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Abstract. Non-classical logics have proven to be an adequate framework to formalize knowledge
representation. In this paper we focus on a multimodal approach to formalize order-of-magnitude
qualitative reasoning, extending the recently introduced system MQ, by means of a certain notion of
negligibility relation which satisfies a number of intuitively plausible properties, as well as a minimal
axiom system allowing for interaction among the different qualitative relations. The main aim is to
show the completeness of the formal system introduced. Moreover, we consider some definability
results and discuss possible directions for further research.
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1. Introduction

Although the use of qualitative order of magnitude reasoning (OMR) has been an active research area
in AI for some time, the analogous development of a logical approach has received little attention. Var-
ious multimodal approaches have been promulgated, for example, for qualitative spatial and temporal
reasoning but, as far as we know, no such approach has been developed for OMR.

A typical OMR calculus is designed in such a way that it generalizes computations over precise
values to computations over coarse values. The distinctive feature of OMR is that the coarse values are
generally of different order of magnitude. Depending on the way the coarse values are defined, different
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OMR calculi can be generated: It is usual to distinguish between Absolute Order of Magnitude (AOM)
and Relative Order of Magnitude (ROM) models. The former is represented by a partition of the real line,
in which each element ofR belongs to a qualitative class. The latter introduces a family of binary order
of magnitude relations which establish different comparison relations between numbers. The underlying
idea is that by reasoning in terms of qualitative ranges of variables, as opposed to precise numerical
values, it is possible to compute information about the behavior of a system with very little information
about the system and without doing expensive numerical simulation.

In [9] and extensions such as [5, 6, 7], coarse values are defined by means of ordering relations that
express the distance between those values on a totally ordered domain in relation to the range they cover
on that domain. Specifically, the seminal paper [9], distinguishes three types of qualitative relations,
such asx is close toy, or x is negligible w.r.t.y or x is comparable toy; later on, some extensions were
proposed in order to improve the original one with the inclusion of quantitative information, and allow
for the control of the inference process [5, 6, 7].

There are attempts to integrate both approaches as well, so that an absolute partition is combined
with a set of comparison relations between real numbers [12, 13]. For instance, it is usual to consider
theAOM(5) approach which, by considering five landmarks, divides the real line in seven equivalence
classes and use the following labels to denote these equivalence classes ofR:
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The labels correspond to “negative large”, “negative medium”, “negative small”, “zero”, “positive
small”, “positive medium” and “positive large”, whereas the real numbersα andβ are the landmarks
used to delimit the equivalence classes (the particular criteria to choose these numbers would depend on
the application in mind). In [12] three binary relations (close to, comparable, negligible) were defined
in the spirit of [9], but using the labels corresponding to quantitative values, and preserving coherence
between the relative model they define and the absolute model in which they are defined.

Our research line in this context is to develop a non-classical logic for handling qualitative reasoning
with orders of magnitude. In [4], a minimal system for multimodal qualitative reasoning was introduced
to handle, in some sense, the notion of comparability. Note that we use the termmultimodalto refer to
our approach to state that several independent modalities are included in the language.

To the best of our knowledge, no other formal logic has been developed to deal with order-of-
magnitude reasoning. However, non-classical logics do have been used as a support of qualitative rea-
soning in several ways: among the formalisms for qualitative spatial reasoning, the Region Connection
Calculus (RCC) [11, 1] has received particular attention; in [2, 14], multimodal logics were used to deal
with qualitative spatio-temporal representations, and in [10] branching temporal logics have been used
to describe the possible solutions of ordinary differential equations when we have limited information
about a system.

Our aim in this paper is to include a certain notion of negligibility in the initial approach introduced
in [4], in which an arbitrary linearly ordered set (usually thought of as a subset of the real numbers) was
partitioned in classes consisting of positive observable, negative observable and non-observable (also
called infinitesimal) numbers.

