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reasoning with comparability and negligibility relations
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Abstract. Non-classical logics have proven to be an adequate framework to formalize knowledge
representation. In this paper we focus on a multimodal approach to formalize order-of-magnitude
gualitative reasoning, extending the recently introduced system MQ, by means of a certain notion of
negligibility relation which satisfies a number of intuitively plausible properties, as well as a minimal
axiom system allowing for interaction among the different qualitative relations. The main aim is to
show the completeness of the formal system introduced. Moreover, we consider some definability
results and discuss possible directions for further research.

Keywords: multimodal logics; non-classical logics; order-of-magnitude qualitative reasoning

1. Introduction

Although the use of qualitative order of magnitude reasoning (OMR) has been an active research area
in Al for some time, the analogous development of a logical approach has received little attention. Var-
ious multimodal approaches have been promulgated, for example, for qualitative spatial and temporal
reasoning but, as far as we know, no such approach has been developed for OMR.

A typical OMR calculus is designed in such a way that it generalizes computations over precise
values to computations over coarse values. The distinctive feature of OMR is that the coarse values are
generally of different order of magnitude. Depending on the way the coarse values are defined, different
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OMR calculi can be generated: It is usual to distinguish between Absolute Order of Magnitude (AOM)
and Relative Order of Magnitude (ROM) models. The former is represented by a partition of the real line,
in which each element @& belongs to a qualitative class. The latter introduces a family of binary order

of magnitude relations which establish different comparison relations between numbers. The underlying
idea is that by reasoning in terms of qualitative ranges of variables, as opposed to precise numerical
values, it is possible to compute information about the behavior of a system with very little information
about the system and without doing expensive numerical simulation.

In [9] and extensions such as [5, 6, 7], coarse values are defined by means of ordering relations that
express the distance between those values on a totally ordered domain in relation to the range they cover
on that domain. Specifically, the seminal paper [9], distinguishes three types of qualitative relations,
such ase is close toy, or z is negligible w.r.ty or x is comparable toy; later on, some extensions were
proposed in order to improve the original one with the inclusion of quantitative information, and allow
for the control of the inference process [5, 6, 7].

There are attempts to integrate both approaches as well, so that an absolute partition is combined
with a set of comparison relations between real numbers [12, 13]. For instance, it is usual to consider
the AOM (5) approach which, by considering five landmarks, divides the real line in seven equivalence
classes and use the following labels to denote these equivalence claBses of

NL . NM NS PS _PM PL
- - 0 +0ou +B

The labels correspond to “negative large”, “negative medium”, “negative small”, “zero”, “positive
small”, “positive medium” and “positive large”, whereas the real numbeend 5 are the landmarks
used to delimit the equivalence classes (the particular criteria to choose these numbers would depend on
the application in mind). In [12] three binary relatiordase to, comparable, negligiblevere defined
in the spirit of [9], but using the labels corresponding to quantitative values, and preserving coherence
between the relative model they define and the absolute model in which they are defined.

Our research line in this context is to develop a non-classical logic for handling qualitative reasoning
with orders of magnitude. In [4], a minimal system for multimodal qualitative reasoning was introduced
to handle, in some sense, the notion of comparability. Note that we use thentdtimodalto refer to
our approach to state that several independent modalities are included in the language.

To the best of our knowledge, no other formal logic has been developed to deal with order-of-
magnitude reasoning. However, non-classical logics do have been used as a support of qualitative rea-
soning in several ways: among the formalisms for qualitative spatial reasoning, the Region Connection
Calculus (RCC) [11, 1] has received particular attention; in [2, 14], multimodal logics were used to deal
with qualitative spatio-temporal representations, and in [10] branching temporal logics have been used
to describe the possible solutions of ordinary differential equations when we have limited information
about a system.

Our aim in this paper is to include a certain notion of negligibility in the initial approach introduced
in [4], in which an arbitrary linearly ordered set (usually thought of as a subset of the real numbers) was
partitioned in classes consisting of positive observable, negative observable and non-observable (also
called infinitesimal) numbers.

As a first approach to the logics of qualitative order-of-magnitude reasoning, we have based our
minimal languages on the systeAOM (2), which is both simple enough to keep under control the
complexity of the system and rich enough so as to permit the representation of a subset of the usual



language of qualitative order-of-magnitude reasoning.

The intuitive representation of our underlying set of values (usually considered to be a subset of the
real numbers, although this is not essential) is given below, in which two landmarkand +« are
considered

OBS™ | INF ‘ oBs*

-a +a

In the picture,—a and+« represent respectively the greatest negative observable and the least pos-
itive observable. This choice makes sense, in particular, when considering physical metric spaces in
which we always have a smallest unit which can be measured; however, it is not possible to identify a
least or greatest non-observable number.

Once we have the equivalence classes in the real line, we can make comparisons between numbers
by using binary relations such as

e zisless thany, in symbolsr < y

e z is less than and comparable {0 in symbolsz C y

e 1 is negligible w.r.t.y, in symbolsx < y

This paper is organized as follows: In Section 2 the syntax and the semantics of the proposed logic
L(MQ)N is introduced; in Section 3 an axiom system M Q)" is presented, which axiomatizes
validity in frames based on an arbitrary linearly ordered set. In Section 4 the completeness proof is given,
following a Henkin-style. In Section 5 we briefly explore the definability and relationships between some
notions related to the property of density; general definability issué$iiQ)” are out of the scope of

this paper and will be further studied elsewhere. Finally, in Section 6 some conclusions are drawn and
prospects for future work are presented.

2. Syntax and Semantics of the Languag€(M Q)™

In our_}synta{x_we will consider the connectivﬁsaﬂgﬁ tg_deal with the usual ordering, the connec-
tives B and B to deal withC_ and the connective@ and [@ to deal with<. The intuitive meanings of
each modal connective is as follows:
TA meansd s true for all number greater than the current ane
W A isreadA is true for all number greater than and comparable with the current one.
T4 meansA is true for all number less than the current one
WA meansa is true for all number less than and comparable with the current one
[ A meansA is true for all number from which the current one is negligible
@A meansa is true for all number which is negligible from the current one
The intuitive description of the meaning of the negligibility-related modalities deserves some ex-

plaining comments. Depending on the particular context in which we are using the concept of negligi-
bility, several possible definitions can arise. We have chosen to use an intrinsically directional notion of



negligibility, in that negligible numbers are always to the left. There are other approaches in which the
negligibility relation is not directional, so a poimtcan be negligible wrt points smaller tharand also

wrt points greater tham, for instance, in [6, 13] it is the absolute value of an element what is considered
before considering the negligibility relation.

As stated above, depending on the particular application a given approach might result either appro-
priate or inappropriate; specifically, one can wonder in which sense can one say that, for instance -1000
is negligible with respect to -1. It is not difficult to find real situations in which this interpretation makes
sense, for example when interpreting the numbers above as exponentgsittte can be considered
negligible with respect ta0—!.

The syntax of our initial language for qualitative reasoning with comparability and negligibility is
introduced below:
The alphabet of the languadd M Q)" is defined by using:
e A stock of atoms or propositional variablés,
e The classical connectives A, vV and— and the constant§ and_L.
L = = = = —
The unary modal connectiveés, (1, B, B, [ and[.

The constanta™ anda .

The auxiliary symboals: (, ).

Formulas are generated frodu {a™, o™, T, L} by the construction rules of classical propositional
— «— — — — —
logic adding the following rule: 1A is a formula, then so arel A, (0 A, BA, B A, WA and[M A.

