x1, x2)⊗ µh(x2, b2)

= (b1 ≈B x1)⊗ (x1 ≈B x2)⊗ ρX(x2, h(b2))

≤ (b1 ≈B x2)⊗ ρX(x2, h(b2))

= µh(b1, x2)⊗ µh(x2, b2) ≤ µ2
h(b1, b2) .

(ii) b1, x1, x2 /∈ X:

µh(b1, x1)⊗µh(x1, x2)⊗ µh(x2, b2)

= (b1 ≈B x1)⊗ (x1 ≈B x2)⊗ (x2 ≈B b2)

≤ (b1 ≈B x2)⊗ (x2 ≈B b2)

= µh(b1, x2)⊗ µh(x2, b2) ≤ µ2
h(b1, b2) .

4. Straightforward from properties 1 and 3.

Proof of Theorem 7:
1) ⇒ 2) Suppose that there exists a fuzzy relation ρB on B and

a contraction h such that we have a Galois connection
(i, h) : 〈X,≈B , ρX〉� 〈B,≈B , ρB〉. Consider the fuzzy
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relation µh (see Definition 16) and let us prove that
µh(b1, b2) ≤ ρB(b1, b2) for all b1, b2 ∈ B:
(i) If b1 ∈ X , then µh(b1, b2) = ρX(b1, h(b2)) =

ρB(i(b1), b2) = ρB(b1, b2).
(ii) If b1 /∈ X , then µh(b1, b2) = (b1 ≈B b2) ≤

ρB(b1, b2).
As a consequence, µt

h ≤ ρB and therefore, since ρB is
⊗-≈B-antisymmetric, then µt

h so is.
2) ⇒ 1) Consider ρB = µ2

h, which is ⊗-≈B-antisymmetric, by
the hypothesis. By Lemma 2, µh is ≈B-reflexive and, by
Lemma 3, property 1, µ2

h is ≈B-reflexive as well. Finally,
Lemma 3 ensures that it is also ⊗-transitive.
Finally, by property 2 of Lemma 3, µ2

h(x, b) =
µh(x, b) = ρx(x, h(b)) for all x ∈ X and b ∈ B and,
therefore, (i, h) : 〈X,≈B , ρX〉� 〈B,≈B , ρB〉.

Proof of Proposition 3: Recall that µ2
h is ⊗-≈B-

antisymmetric if for all b1, b2 ∈ B we have that µ2
h(b1, b2)⊗

µ2
h(b2, b1) ≤ (b1 ≈B b2), and we will consider the three

possible cases below for b1 and b2:
1) The case b1, b2 ∈ X .

Neither condition is needed, since by Lemma 3, if b1 ∈
X , we have that µ2

h(b1, b2) = µh(b1, b2) = ρX(b1, h(b2)).
Therefore, in this case,

µ2
h(b1, b2)⊗µ2

h(b2, b1) = ρX(b1, h(b2))⊗ ρX(b2, h(b1))

= ρX(b1, b2)⊗ ρX(b2, b1) ≤ (b1 ≈B b2) .

2) The case b1 ∈ X, b2 /∈ X .
We have the following chain of equalities:

µ2
h(b2, b1) =

∨
x∈B

(µh(b2, x)⊗ µh(x, b1))

=
∨
x∈X

(
(b2 ≈B x)⊗ ρX(x, b1)

)
∨

∨
x∈BrX

(
(b2 ≈B x)⊗ (x ≈B b1)

)
=
∨
x∈X

(
(b2 ≈B x)⊗ ρX(x, b1)

)
where the last equality holds because, for every x ∈ B rX ,
we have that (b2 ≈B x) ⊗ (x ≈B b1) ≤ (b2 ≈B b1) =
(b2 ≈B b1)⊗ρX(b1, b1), which is one of the terms of the first
disjunction.

As a consequence, if b1 ∈ X and b2 /∈ X , the necessary
and sufficient condition for µ2

h being antisymmetric is

µ2
h(b1, b2)⊗ µ2

h(b2, b1) = ρX(b1, h(b2))⊗∨
x∈X

(
(b2 ≈B x)⊗ ρX(x, b1)

)
≤ (b1 ≈B b2)

or, equivalently,

ρX(b1, h(b2))⊗ (b2 ≈B x)⊗ ρX(x, b1) ≤ (b1 ≈B b2)

for all x ∈ X . By using the residuation property, this can be
rewritten as

ρX(b1, h(b2)) ≤ (ρX(x, b1)⊗ (b2 ≈B x))→ (b1 ≈B b2)

for all b1, x ∈ X and b2 /∈ X , which is condition 1.
3) The case b1, b2 /∈ X .

We have that

µ2
h(b1, b2)⊗ µ2

h(b2, b1) =∨
x∈B

(
µh(b1, x)⊗ µh(x, b2)

)
⊗
∨
y∈B

(
µh(b2, y)⊗ µh(y, b1)

)
=

∨
x,y∈B

(
µh(b1, x)⊗ µh(x, b2)⊗ µh(b2, y)⊗ µh(y, b1)

)
.

By definition of µh and standard properties, if either x /∈ X
or y /∈ X , the corresponding disjunction above is smaller than
or equal to b1 ≈B b2. Therefore, the necessary and sufficient
condition for µ2

h to be ⊗-≈B-antisymmetric is

(b1 ≈B x)⊗ ρX(x, h(b2))⊗ (b2 ≈B y)⊗ ρX(y, h(b1)) ≤
(b1 ≈B b2)

for all x, y ∈ X , which is condition 2.
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