As a first approach to the logics of qualitative order-of-magnitude reasoning, we have based our
minimal languages on the systemAOM(2), which is both simple enough to keep under control the
complexity of the system and rich enough so as to permit the representation of a subset of the usual



language of qualitative order-of-magnitude reasoning.
The intuitive representation of our underlying set of values (usually considered to be a subset of the

real numbers, although this is not essential) is given below, in which two landmarks−α and+α are
considered
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In the picture,−α and+α represent respectively the greatest negative observable and the least pos-
itive observable. This choice makes sense, in particular, when considering physical metric spaces in
which we always have a smallest unit which can be measured; however, it is not possible to identify a
least or greatest non-observable number.

Once we have the equivalence classes in the real line, we can make comparisons between numbers
by using binary relations such as

• x is less thany, in symbolsx < y

• x is less than and comparable toy, in symbolsx < y

• x is negligible w.r.t.y, in symbolsx ≺ y

This paper is organized as follows: In Section 2 the syntax and the semantics of the proposed logic
L(MQ)N is introduced; in Section 3 an axiom system forL(MQ)N is presented, which axiomatizes
validity in frames based on an arbitrary linearly ordered set. In Section 4 the completeness proof is given,
following a Henkin-style. In Section 5 we briefly explore the definability and relationships between some
notions related to the property of density; general definability issues inL(MQ)N are out of the scope of
this paper and will be further studied elsewhere. Finally, in Section 6 some conclusions are drawn and
prospects for future work are presented.

2. Syntax and Semantics of the LanguageL(MQ)N

In our syntax we will consider the connectives
−→
� and

←−
� to deal with the usual ordering<, the connec-

tives
−→
� and

←−
� to deal with< and the connectives

−→
�n and

←−
�n to deal with≺. The intuitive meanings of

each modal connective is as follows:

−→
�A meansA is true for all number greater than the current one.
−→
�A is readA is true for all number greater than and comparable with the current one.
←−
�A meansA is true for all number less than the current one.
←−
�A meansA is true for all number less than and comparable with the current one.
−→
�n A meansA is true for all number from which the current one is negligible.
←−
�n A meansA is true for all number which is negligible from the current one.

The intuitive description of the meaning of the negligibility-related modalities deserves some ex-
plaining comments. Depending on the particular context in which we are using the concept of negligi-
bility, several possible definitions can arise. We have chosen to use an intrinsically directional notion of



negligibility, in that negligible numbers are always to the left. There are other approaches in which the
negligibility relation is not directional, so a pointx can be negligible wrt points smaller thanx and also
wrt points greater thanx, for instance, in [6, 13] it is the absolute value of an element what is considered
before considering the negligibility relation.

As stated above, depending on the particular application a given approach might result either appro-
priate or inappropriate; specifically, one can wonder in which sense can one say that, for instance -1000
is negligible with respect to -1. It is not difficult to find real situations in which this interpretation makes
sense, for example when interpreting the numbers above as exponents, since10−1000 can be considered
negligible with respect to10−1.

The syntax of our initial language for qualitative reasoning with comparability and negligibility is
introduced below:

The alphabet of the languageL(MQ)N is defined by using:

• A stock of atoms or propositional variables,V.

• The classical connectives¬,∧,∨ and→ and the constants> and⊥.

• The unary modal connectives
−→
� ,
←−
� ,
−→
� ,
←−
� ,
−→
�n and

←−
�n .

• The constantsα+ andα−.

• The auxiliary symbols: (, ).

Formulas are generated fromV ∪{α+, α−,>,⊥} by the construction rules of classical propositional
logic adding the following rule: IfA is a formula, then so are

−→
�A,

←−
�A,

−→
�A,

←−
�A,

−→
�n A and

←−
�n A.