— = =

Themirror imageof A is the result of replacing inl each occurrence d_ﬁ ﬁ l, l, , 0, at,

«—

= = = = = =
o byd, 0O, 0 N, [, 0O o , @ respectlvely We shall use the symb@i}so 0 0 @ and ¢
as abbreviations respectlvelyﬁDﬁ ﬁDﬂ ﬂlﬂ ﬂlﬁ ~@-and-@-.

The intended meaning of our language is based on a multi-modal approach, therefore the semantics
is given by using the concept of frame.

Definition 2.1. A multimodal qualitative framdor £(M Q)" (or, simply, aframé is a tupleX =
(S, +a, —a, <, <), where

1. (S,<)is alinearly ordered set.

2. +a and—a are designated points fi(calledframe constanysand allow to form the sets €™,
INF, and (Bs™ that are defined as follows:

OBs ={ze€S|r<—a}; INF={z€S|-a<z<+a}; OBS ={recS|+a<r}

3. < is arestriction ok, i.e. < C <, and satisfies:

() If z <y <z thenz < 2
(i) If z <y =<z thenx < 2
(i) If <y, theneither ¢ INFory ¢ INF

We will usez C y as an abbreviation of < y andz,y € EQ, whereEQ € {INF,OBs', OBs™}".



It is worth noticing that as a consequence of items (i) and (ii) we have the transitivity afi the other

hand, item (iii) states that two non-observable elements cannot be compared by the negligibility relation.
The conditions (i)—(iii) under the last item above aim at recovering a minimal set of standard intu-

itions about any qualitative notion of negligibility which are illustrated, in particular, in the following

model based in the arithmetic of a pocket calculator:

Example 2.1. In a pocket calculator it is not possible to represent any number whose absolute value is
less thanl0~%9. Therefore, it makes sense to considet = —10~%? and+a = +10~% since any
number betweenr-10~? and10~%? cannot be observed/represented.

On the other hand, a numbercan be said to be negligible with respectyt@rovided that the
differencey — x cannot be distinguished frogn Numerically, and assuming an 8+2 (digits and mantissa)
display, this amounts to state thats negligible wrty iff y — = > 10%.

Under this model, it is straightforward to check that properties (i)—(iii) hold.

Definition 2.2. Let ¥ be a multimodal qualitative frame, raultimodal qualitative model ok (or X-

mode] for short) is an ordered paikt = (3, h), whereh is ameaning functior(or, interpretatior)

h:V — 25. Any interpretation can be uniquely extended to the set of all formul#¥ Q)" (also
denoted byh) by means of the usual conditions for the classical boolean connectives and the constants
T and_L, and the following conditions for the modal operators and frame constants:

h(ﬁA) = {ze€S|yeh(A)forally such thatr < y}
h(WA) {z €S|y e h(A) forall y such that T y}
h(ﬁA) {z €S|y e h(A)forall y such thatr < y}
h(ﬁA) {r €S|y e h(A)forall y such thaty < z}
h(WA) {z €S|y e h(A)forall y such thay C z}
h(ﬁA) = {ze€S|yeh(A)forally suchthaty < =}

h(a®) = {+a}

ha™) = {-a}

The concepts of truth and validity are defined in a straightforward manner.

3. Axiomatic system for£(MQ)V

In this section we define an axiomatic system for multimodal qualitative logic with negligibility. A list
of axiom schemes and inference rules are presented in order to build the system. We consider all the
tautologies of classical propositional logic together with the following axiom schemata:

Axiom schematafor white connectives:
K1 O(A— B) — (A — OB) K3 TA_ 54
K2 A—-T0A K4 (T(AvB)AD(DAVB)AT(AVOB)) — (DAVDB)

1Of course, there are much more numbers which cannot be represented, but this is irrelevant for this example.



Axiom schemafor B : Mixed axiom:

— — R M1 OA— WA
Cl1 H(A—B)— (HA— HEB)
Axiom schemata for constantswhere¢ is eithera™ ora~  Axiom schemata for negligibility
cl QeveV O N1 B(A — B) — (BA — B B)
— — ——
c2 & — (O-¢ A O-E) N2 A-moA
— — —
c3a — Oat N3 OA—- @A
— — ——
c4 o — WA N4 A — CORA
“— — — = — — ——
c5 (Oa " Adat)— B(Oa A Qa™) N5 MA— mOA
6 Qo — i(a‘ Y 5)@—) N6 (KOf A KOﬁ) — (04Jr v 304*)

— —

c7 (et AMA) - TA

— — —
c8 MA— O((avoa)—A)

— — —
c9 (QatAMA) - OA

— — — — —

cl0 (Oa A Qat ARA) - O(0a A Qat) — A)

We also consider as axioms the corresponding mirror images of all the akioms.

Rules of inference:

(MP) Modus Ponens for-. (Nﬁ) If - Atheni- D A. (Nﬁ) If - A theni- DI A.

Let us recall that the systeM () introduced in [4] consists K 1-K4, M1, C1, ¢1—10, their mirror
images and the rules of inference; the minimal system extendiggwith the negligibility relation is
denotedV/Q", and isM @ plus N1-N6 and their mirror images.

The concepts gbroof andtheoremare defined in a standard way.

4. Soundness and completeness df QY

The proof of soundness is straightforward, since validity of the axioms and preservation of validity by
inference rules is just a standard calculation. Thus, we need only to focus on completeness and, with this
aim, a Henkin-style proof will be constructed.

The proof of completeness follows the step-by-step method as described in [3]; consequently, some
results abougmaximal) consisterdets of formulas are needed.

4.1. Preliminary lemmas

Some familiarity with the basic properties of maximal consistent setsdetyis assumed; in the proof
of the properties of the relations between mc-sets defined below we shalfdde denote the set of all
mc-sets of formulas:

2plternatively, we could have just considered only the mirror images corresponding to K1, K2, K4, C1, M1, N1-N6 and c4-10,
since the rest of images can be derived.



Definition 4.1. Consided*{,I's € MC. Then:
1. T, > Tyifandonlyif {4 | OA €Iy} C Ty
2.T; » Tyifandonlyif {A | MA €T} C T,
3. Ty »Tyifandonlyif {A | mA e} CTs.

Lemma 4.1. (Lindenbaum)
Any consistent set of formulas i/ QY can be extended to an mc-setifi)” .

The three lemmas below state some general modal properties of the operasrand > whose
proof is straightforward: the behaviour with respect to the relations just introduced, the transitivity and
linearity of those orderings, and the existencengfsets with suitable properties.

Lemma 4.2. Considel';,I's € MC, then:
1. Ty > Tyifandonlyif {4 | GA €L} Iy
2.7 >Toifandonlyif {Q A| A€y} CTy
3.7y > Tyifandonlyif {OA| ATy} CTy

Lemma 4.3. Conside'{,I'5,I's € MC, then

1. IfI'y > I'y andl'y > T'sg, thenl'; > T's.
2. IfI'y > I'y andI'y > I's, then eithed’y > I's, orI's > 'y, orI'y = I's.
3. IfT'y > I'y andI's > I'y, then eithel; > I's, orI's > 'y, or 'y = I's.

Lemma 4.4. Assumel’; € MC:

1. If 5)14 e I'y, then there existBy; € MC such thaf’y > I's andA € I's.
2. If KA € I'1, then there existBy € MC such thaf’s; > I'y andA € I's.

Remark 4.1. The statements of the three previous lemmas only contain the behaviour of the white modal
connectives, however the black modalities and the modalities for negligibility have similar properties.
For referring to these alternative formulations, we will write, e.g. Lemma»d.8( Lemma 4.2¢).

The following technical proposition introduces a number of theorem&(81 Q)" which are used
in some proofs to appear later:

Proposition 4.1. The following formulas are theorems 8f Q, whereA and B are wff:
1. Qa Va-V (goz_ A 6)0#) Vatv Qat
— — — — — —

2. (pAWA) — O(p— A),wherep € {Oa™, Oat, da" A Qat}

— — — — — — —
3. (¢ANOB)— (¢(AANB)V ¢(¢ANB)V (AN OB))

— — — — — —
4. (O A Q) — p,wherep e {Oa, Oat, da” A Qat}



5. (6AAOB)— (6(AAB)VO(OGAAB)V 6 (AA O B))
6. (atV goﬁ‘) — (KA — 7A)

The following two lemmas are specific of the systaut), for they are concerned witls and».
Although they were already stated in [4] their proof is firstly included here.

Lemma 4.5. ConsiderT’y,I's € MC such thafl’; > I's, thenI’; » I's holds if and only if one of the
following conditions below is fulfilled:
— — — —

L{0a AdaT,0at,0a }NT1NTy # 2

2. at € I

3.a €Iy
Proof:
Considerl’; > I'y, and assumg&; » I's. Let us see that some of the conditions 1-3 holds.

By maximality ofI"; and Proposition 4.1, we have thato=Va~ V(O a A at)Vatv oat € Ty.
We proceed by cases:

o If 6)@_ € I'1, by Axiom c6 we havei(of \Y 5)@—), now using the fact thdf; » I'; we have

thata™ v@’a— € I's and, as aresult, either— € I'y (which is Condition 3) or@a‘ € I's (which
leads to Condition 1).

e The casex™ € I'; cannot hold, otherwise by Axiom c4 aidd » I's we would obtain that any
formula 4, in particularA = 1, isin T, which is a contradiction.

— — . N N ;
o If o= A Oat € I'1, then Axiom c¢5 leads ta) o~ A Qo™ € T'y by usingl’y » I's, then
Condition 1 holds.

e Forthe case™ € I'y, there is nothing to prove, since Condition 2 trivially holds.
e Finally, if§a+ € I'y, then, by K2 and K3, we hav@“@aﬂr e I'y and, byl'; > T', we would
also have{ o™ € I's and Condition 1 holds.
Therefore, any of the alternatives leads to some of the Conditions 1-3.
Reciprocally, in order to show that » T's, consideriA € I'; and let us prove that € T's:

e Assume Condition 1, and denote byan element in the intersection; in particular, we have both
¢ € I'1, andp € T's. Now, taking into account Proposition 4.1 the form(fan i>A) — ﬁ(g@ —
A) is a theorem oM/ Q, we obtainﬁ(gp — A) € T'y, then using the general hypotheBist> T's,
we have thatr — A € T'; and thusA € T's.

e Assume Condition 2, this is™ € I';, we would havenx™ A WA c I'; and, by Axiom c7, we
obtainﬁA € I';. Now usingl'; > I'; we obtainA € T's.

e Assume Condition 3, thisiea= € I's. RecallingiA € I'y, by Axiom c8, we geﬁ((ga— vV
—
a~) — A) € I';. On the other hand, by, > I's and the obvious fact thad o~ vV o~ € T'y, we
obtain4 € T's.

QED



Lemma 4.6. GivenI';,I's,I's € MC we have:

If 'y » I'y, thenI'; > T's.

IfI"'y » I'y, I'1 > I's and it is not the case thay » I's, thenI's > I's.
If 'y » I'1, '3 > I'; and it is not the case thag » ', thenl's > T's.
IfI'y > I's > I'g andI’y » I'g, thenl'y » 'y » I's.

e S

Proof:

1. The proof of the first item is straightforward by Axiom M1.

2. By contradiction, assume thB§ ¢ I's, that is, there existﬁA € I'; such thatd ¢ I's, in addition
to the hypotheseB; » I's, I'; > I's and it is not the case th&t » I's.

By usingl'; » T'y, we get?ﬁA e I'1, by Lemma 4.2(8). Moreover, as it is not the case that
'y » I's, t_h)er_e) existiB € I'; such thatB ¢ I's. As a result, E))/ standard properties of modalities, we
have that¢ (A A B) € I'y. Furthermore, sincE; > I's, then ) (-A A =B) € I'y by Lemma 4.2(2).
On the other hand, by Proposition 4.1 the formula

(70 A 5)D) — (7(0 AD)V ®(4CAD)V &(CA XD))

is a theorem, then by instantiatidg= TOAABandD = —AA —B, we obtain three different possibil-
ities, all of which lead to a contradiction:

(@) 7(5/1 AN B AN—-AN-B) e I';. Obviously contradictory.

— —

(b) ¢(& (ﬁA A B) A=A AN-B) € T';. In particular, we obtain7ﬂB € I'y; which contradicts
W B € I'y, the defining property oB, see above.

|

|

—

(c) ¢(JAABA K(ﬂA A -B)) € I'y. Contradiction betwee A and ¢ —B.

3. The proof is similar.

4. Considef’; > I'; > T's andI'; » I's. By transitivity we havd’; > I's and by Lemma 4.5 there are
three possibilities:

(i) The intersectior{gor A Koﬁ, Koﬁ, 307} NI NT3is non-empty.
Let ¢ be an element in the intersection above. ConsMlef ¢ I'1, then relying on the fact that
(p A iA) — ﬁ(cp — A) is a theorem (Proposition 4.1), we obtﬁl(cp — A) € T'; and, by
' > I'; we getyp — A € T's. Let us prove now thap € T’y in order to show thatl € T'y: By
usingIl’y > I'y; > I's and Lemma 4.2(items 2,3) we g(é&p A 6@) € I's. Now, Proposition 4.1
also states the(f&o A 5}0) — is atheorem, thep € I'y, by modus ponens we obtaih e T’y
and, thus]'; » I's.
Now, considerl A ¢ 'y, if we use again the theorefp A iA) — ﬁ(gp — A), we have that
ﬁ(gp — A) € I's. Now, sincep € I's andl'; > I's we obtainA € I's, that is ,I'y » T's.



(i) ot eTy.
ConsideriA e I'y, by using Axiom c7 we geﬁA e I'; and, fromI'; > I's, we obtaind € T'y
and, thus]'y » I's.
ConsiderB A ¢ IE Usinga™ € T'; andl’; > I's in Lemma 4.2(3) therKoﬂr € I's. Now, by
Axiom c9 we getl] A € T’y and, ad’; > I'3, we haveA € I's and, thusT'; » T's.

(i) o= €Ts.
ByT's > I's, and by Lemma 4.2(2) we obtama €Ty Considerll A ¢ Fl, then by Axiom c8

we obtain thatl]((a V <>a ) — A) € I'y and, byI'; > I'y anda™ Vv <>a € I's, we obtain
Ae FQ, thUSFl > FQ.

Considerl A ¢ I's; again by Axiom c8 we obtain tha[_ﬂ)((a* v ga*) — A) € T'y, now by

usingl's > I's and the fact that™ Vv Ka— € I's, we getA € I's. Thereforel's » I's.
QED

The following lemma is concerned specifically with the concept of negligibility.

Lemma 4.7. Considel'|,I'5, '3 € MC, then

1. f 'y » I'g, thenI'y > I's.