Themirror imageof A is the result of replacing inA each occurrence of
−→
� ,
←−
� ,
−→
� ,
←−
� ,
−→
�n ,
←−
�n , α+,

α− by
←−
� ,
−→
� ,
←−
� ,
−→
� ,
←−
�n ,
−→
�n , α−, α+, respectively. We shall use the symbols

−→
♦ ,
←−
♦ ,
−→
� ,
←−
� ,
−→
♦n and

←−
♦n

as abbreviations respectively of¬−→�¬, ¬←−�¬, ¬−→�¬, ¬←−�¬, ¬−→�n ¬ and¬←−�n ¬.
The intended meaning of our language is based on a multi-modal approach, therefore the semantics

is given by using the concept of frame.

Definition 2.1. A multimodal qualitative framefor L(MQ)N (or, simply, aframe) is a tupleΣ =
(S,+α,−α, <,≺), where

1. (S, <) is a linearly ordered set.

2. +α and−α are designated points inS (calledframe constants) and allow to form the sets OBS+,
INF, and OBS− that are defined as follows:

OBS− = {x ∈ S | x ≤ −α}; INF = {x ∈ S | −α < x < +α}; OBS+ = {x ∈ S | +α ≤ x}

3. ≺ is a restriction of<, i.e.≺⊆<, and satisfies:

(i) If x ≺ y < z, thenx ≺ z

(ii) If x < y ≺ z, thenx ≺ z

(iii) If x ≺ y, then eitherx /∈ INF or y /∈ INF

We will usex < y as an abbreviation of “x < y andx, y ∈ EQ, whereEQ ∈ {INF, OBS+, OBS−}”.



It is worth noticing that as a consequence of items (i) and (ii) we have the transitivity of≺; on the other
hand, item (iii) states that two non-observable elements cannot be compared by the negligibility relation.

The conditions (i)–(iii) under the last item above aim at recovering a minimal set of standard intu-
itions about any qualitative notion of negligibility which are illustrated, in particular, in the following
model based in the arithmetic of a pocket calculator:

Example 2.1. In a pocket calculator it is not possible to represent any number whose absolute value is
less than10−99. Therefore, it makes sense to consider−α = −10−99 and+α = +10−99 since any
number between−10−99 and10−99 cannot be observed/represented.1

On the other hand, a numberx can be said to be negligible with respect toy provided that the
differencey−x cannot be distinguished fromy. Numerically, and assuming an 8+2 (digits and mantissa)
display, this amounts to state thatx is negligible wrty iff y − x > 108.

Under this model, it is straightforward to check that properties (i)–(iii) hold.

Definition 2.2. Let Σ be a multimodal qualitative frame, amultimodal qualitative model onΣ (or Σ-
model, for short) is an ordered pairM = (Σ, h), whereh is a meaning function(or, interpretation)
h : V −→ 2S. Any interpretation can be uniquely extended to the set of all formulas inL(MQ)N (also
denoted byh) by means of the usual conditions for the classical boolean connectives and the constants
> and⊥, and the following conditions for the modal operators and frame constants:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such thatx < y}

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such thatx < y}

h(
−→
�n A) = {x ∈ S | y ∈ h(A) for all y such thatx ≺ y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such thaty < x}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such thaty < x}

h(
←−
�n A) = {x ∈ S | y ∈ h(A) for all y such thaty ≺ x}

h(α+) = {+α}
h(α−) = {−α}

The concepts of truth and validity are defined in a straightforward manner.

3. Axiomatic system forL(MQ)N

In this section we define an axiomatic system for multimodal qualitative logic with negligibility. A list
of axiom schemes and inference rules are presented in order to build the system. We consider all the
tautologies of classical propositional logic together with the following axiom schemata:

Axiom schematafor white connectives:

K1
−→
�(A→ B)→ (

−→
�A→ −→�B)

K2 A→ −→�
←−
♦A

K3
−→
�A→ −→�−→�A

K4
(−→
�(A∨B)∧−→�(

−→
�A∨B)∧−→�(A∨−→�B)

)
→

(−→
�A∨−→�B

)
1Of course, there are much more numbers which cannot be represented, but this is irrelevant for this example.