If 'y > I'y, 'y > I'g and it is not the case th&t » I's, thenl's > I's.
3. IfI'y > Ty, I's » I'; and it is not the case th&b v 'y, thenl's > I's.
4, IfT'y > I'y > I'3 and eithed’; »> I'y or 'y B> I'3, thenI'y & I's.

N

Proof:

1. The proof of this item is trivial, just consider axiom N3.

2. GivenA ¢ I’y we have to prove thatl € I's. Assume,A ¢ T's, by I'y » I's and using
Lemma 4.2(2), we would havegﬂA € I';. On the other hand, using; ¥ I's, we know there
exists a formulaB such thatm B € I' andB ¢ T. Thus,ﬁA A B € I'y and, usingl’; > I's, we
obtaing(ﬁA A —B) € T'y. As aresult, we obtain thaEﬁA A g(ﬁA AN-B) eTy.

We will prove that a contradiction arises from the assumption._thdtI's by applying a case-based
reasoning. The key issue is to take into account that the formula

(50 A KD) — (5)((] AD)V G(OCAD)V §(CA KD))

is a theorem of\/Q"V (Proposition 4.1), therefore some of the following three conditions should hold
—
(whereC and D have been substituted, respectively o and[J A A = B):

(a) g(ﬁA A ﬁA A —B) € I'y. This contradicts the fact that B e I'y.
(b) 6(5?/1 ATANA -B)) € I';. This possibility is clearly contradictory.

— — — . —— . —
() ®(—AAN O(OAA-B)) € T'y. This leads to® ¢ -B € I'y and, by axiom N5,6 -B € TI'q,
—
contradicting B € T';.



As aresult, it cannot be the case that I'; and, thereforel’y > I's.

3. Similar to the previous case.

4. Firstly, assumé’; p- I'y andﬁA € I';. By axiom N5, we also hav@ﬁA e I'y and ﬁA e I'y;
now, usingl's > I's, we obtainA € T'3. Assumingl's > I's, the same idea (but now using axiom N4)
leads tol'y > I's. QED
4.2. Completeness of/ Q"

As stated above, we will provide a proof of completeness by using the step-by-step method. We have
to start the construction upon the conceppa#-frame which is a generalization of a frame in that the
landmarks are not required.

Definition 4.2. A pre-frameis a tuple obtained by eliminating either one or both frame constants from
a frame, that is, a pre-frame is eith&; <, <) or (S, +a, <, <) or (S, —a, <, <).

The following definitions are needed in order to formally describe the construction method of each
step in the completeness proof.

Definition 4.3.

1. Given a (pre-)fram&, atraceof X is a functionfy, : S — 2LMQ)™ gych that the sefp(x) isa
maximal consistent set for all € S.

2. Letfy be atrace of = (S, +«, —a, <). Thenfy is called:

e Coherentf it satisfies for allz, y:

(@) at € fx(+a)anda™ € fu(—a) (c) If z C gy, thenfs(x) » fx(y)
(b) If z <y, thenfs(x) > fx(y) (d) If z <y, thenfx(z) > fu(y)

K-propheticif it is coherent and for all formulal and allz € S:

if 0 Ac fo(z), there existg such that: < y andA € fx(y) 1)

The definition of?—propheticand5’—propheticis similar, but considering the order relations
C and=, respectively.

K-historicif it is coherent and for all formulal and allz € S:

if XA € fx(z), there existg such thaty < x andA € fx(y) (2)

The definition of? historic andg historicis similar.

The expressmns (1) and (2) are callédprophetlc (respo historic) condltlonals forfg
wrt <> A (resp. Q A) andz. The same terminology is applied to connectn&as@ 0 @
fx is said to befull if it is prophetic and historic.



The key concepts afxtensiorof a frame andictiveor exhausteadonditional are given in the defini-
tion below:

Definition 4.4.

1. Given two framesZ; = (S1,+a1, —a1, <1, <1),22 = (So, +ag, —ag, <2,<2), we say that
Y5 is an extension ot if the following conditions are satisfied; C S5, <1 C <3, <1C<9,
+a; = ta2, —a1 = —ao.

Similarly, we say that a pre-franig, is an extension of the pre-framg,.

2. Let fy, be atrace of a framE = (S, +a, —a, <, <).

e A g—prophetic conditional forfs; (with respect to@A andz) is said to beactiveif KA €
fs(x) but there is ng; such thatr < y andA € fx(y); otherwise, if there existg such that
r < yandA € fx(y) the conditional is said to bexhausted

e The definition ofactiveandexhausted?—prophetic @)—prophetic) conditional are given in a
similar manner.
¢ For conditionals of typéistoric the definitions are similar.

The idea of the proof of completeness is to show that for any consistent fovtnddrame’ =
(S,a™,a™, <, <) and a full tracefs, can be defined, such thdt € fx(z) for somez € S. This frame
Y is constructed step-by-step and, in order to obtain an initial frame to work with, a procedure is needed
in which, beginning with a pre-frame, an initial frarhg is obtained.

Obtaining an initial frame

We considerTy = (S, <’, <) whereS' = {z¢}, <'=<'= @, for which the tracefy, is defined as
fr,(xo) = T'o wherel'y is a maximal consistent set containidgwhich exists by Lindenbaum’s lemma.
The next step depends on whetligrcontains either™, or o~ or none of them (these alternatives are
pairwise incompatible because of the consistendyyadind Axioms c2 and c3).

e Assume thatv™ € Iy, then we forcery = —« and, as a result, we ha\(—éoﬁr eIy = fr,(x0)
because of Axiom c3. By Lemma 4.4(1) there existsuch thatx™ € I';. Now, we consider the

frameXy = (So, <o, <o) as follows:

— So = {zo, +a}
- <o={(z0, +a)}
- <o0= {(zo0, +a)}, if fx,(z) » I'1; otherwise define<p= 2.

and the corresponding trace is definedas= fy, U {(a™*,T'1)}, which is clearly coherent.

e The casex" € I'y is similar by using the mirror image of Axiom c3.

%In other words, a conditional is said to be active if the conditional expression is not satisfied, whereas is said to be exhausted
if the consequent is satisfied.



¢ Finally, assume that neither™ nor o~ is in I'y. We need to apply two steps as the previously
described, one for introducing each frame constant. This can be done in a coherence-preserving
way by using the theorerg)of Va Vv (‘5&— A 6’@+) Vatv goﬁ' (see Proposition 4.1) then,
taking into account that neither™ nora— isinT'y, we haveg)a— v (‘504— A 30#) V 30# eTy.
Lemma 4.4 allows to introduce a new frame constant, and we are in one of the previous cases.

Now, we can consider that we have an initial frame to work with. This fraipés the basis of the
construction of the framE stated above as the countable union of a countable sequence of finite frames,
Y0, X1, ...y Bp, - . .; With this aim:

e We will consider an indexed denumerable infinite*s@ét= {z; | i € N} whose elements will be
used to build the frames in the sequebiewe will consider the classs of frames(S, +a, —a, <
, <), whereS is a finite subset of.

e We will also consider an enumeration of formuldg, A;, ..., A,,... of the languag& (M Q)"
so that we can also assign a code number to each prophetic (historic) conditional in the usual way.

From the initial frame onwards

Assume that,, = (S,, <n, <) and fx,, are defined. If no conditional is active, théh,; = %,,

f=.+1 = fs, and the construction is finished. Otherwise, i.e., if there are prophetic (or historic) condi-
tionals for fs;, which are active, then we choose the conditiaf@) with the lowest code number and
then, by theexhausting lemmbelow, construct an extensiaty,+1 = (Sp+1, <nt1, <n+1) € Es 0f X,

and an extensioffi;, | of fx, such that the conditional(”) for fx, ., is exhausted.