Axiom schemafor
−→
� :

C1
−→
�(A→ B)→ (

−→
�A→ −→�B)

Mixed axiom:

M1
−→
�A→ −→�A

Axiom schemata for constants,whereξ is eitherα+ or α−

c1
←−
♦ ξ ∨ ξ ∨

−→
♦ ξ

c2 ξ → (
←−
�¬ξ ∧ −→�¬ξ)

c3 α− →
−→
♦α+

c4 α− → −→�A

c5 (
←−
♦α− ∧

−→
♦α+)→ −→�(

←−
♦α− ∧

−→
♦α+)

c6
−→
♦α− → −→�(α− ∨

−→
♦α−)

c7 (α+ ∧ −→�A)→ −→�A

c8
−→
�A→ −→�((α− ∨

−→
♦α−)→ A)

c9 (
←−
♦α+ ∧ −→�A)→ −→�A

c10 (
←−
♦α− ∧

−→
♦α+ ∧ −→�A)→ −→�((

←−
♦α− ∧

−→
♦α+)→ A)

Axiom schemata for negligibility

N1
−→
�n (A→ B)→ (

−→
�n A→ −→�n B)

N2 A→ −→�n
←−
♦n A

N3
−→
�A→ −→�n A

N4
−→
�n A→ −→�−→�n A

N5
−→
�n A→ −→�n −→�A

N6 (
←−
♦α− ∧

−→
♦α+)→ −→�n (α+ ∨

←−
♦α+)

We also consider as axioms the corresponding mirror images of all the axioms.2

Rules of inference:

(MP) Modus Ponens for→. (N
−→
� ) If ` A then` −→�A. (N

←−
� ) If ` A then` ←−�A.

Let us recall that the systemMQ introduced in [4] consists ofK1–K4,M1, C1, c1–c10, their mirror
images and the rules of inference; the minimal system extendingMQ with the negligibility relation is
denotedMQN , and isMQ plusN1–N6 and their mirror images.

The concepts ofproofandtheoremare defined in a standard way.

4. Soundness and completeness ofMQN

The proof of soundness is straightforward, since validity of the axioms and preservation of validity by
inference rules is just a standard calculation. Thus, we need only to focus on completeness and, with this
aim, a Henkin-style proof will be constructed.

The proof of completeness follows the step-by-step method as described in [3]; consequently, some
results about(maximal) consistentsets of formulas are needed.

4.1. Preliminary lemmas

Some familiarity with the basic properties of maximal consistent sets (mc-sets) is assumed; in the proof
of the properties of the relations between mc-sets defined below we shall useMC to denote the set of all
mc-sets of formulas:
2Alternatively, we could have just considered only the mirror images corresponding to K1, K2, K4, C1, M1, N1–N6 and c4–10,
since the rest of images can be derived.



Definition 4.1. ConsiderΓ1,Γ2 ∈MC. Then:

1. Γ1 B Γ2 if and only if {A | −→�A ∈ Γ1} ⊆ Γ2

2. Γ1 I Γ2 if and only if {A | −→�A ∈ Γ1} ⊆ Γ2

3. Γ1 Bn Γ2 if and only if {A | −→�n A ∈ Γ1} ⊆ Γ2.

Lemma 4.1. (Lindenbaum)
Any consistent set of formulas inMQN can be extended to an mc-set inMQN .

The three lemmas below state some general modal properties of the operatorsB, I andBn whose
proof is straightforward: the behaviour with respect to the relations just introduced, the transitivity and
linearity of those orderings, and the existence ofmc-sets with suitable properties.