Although the trace of each of these finite frames is coherent, in general, it fails to be either prophetic
or historic. However, the tracgé- of X, defined as the countable union of the countable sequence of
finite framesY;, can be proven to be full. Thus, the consistent formdlas verified by applying the
trace lemma

To finish the proof of completeness we have just to state and prove the two lemmas referenced above.
The first one follows easily by induction on the complexityAf

Lemma 4.8. (Trace lemma)

Let fx; be a full trace of a multimodal qualitative framé& Let i be an interpretation assigning to each
propositional variable the seth(p) = {z € S | p € fu(x)}. Then, for any formulad we have
h(A)={zeS|Ac fu(z)}.

Regarding the proof of the exhausting lemma, it is worth to notice that we will use a stronger version
of coherent trace& wrt p-, in the sense that < y if and only if fx,(z) > fx(y). Such a trace will be
said to bestrongly<-coherent

In the construction we will guarantee that any finite frameof the sequencEg, ¥4, ... is strongly
<-coherent (note that this holds trivially far).

“Note thatz, (and possiblyz;) have been used in the construction of the initial frafae



Lemma 4.9. (Exhausting lemma)

Let fx, be a strongly<-coherent trace of a framg;, € =s, and suppose that there is a prophetic
(historic) conditional,(C), for fs;, which is active. Then there is a framg,; € =s and a strongly
<-coherent trac¢s, , , extendingfs, , such that{C) is a conditiona? for fx, ,, which is exhausted.

Proof:

Exhausting active?-prophetic conditionals

Consider the case of an acti@prophetic conditional:
If TA € fx, (x), then there existg such that: C y andA € fx, (v)

That is, we haveTA € fs,(z) but there does not exigtsatisfying the consequent of the conditional.
Our goal is to select a new framg,, ; in the classEs which is an extension of;, and, moreover,
define a new tracgy, . ,, extendingfs, , for which the previous conditional is exhausted. This is proved

by induction on the numbeérof successors af in Sy.
To begin with, let us consider a maximal consistentlsstich thatfs;, (z) » I' and A € I', which
exists by Lemma 4.441).

1. If I =0, thenX,, is defined as follows:

Sk+r1 = Sk U{y}, wherey € S < Sg
<1 = <k U{(z,9)}U{(z,y) |z <k 2}
<k+1 = =< U {(Zvy) | 2L andekJrl (Z) - F}

f2k+1 = kaU{(%F)}

Lemma 4.3(1,#) guarantees the coherence of the definitions for both white and black triangles.
The strong=<-coherence ofs., . , is ensured by construction and Lemma 4.7(4).

Note also thatl;,; as defined is a finite frame, that is, belongs to the clss Specifically,
Lemma 4.7(4) guarantees conditions (i) and (ii) of Definition 2.14qr 1; moreover, condition
(iii) is immediate because the new pointlearly satisfiesta <x11 © <p11 ¥.

2. If I > 0, let 2’ be the successor af in ¥;. The definitions ofS;,; and fx,., are the same as
above. Now, we have two subcases to consider:

(@) = g 2.
If ;)A € fx,(2'), then we apply the inductive case.
If & A ¢ fs, ('), asitis obvious thatl ¢ fs, (2'); therefore, we have thatA A ~¢Ac
fx,(2’). Now, by coherence ofs, (z), we havefs, (z) » fx,(2'), as we also have
fs,(x) » T, by Lemma 4.3(8) we have three possibilities out of which ordly» fs, (z)
is not contradictory.

5Given a conditional forfs,, if we simply replace the labél with &' whereX C ¥’, we have a conditional fofs but with
the same code number as the conditionalffor Then we can say that in both cases we refer to the same conditional.



Therefore, we havgs, () » I' » fx, (2). This means that it is possible to select a point
y € S\ S}, to be located betweenandx’ where we will consider the sét, by preserving
coherence, that is, the relationg . ; and<j, are defined as follows (recall th8f., and
[z, have the same definition as in the previous case):

<pr1 = <pU{(@9), (1,2} U{(z9) | 2 <e 2} U{(y,2) | 2’ <p 2}
<k+1 = =<k U{(z,y) |2z <pzandfs, (2) > T}U{(y,2) |2’ <t zandl &> fx,(2)}

Lemma 4.6(1) and Lemma 4.3(1) ensure the coherengg,of w.r.t. >. Lemma 4.3(&)

is needed to guarantee the coherence w.r.Strong<-coherence offs, ., is obtained by
construction and Lemma 4.7(4).

Finally, let us prove thaky  isin Zs. Conditions (i) and (ii) are given by Lemma 4.7(4); to
check condition (iii) we only need to show that for the new pgimind anyz the following
property holds: if either <1 y Oory <x.1 z it cannot be the case thaty € INF.

Take anyz such that: <1 y and assume € INF. By coherence offs, ., w.rtr>, we

— —
would havefs,  (a7) > fx,.,(2) > fu(a™); thus, clearly,0 o= A Qo™ € fx,  (2).

Now, by using Axiom N6, as <1 ¥, by coherence, we have" v <50# € fg,., (v) and,
again by coherence, this means that INF. The case <1 z is similar

(b) = 7 2",
Under these conditions let us prove that <; = <; +a and, furthermorey’ = +a.

As 714 € fs,(z), by using Axiom c4 and coherence §f, it follows thatx # —a; as a
result, byx 7 2/, we obtainz’ = +a and—a <, z < +a« (recall thatr’ is the successor
of x).

Now, in order to apply Lemma 4.6(2), let us prove that the relafigr(x) » fs, (') does
not hold. By contradiction, using the coherencefef we would haven™ € fx, (') and,
by the mirror image of Axiom c4 (takingd = 1) and Lemma 4.2(1) we would obtain
1 € f5, (z) in contradiction with the consistency ¢f, (z).

Moreover, recall that we havg;, (x) » I and f;, (z) > fx, (2), thus, by Lemma 4.6(2),
we havel' > f5, (/). This fact allows to definec;;; as above with a poing (associated
toI') betweenr andz’, note that in this case Ty 1 y Zr1 2’

Regarding the negligibility ordering, the relatied)., ; is defined as in the previous case.
Finally, Lemma 4.3(1,&) guarantees the coherence of the tragge, , w.r.t. > and», and
strong<-coherence is given by construction and Lemma 4.7(4). The same justification as
above serves to show thay,, 1, as defined, is ixs.

Exhausting active@—prophetic conditionals

Consider an activ@-prophetic conditional W@)A andz, that is, we havep A € fs, (), but there
does not exisy such thatr < y andA € fx, (y).

By Lemma 4.4(%), there existd" such thatfs, () » I" and A € I'. Now, we will select an
extension ob; containing a new poing € S \ S, to whichI is assigned by preserving coherence. We
will proceed inductively on the number of successors of Sy.

For the casé = 0, the extension is defined straightforwardly.



If I >0, then makeS; 1 = S; U {y}, wherey € S \ Sy, and definefs, ., = fs, U{(y,I')}; letus
consider the setz* | = <; *}, and reason by cases depending on whether the set is empty or not:

L {a* |z <p2"}=02.
Let 2’ be the last element in the frarg, now define<;,; and<j. as follows:

<er1 = <k U@ )}V {(zy) | 2 < 2}
<er1 = =k U{(@,9)}U{(z,) | 2 <p 2" andfs, (2) > T}

We only need to prove the coherencefef , ,: the coherence wit is justified by Lemma 4.7(1)
and Lemma 4.3(1), and strong-coherence by construction and Lemma 4.7(4). The case of
» is proved by using the obvious relaticha <; 2’; therefore by Lemma 4.5(1 or 2) and
Lemma 4.3(%) we obtain the coherence.