Lemma 4.2. ConsiderΓ1,Γ2 ∈MC, then:

1. Γ1 B Γ2 if and only if {A | ←−�A ∈ Γ2} ⊆ Γ1

2. Γ1 B Γ2 if and only if {
−→
♦A | A ∈ Γ2} ⊆ Γ1

3. Γ1 B Γ2 if and only if {
←−
♦A | A ∈ Γ1} ⊆ Γ2

Lemma 4.3. ConsiderΓ1,Γ2,Γ3 ∈MC, then

1. If Γ1 B Γ2 andΓ2 B Γ3, thenΓ1 B Γ3.

2. If Γ1 B Γ2 andΓ1 B Γ3, then eitherΓ2 B Γ3, or Γ3 B Γ2, or Γ2 = Γ3.

3. If Γ2 B Γ1 andΓ3 B Γ1, then eitherΓ2 B Γ3, or Γ3 B Γ2, or Γ2 = Γ3.

Lemma 4.4. AssumeΓ1 ∈MC:

1. If
−→
♦A ∈ Γ1, then there existsΓ2 ∈MC such thatΓ1 B Γ2 andA ∈ Γ2.

2. If
←−
♦A ∈ Γ1, then there existsΓ2 ∈MC such thatΓ2 B Γ1 andA ∈ Γ2.

Remark 4.1. The statements of the three previous lemmas only contain the behaviour of the white modal
connectives, however the black modalities and the modalities for negligibility have similar properties.
For referring to these alternative formulations, we will write, e.g. Lemma 4.2(I) or Lemma 4.2(Bn ).

The following technical proposition introduces a number of theorems ofL(MQ)N which are used
in some proofs to appear later:

Proposition 4.1. The following formulas are theorems ofMQN , whereA andB are wff:

1.
−→
♦α− ∨ α− ∨ (

←−
♦α− ∧

−→
♦α+) ∨ α+ ∨

←−
♦α+

2. (ϕ ∧ −→�A)→ −→�(ϕ→ A), whereϕ ∈ {
−→
♦α−,

←−
♦α+,

←−
♦α− ∧

−→
♦α+}

3. (
−→
�A ∧

−→
♦B)→ (

−→
� (A ∧B) ∨

−→
� (
−→
�A ∧B) ∨

−→
� (A ∧

−→
♦B))

4. (
←−
♦ϕ ∧

−→
♦ϕ)→ ϕ, whereϕ ∈ {

−→
♦α−,

←−
♦α+,

←−
♦α− ∧

−→
♦α+}



5. (
−→
♦n A ∧

−→
♦B)→ (

−→
♦n (A ∧B) ∨

−→
♦ (
−→
♦A ∧B) ∨

−→
♦n (A ∧

−→
♦B))

6. (α+ ∨
←−
♦α+)→ (

−→
♦A→

−→
�A)

The following two lemmas are specific of the systemMQ, for they are concerned withB andI.
Although they were already stated in [4] their proof is firstly included here.

Lemma 4.5. ConsiderΓ1,Γ2 ∈ MC such thatΓ1 B Γ2, thenΓ1 I Γ2 holds if and only if one of the
following conditions below is fulfilled:

1. {
←−
♦α− ∧

−→
♦α+,

←−
♦α+,

−→
♦α−} ∩ Γ1 ∩ Γ2 6= ∅

2. α+ ∈ Γ1

3. α− ∈ Γ2

Proof:
ConsiderΓ1 B Γ2, and assumeΓ1 I Γ2. Let us see that some of the conditions 1–3 holds.

By maximality ofΓ1 and Proposition 4.1, we have that
−→
♦α−∨α−∨(

←−
♦α−∧

−→
♦α+)∨α+∨

←−
♦α+ ∈ Γ1.

We proceed by cases:

• If
−→
♦α− ∈ Γ1, by Axiom c6 we have

−→
�(α− ∨

−→
♦α−), now using the fact thatΓ1 I Γ2 we have

thatα−∨
−→
♦α− ∈ Γ2 and, as a result, eitherα− ∈ Γ2 (which is Condition 3) or

−→
♦α− ∈ Γ2 (which

leads to Condition 1).

• The caseα− ∈ Γ1 cannot hold, otherwise by Axiom c4 andΓ1 I Γ2 we would obtain that any
formulaA, in particularA = ⊥, is in Γ2, which is a contradiction.