2. {z" |z < ="} # @.
Let us considef: = min{z* | <, z*} (which can be shown to exist); moreover, #tbe the
immediate successor of
If it was the case tha@A € fx,(2), then we would apply induction; otherwise, we would have

@A € fx, (z) for all z such thatr <, z (by Axiom N4). As a result, and taking into account
that-A € f5, (z), by Lemma 4.7(1) and Lemma 4.3(2) we have that eifher fx, () or

fzk (56) > TI.

e Letusassumé > fx, (Z):

Recall that for allz satisfyingz <, z <; & we have thatfy, (z) ¥ fx,(z) by strong=<-
coherenc® and sofs, (2) > I' (by Lemma 4.7(2)). Thus;, 1 and< can be defined as
follows:

<kt = <k U {(2,9), (4, 2)} U{(z,9) | 2 <g 2} U{(y,2) [ & <, 2}
<kt1 = <k U {(z,9)}U{(z,9) | 2 <e Tandfs, (2) & T} U {(y,2) [T & fu,(2)} (3)

The coherence ofs, | w.rt> and strong coherence w.nt. are justified as above. The case
» is handled by Lemmas 4.5(1), 4.6(4), and 4m)1

e Now, assuméfy, (z) > I', and consider the s¢t* | Z <, =* such thaf® > fx, (z*)}. Two
possible cases arise:

— The set is empty.
In this case, we consider the last elemer$paind proceed as in case 1 above.

— The set is non-empty.
Let 2’ be the first element of the set, then the extended ordekngs and <., are
defined as in (3) but changingby «’.

Finally, it is not difficult to check that the definition provided fBy,, ; belongs td=s.

5This is where strongi-coherence is used.



Exhausting active@-prophetic conditionals

Consider now an activg-prophetic conditional:
if KA € fx, (z),there exists @ such thatr < y andA € fs, (y)

that is, we have<—>>A € fs, (x), but there does not exigtsuch that botlx < y andA € fx, (v).
The idea again is to select a convenient extensiol;08s in the previous cases; we will give an
inductive proof on the number of successbos x in X;..

1. If I = 0, then+a <;, x and, by coherencey™ Vv 3a+ € fs,(z). On the other hand, the formula
— — —
(atVv 0at) - (0A — @A) is atheorem (Proposition 4.1); therefore maximality leads to
=
¢ A € fy, (x), which reduces to a previous case.

2. For the casé > 0 we apply a case-based argumentation depending on wh?theee fs,(z), or
— — —
@A S ka(x)! or bOth‘A ¢ fEk(x) and @A ¢ fzk(l‘)
The case;A € fu,(z) and@A € fs, (z) have been already solved, so letus assima 5)14 ¢
[, (z), and letz’ be the successor afin the frame.

Now, if 524 € fx,(2'), then apply the inductive case; otherwise it is clearly the case-tHat
N /
- <> Ac ka (‘T )

On the other hand, by Lemma 4.4(1), there exists a maximal consistéhsseh thatfy, (z) > I’
andA € T'. We select a poinyy € S \ Sy to be located between andz’ to which we will
associatéd’. Specifically, we have

Sg+r1 = Sp U {y}, wherey € S . S
<k+1 = <]€U{(Sﬂ,y),(y,l',)}U{(Z,y) ’ z <pk x}U{(yaZ) |SC/ <k Z}
'<k:+1 = =<k U{(Zay) | z2 <k andf2k+1(z) - F} U {(y,z) | l’/ Sk z andl' p kaJrl (Z)}

kaJrl = fEkU{(yJF)}

In order to prove the coherence of the trace’of, , we take into account the following:
(i) Regarding>, we apply Lemma 4.3(1 and 2) to obtain condition (a) of coherence.

(ii) Regardinge, to prove condition (b), we only have to consider the induced relatitetween
—

y and the rest of points in the fran¥, ;. Recall that we are under the assumption tat ¢

fs, (z), therefore it is not the case that, () » I

To begin with, we have information enough to prove that: —«. With this purpose, let us
proceed by considering the relationzofvith 2’

e It cannot be the case that—;, =/, otherwise by coherence ¢f.;, we would havefs, (z) »
fs,(2"). Recall thatfs, (z) > T' > f5, (z"), now by Lemma 4.6(#) we obtainfs,, (z) » T,
which is a contradiction.



e Now, if z # —a, by z 75 2/, we would have that-o <, = <, +a = z’. By coherence
of fx, we obtainga— AQat e fs,(x) and, and byfs, (z) > I' > fx, (/) itis easily
obtained thatgof A gcﬁ € I'. Finally, by Lemma 4.5(1) we obtaify;, (z) » I', which is
a contradiction and, thus,= —

Sincexr = —a, itis obvious thatr ;1 y holds, and we will only have to consider the successors
of y in the frameX;, ;. We have two possibilities:

(21)y Zgs1 o'

In this case coherence is immediately guaranteed.

(2.2)y Ciyr 2"

It cannot be the case that # +a, by usingz = —a we also have-a <, 2’ <, +a; therefore,

—a <pp1 Y <pp1 7 <pp1 ta.

Recall that we have already proved part (a) of coherencq"ggll, thus fgk+1( a) > I >

fein (@) > fx, ., (), and from this we easily obtauf) a” A <> at eTand <> a” A <> at €
[y, ('), thus, by Lemma 4.5(1), we obtaihp fx, . (2'). Finally, Lemma 4.3(&) allows to
finish the proof of coherence of the trace.

(iif) Regardingp-, the strong coherence is proved as previously.

It is not difficult to check that the definition provided f&y,, , belongs td=s.

The cases of historic conditionals are handled similarly.
QED

5. Quasi-density properties inL(MQ)Y

The existence of several modal connectives in our language allows for considering variations of proper-
ties like density, continuity or others. The study of this kind of properties from a purely logical standpoint
is worth to be done; specifically, we address here some particular cases of the problem of definability
of properties inC(M Q)" obtained as variations of the standard concept of density; other definability-
related issues will be studied elsewhere.

Definition 5.1. Let K be a set of multimodal qualitative frames. The Eeis said to balefinableby a
schema of formulag! if for every frameX we have that: € K if and only if A is valid in X.

Let P be a property of multimodal qualitative frames, didhe class of all multimodal qualitative
frames satisfying?, thenP is said to bedefinablef K is definable.

A first approach to quasi-density can be expressed as follows: a frame(S, +a, —a, <, <) is
said to bequasi-dense with respect to (or C-quasi-dense) if the following property holds:

forallz,y € S, if x C y, then there exists suchthate C 2z C y (=qd)
It is clear that the usual density

forallz,y € S, if x < y, then there exists such thatr < z < y (dens)



implies C-quasi-density; however, the other implication needs not hold: a counterexample can be ob-
tained by considering a frame whose only points are the landmarks.
Regarding definability, the formula
—— —
EEA - HA (CZQD)

can be proved to define-quasi-density. More formally, we can state the following proposition

Proposition 5.1. The class of frame§S, +«, —a, <) satisfying (qd) is definable inC(M Q).

If we are interested in recovering the usual density property frequasi-density, it is sufficient to
impose the requirement thatif is a non-empty set and does not have either least or greatest points.
From an axiomatic standpoint, we can state the following:

Proposition 5.2. The formulad O A — O A (which defines density) can be deduced frbh®)+(C—QD)
plus the following axiom schemata:

Proof:
The formuladd A — A can be proven by applying a reasoning by cases strategy based on the

—> <_ _> H -y . . - .
theoremOa~ vVa~ VvV (Q0a~ A Oat) Vat v Oat (see Proposition 4.1); specifically, it suffices to
—— —
prove(D OAAN go) — [JA wherey is any of the disjuncts (the details of the derivations are omitted).
QED

Other combinations, e.g. by merging the use<cndC in the property defining density, generate
the properties

forallz,y € S, if x C y, then there exists such that: C z < y

forallz,y € S, if z C y, then there exists such thatr < z C y

which can be shown to be defined, respectively, by the formmiasA — MAandCIHA — WA
Interestingly enough, these properties are nothing but alternative formulatiansjoési-density,
that is, each of the properties above is equivalent to propedg).

These alternative cases of quasi-density can be enriched by preventing the landmarks to be affected
by the quasi-density relation:

forallz,y € S, if x < y andz # —a, then there exists such thatr C z < y (mqd-i)
forallz,y €S, if x < y andy # +a, then there exists such thate < z C y (mqd-ii)

Both cases of weak mixed quasi-density are definabl& W @), respectively, by the formulas

(WOAA-a") — OA (MQD-)
OWA— O(-at — A) (MQD-ii)

as the following proposition shows:



Proposition 5.3.

1. Property (mqgd-i) is definable by the formula (MQD-i).
2. Property (mqd-ii) is definable by the formula (MQD-ii).

Proof:
We will only prove the first item above, the proof for the second item is similar.

Let us considerX, h), whereX satisfies (mqd-i) and an element# —a in ¥ such thatr ¢
h(ﬁA). Then there existg satisfyingz < y andy ¢ h(A). By property (mqd-i), we would have an
elementz such thatr C z < y. Thereforez ¢ h(ﬁA) and, hencez ¢ h(i)ﬁA). Thus, the formula
(iﬁA A-a”) — DAis true in(x, h).

Reciprocally, for a frame: not satisfying property (mqd-i), we have at least two elemenisin
¥ such thatr < yandz # —a. Now, let us define a model o8 in which h(p) = S \ {y}; by
analyzing the different possibilities far it is trivial to check that in any case the model refutes the
instancqiﬁp A—-a”) — ﬁp inz. QED

When considering the mirror images of the formulas (MQD-i) and (MQD-ii) one obtains the curious
fact that the mirror image of (MQD-i) defines the same property than (MQD-ii) and, similarly, the mirror
image of (MQD-ii) defines the same property than (MQD-i).

Regarding the negligibility connectives we can, for instance, consider the two properties below:

If x < y, then there exists such thatr < z < y (ngd-i)
If x < y, then there exists such thatr < z < y (ngd-ii)

On the one hand, for a given, property (nqd-i) states that the set of the elements from which
negligible does not have a first element. On the other hand, property (ngd-ii) expresses that there is at
least an intermediate element betweaeaind the set of elements from whiehs negligible.

The formulas that define the properties stated above are, respectively,

—— — .

0A— 0A (NQD-i)

—— — .

OnA— MA (NQD-ii)
that is, formally we have the proposition below:

Proposition 5.4. The following classes of frames are definable:
1. Ky = {(S, +a, —a, <, <) | < satisfies (nqd-i)
2. Ko = {(S, +a, —a, <, <) | < satisfies (nqd-ii)

Proof:

1. Let us prove thall JA — [ A definesk;.
ConsiderY € K; and let(X, h) be any model orE andz any element ir.. Now we proceed by

contraposition: ifr ¢ h(A) then there existg such thatr < y andy ¢ h(A). Now, by (nqd-i), we
— ——
have some such thatr < z < y. Thusz ¢ h(A) and sar ¢ h(E O A).



Conversely, considex = (S, +a, —a, <, <) ¢ K;. Then there are some y € S such thatr < y

and it does not exist € S such thatr < z < y. Now, the mode(X, h) whereh(p) = S ~\ {y} refutes
—— — —— —

the formulalt Op — [p atx and sol 0 A — [ A is not valid inX and therefore it is not valid ifK; .

2. The proof of this case is similar. QED

Once again it is remarkable that the mirror image of (NQD-i) defines the same property as (NQD-ii), and
the mirror of (NQD-ii) defines the same property as (NQD-i). Thus, from an axiomatic point of view,
the extension of/ QY with (NQD-i) and its mirror image is equivalent to the extension with (NQD-i)
and (NQD-ii).

There are other properties which are worth to be studied, for instance, the strong versions of (nqd-i)
and (nqd-ii) in which the middle element is required todoenparablewith one of the extreme points:

If x < y, then there exists such thatr < z C y (ncqd-i)
If x < y, then there exists such thatr C z < y (ncqd-ii)

these properties can be proven to be definable by the following schemata:

—— — .
WA DA (NCQD-i)
—— — .
BEA T4 (NCQD-ii)

6. Conclusions and future work

A sound and complete extension of the minimal system MQ of multimodal qualitative reasoning with
notions of comparability and negligibility has been introduced.

Although the system presented in this work (considering just two landmarks) is considerably simpler
than those stated at the beginning of this section, still it is useful as a stepping stone for considering more
complex systems, for which the logic has to be enriched by adding new modal operators capable to treat
a bigger number of milestones, equivalence classes and/or qualitative relations.

As future work, it is planned to investigate other notions or additional plausible properties of negli-
gibility, together with the analysis of which properties are definable and which are not, and the consider-
ation of the corresponding extensionshdiQ” .

A deeper analysis of the notion gfuasi-densityand a study of an analogous notion aiasi-
continuityand, moreover, further extensions of the system in order to obtain sound and complete versions
with denseness and continuity axioms are envisaged.

We are also investigating the possibility of providing an algebraic presentation of the semantics of
MQY, in order to get a better understanding of the properties of the qualitative relations which facilitate
their proofs.

Last but not least, from the computational standpoint, we are planning to develop theorem provers
for MQ andM QY based either on tableaux or on resolution.
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A. Proof of Proposition 4.1
Proposition 4.1. The following formulas are theorems 8f Q”V, whereA and B are wiff:
T1. ga* Va Vv (gof A 6)@*) Vatv (604+
— — — — — —
T2. (pABA)— O(p— A),wherep € {0a™, Oat, da” A QaT}

T3. (€AAOGB)— ($(AAB)V € (€AAB)V €(AAOB))
T4, (Op A Op) — o wherep e {0a~, Gat, Ga~ A Gat}
T5. (QAAOGB) = (6 (AAB)V O(CAAB)V & (AA OB))
T6. (Oz+ V goﬂ') — (KA — 714)

Proof:

We will only provide a complete proof foF3, which is based o1, T4 and the following auxiliary
theorems and derived rules which are standard in modal logic:

LM1 (MAA&B)— $(AAB)
LM2  Q(AAB)— (OAAOB)
LM3  (AAOB)— O(0ANAB)
PO, If-A— Bthen- 0A— OB

Proof of T1. A formal proof in A/ Q" , modulo propositional calculu®C) is given below:

1. <50(‘ Va Vv 5)@— fromcl¢/a™]
2. Gatvatvoat from c1[¢/a™]
3. 6)04* Va Vv ((607 A 6)@*) Vatv goﬁ from 1, 2 byPC
Proof of T4.
1. (‘5304— A 5}804‘) —~ 0 0a" tautology
2. (K@a— A 33(1—) — Qa~ from 1 byK3 andPC
3. (00atA00at)— Oat [similar to 1-2]
4. (0(0a AGa)AG(Da AGaT) = (0 0a" A G GaT) fromLM2 andPC
S. ggof — gof from mirror of K3 by 8, 7 andPC
6. 00at— Oat K3by ¢, ¢ andPC
7. (Cpn D) =y from 2, 3, and 4-6 bPC

Proof of T3. By T1 we can split the proof into five parts, according to each possible disjunct.
In order to improve readability some abbreviations will be used for formulas which occur several
—
times: for instance:™ vV $ «— means that we are in an observable negative which we deheste
— —
similarly inf denotesO o~ A O a™.