• If
←−
♦α− ∧

−→
♦α+ ∈ Γ1, then Axiom c5 leads to

←−
♦α− ∧

−→
♦α+ ∈ Γ2 by usingΓ1 I Γ2, then

Condition 1 holds.

• For the caseα+ ∈ Γ1, there is nothing to prove, since Condition 2 trivially holds.

• Finally, if
←−
♦α+ ∈ Γ1, then, by K2 and K3, we have

−→
�
←−
♦α+ ∈ Γ1 and, byΓ1 B Γ2, we would

also have
←−
♦α+ ∈ Γ2 and Condition 1 holds.

Therefore, any of the alternatives leads to some of the Conditions 1–3.

Reciprocally, in order to show thatΓ1 I Γ2, consider
−→
�A ∈ Γ1 and let us prove thatA ∈ Γ2:

• Assume Condition 1, and denote byϕ an element in the intersection; in particular, we have both
ϕ ∈ Γ1, andϕ ∈ Γ2. Now, taking into account Proposition 4.1 the formula(ϕ∧−→�A)→ −→�(ϕ→
A) is a theorem ofMQ, we obtain

−→
�(ϕ→ A) ∈ Γ1, then using the general hypothesisΓ1 B Γ2,

we have thatϕ→ A ∈ Γ2 and thusA ∈ Γ2.

• Assume Condition 2, this isα+ ∈ Γ1, we would haveα+ ∧ −→�A ∈ Γ1 and, by Axiom c7, we
obtain

−→
�A ∈ Γ1. Now usingΓ1 B Γ2 we obtainA ∈ Γ2.

• Assume Condition 3, this isα− ∈ Γ2. Recalling
−→
�A ∈ Γ1, by Axiom c8, we get

−→
�((
−→
♦α− ∨

α−) → A) ∈ Γ1. On the other hand, byΓ1 B Γ2 and the obvious fact that
−→
♦α− ∨ α− ∈ Γ2, we

obtainA ∈ Γ2.

QED



Lemma 4.6. GivenΓ1,Γ2,Γ3 ∈MC we have:

1. If Γ1 I Γ2, thenΓ1 B Γ2.

2. If Γ1 I Γ2, Γ1 B Γ3 and it is not the case thatΓ1 I Γ3, thenΓ2 B Γ3.

3. If Γ2 I Γ1, Γ3 B Γ1 and it is not the case thatΓ3 I Γ1, thenΓ3 B Γ2.

4. If Γ1 B Γ2 B Γ3 andΓ1 I Γ3, thenΓ1 I Γ2 I Γ3.

Proof:

1. The proof of the first item is straightforward by Axiom M1.

2. By contradiction, assume thatΓ2 6B Γ3, that is, there exists
−→
�A ∈ Γ2 such thatA /∈ Γ3, in addition

to the hypothesesΓ1 I Γ2, Γ1 B Γ3 and it is not the case thatΓ1 I Γ3.
By usingΓ1 I Γ2, we get

−→
�
−→
�A ∈ Γ1, by Lemma 4.2(2I). Moreover, as it is not the case that

Γ1 I Γ3, there exists
−→
�B ∈ Γ1 such thatB /∈ Γ3. As a result, by standard properties of modalities, we

have that
−→
� (
−→
�A ∧B) ∈ Γ1. Furthermore, sinceΓ1 B Γ3, then

−→
♦ (¬A ∧ ¬B) ∈ Γ1 by Lemma 4.2(2).

On the other hand, by Proposition 4.1 the formula(−→
�C ∧

−→
♦D

)
→

(−→
� (C ∧D) ∨

−→
� (
−→
�C ∧D) ∨

−→
� (C ∧

−→
♦D)

)
is a theorem, then by instantiatingC =

−→
�A∧B andD = ¬A∧¬B, we obtain three different possibil-

ities, all of which lead to a contradiction:

(a)
−→
� (
−→
�A ∧B ∧ ¬A ∧ ¬B) ∈ Γ1. Obviously contradictory.