N
Casel:0a~ — T3

1. 5}@— — iobs— from c6
2. (6’@— A TA A KB) — (iobs‘ A 7,4 A KB) from 1 byPC
3. i(obs‘ A 7A) — 7(obs‘ N A) from LM1
4. (_>obs_ AOAN KB) — (7(Ob8_ NA) N 6)3) from 3 byPC
5. (obs NA) — 5)(obs* NA) from M1 by 5) 7 andPC
6. (Ga— A @A 6’3) (0 (obs™ A A) A O B) from 2, 4, 5 byPC
7. (3(obs AA)/\<>B) (g(obs‘AA/\B)vg(g(obs‘/\A)AB)vg(obs;/\i/\gB))
fromK4 by ¢, 4 andPC
8. (804— A?AAKB) — (5)(obs— ANANADB) v@(@(obs— NA)AB) v@(obs— AAAKB))
from 6 and 7 byPC
9. g(obs‘ NANAB)— 7(AAB) from c8by6), ¢ andPC
10. K(obs_ NAN KB) — 7(A A KB) from c8 by 0, ¢ andPC
11. K(Obs* NA) — TA from c8 by 5) 7 andPC
12. K(Obs— NA) — gobs‘ from LM2 andPC
13. (0 (obs A A)A B) — (obs™ 1 $AADB) from 11 and 12 by?C
14. (0 (obs A A)AB) — O (obs” A ¢ AAB) from 13 byP { ;
15. g(obs A 7,4 A B) — 7(7/1 A B) from c8 by 5’ 7 andPC
16. O (0 (0bs A A)AB) — ¢ (#ANAB) from 14 and 15 byPC
17. 5)04— — T3 from 8 and 9, 10, and 16 lRC
Casell:la™ — T3
1. o — ﬁ7A from c4 by 7 andPC
2. o —T3 from 1 byPC
Case lll:inf — T3

1. inf — Winf from c5
2. (Winf A 7A) — & (infA A) from LM1
3. (infA €AA G B) — (inf ¥ (nfAA)A O B) from 1, 2 byPC
4, T(inf/\ A) — <> (inf A A) from M1, byg, 7 andPC
5. (inf A CAND B) — (infA X(inf NA)A KB) from 3, 4 byPC

6. (O(INfAA)AGB)— (C(infAAAB)V G (infAAAGB)V O (O (inf AA) A B))
fromK4 by , ¢ andPC

7. (inffA ®AAOB)— (O(nfAAAB)V O(InfAAAGB)V O(O(infA A) A B))

from 5, 6 andPC
8. (infA O (infAAAB)) — #(AAB) from c10by ¢, 4 andPC



9.
10.
11.
12.
13.
14.

15.
16. (i

17.
18.
19.
20.
21.

22.
23.

(inf A O (infA AA G B)) — #(AAOB) from c10by ¢, % andPC

g(inf/\ A) — Xinf from LM2 andPC

(inf A O (0 (inf A A) A B)) — 0 (OinfA O (inf A A) A B) from LM3
i

O
(Qinf A O (inf A A) A B)) — (Qinf A Qinf A O (inf A A) A B)) from 10 byPC
0 (0infA O (infA A) A B)) — 0 (0in

QinfA O (infA A)AB))  from 12 byP
(inf A O (0 (inf A A) A B)) — (inf A O (Qinf A GinfA O (inf A A) A B))
from 11, 13 byPC

|

T >

(Qinf A Qinf) — inf T4
(inf A O (0 (inf A A) A B)) — (inf A O (inf A O (inf A A) A B)) -
from 14, 15 byPC andP { ¢
infA O (infAA) — ¢ A from c10by ¢, ¢ andPC
(inf A O (inf A A) A B) — (infA ¢ AN B) from 17 byPC
O (nfA O (infAA)AB) — O (nfA # AADB) from 18 byP ¢ ;
(inf A O (O (inf A A) A B)) — (inf A O (infA € AA B)) from 19 byPC
(ian?(inf/\?A/\B)) — 7(7A/\B) from c10by ¢, ¢ andPC
(infA O (O (nfAA)AB) — &(®AADB) from 20, 21 byPC
inf — T3 from 7 and 8, 9 and 22 byC

Case IV:at — T3:

e
N o

=
W

© ©® No g bk DR

7A — 5)/1 from M1 by 5: 7 andPC
(at A YA KB) — ( A O B) from 1 byPC
% AN ¢ B)) from K4 by ¢, #,andPC

( (CAAB)V O(AAGB)) from2,3byPC
(

oﬁ/\g(A/\B)) — 7(A/\B) from c7by5>,7andPC
(a*/\K(A/\KB)) — 7(AA_>B from c7by5>,7andPC
(@t AOQ(GAAB)) — O (Oat A OANAB) from LM3
(‘&ﬁ A KA) A from c9 by 0, ¢ andPC
(GatAGAANB) — (€ AADB) from 8 by PC
0(QatAGANB)— O (#ANB) from 9 byP$
(@t A OQ(GAANB)) — (a* A O (®AADB)) from 7, 10 byPC
(@t AO(®ANB)) — ¢ (€AADB)) fromc7by ¢, 4 andPC
(@t AO(GAANB)) — ¢ (4AADB)) from 11, 12 byPC

at — T3 from 4 and 5, 6 and 13 bpC



-
CaseV:0at — T3:

e o o o
© g > w DNk o

© ©® N O A~ WDdhPRE

714 — 6),4 from M1 by 3, 7 andPC
(<>a+/\ CAN <>B) —~(CANQ from 1 byPC
GANOB) = (O(AAB)V B)) fromK4 by &, ¢ andPC

AN OB)
VO(OGAAB)V O (AN OB
\ B)

(0

(0ot A®AANCB)— (0(AAB)V G(CAAB)V O(AA O B)) from2,3byPC
(%ﬁ /\K(A/\B)) 7(A/\B) from c9by ¢, 4 andPC
(Gat A OG(ANOB)) — #(AAOB) fromcoby ¢, ¢ andPC
QatAG(GAAB)) — 0(0 Oat A OAADB) from LM3
0 0at = Qat from mirror of K3 by O, ¢ andPC
K(WMM GANB) - 0(Qat A GANB) from 8 byPC andP () ;
(Gat A GA) — €A fromc9by ¢, 4 andPC
(Ga* A GANB) — (QA/\B) from 10 byPC
0 (Qat A QAAB)—><>(0A/\B) from 11 by PO ;
(Qat A O <>(<>A/\B)) —~(Qat A O (®ANB)) from 7, 9, 12 byPC
O(®ANB B)) ¢ (¢#ANB) fromc9by O, ¢ andPC
(QatAG(GAAB) —— #(®AAB) from 13, 14 byPC
Oat T3 from 4, and 5, 6 and 15 byC

QED