(b)
−→
� (
−→
� (
−→
�A ∧ B) ∧ ¬A ∧ ¬B) ∈ Γ1. In particular, we obtain

−→
�¬B ∈ Γ1; which contradicts

−→
�B ∈ Γ1, the defining property ofB, see above.

(c)
−→
� (
−→
�A ∧B ∧

−→
♦ (¬A ∧ ¬B)) ∈ Γ1. Contradiction between

−→
�A and

−→
♦¬B.

3. The proof is similar.

4. ConsiderΓ1 B Γ2 B Γ3 andΓ1 I Γ3. By transitivity we haveΓ1 B Γ2 and by Lemma 4.5 there are
three possibilities:

(i) The intersection{
←−
♦α− ∧

−→
♦α+,

−→
♦α+,

←−
♦α−} ∩ Γ1 ∩ Γ3 is non-empty.

Let ϕ be an element in the intersection above. Consider
−→
�A ∈ Γ1, then relying on the fact that

(ϕ ∧ −→�A) → −→�(ϕ → A) is a theorem (Proposition 4.1), we obtain
−→
�(ϕ → A) ∈ Γ1 and, by

Γ1 B Γ2 we getϕ → A ∈ Γ2. Let us prove now thatϕ ∈ Γ2 in order to show thatA ∈ Γ2: By
usingΓ1 B Γ2 B Γ3 and Lemma 4.2(items 2,3) we get(

←−
♦ϕ ∧

−→
♦ϕ) ∈ Γ2. Now, Proposition 4.1

also states that(
←−
♦ϕ ∧

−→
♦ϕ)→ ϕ is a theorem, thenϕ ∈ Γ2, by modus ponens we obtainA ∈ Γ2

and, thus,Γ1 I Γ2.

Now, consider
−→
�A ∈ Γ2, if we use again the theorem(ϕ ∧ −→�A) → −→�(ϕ → A), we have that

−→
�(ϕ→ A) ∈ Γ2. Now, sinceϕ ∈ Γ3 andΓ2 B Γ3 we obtainA ∈ Γ3, that is ,Γ2 I Γ3.



(ii) α+ ∈ Γ1.

Consider
−→
�A ∈ Γ1, by using Axiom c7 we get

−→
�A ∈ Γ1 and, fromΓ1 B Γ2, we obtainA ∈ Γ2

and, thus,Γ1 I Γ2.

Consider
−→
�A ∈ Γ2. Usingα+ ∈ Γ1 andΓ1 B Γ2 in Lemma 4.2(3) then

←−
♦α+ ∈ Γ2. Now, by

Axiom c9 we get
−→
�A ∈ Γ2 and, asΓ2 B Γ3, we haveA ∈ Γ3 and, thus,Γ2 I Γ3.

(iii) α− ∈ Γ3.

By Γ2 B Γ3, and by Lemma 4.2(2) we obtain
−→
♦α− ∈ Γ2. Consider

−→
�A ∈ Γ1, then by Axiom c8

we obtain that
−→
�((α− ∨

−→
♦α−) → A) ∈ Γ1 and, byΓ1 B Γ2 andα− ∨

−→
♦α− ∈ Γ2, we obtain

A ∈ Γ2, thusΓ1 I Γ2.

Consider
−→
�A ∈ Γ2; again by Axiom c8 we obtain that

−→
�((α− ∨

−→
♦α−) → A) ∈ Γ2, now by

usingΓ2 B Γ3 and the fact thatα− ∨
−→
♦α− ∈ Γ3, we getA ∈ Γ3. ThereforeΓ2 I Γ3.

QED

The following lemma is concerned specifically with the concept of negligibility.

Lemma 4.7. ConsiderΓ1,Γ2,Γ3 ∈MC, then

1. If Γ1 Bn Γ2, thenΓ1 B Γ2.

2. If Γ1 B Γ2, Γ1 Bn Γ3 and it is not the case thatΓ1 Bn Γ2, thenΓ2 B Γ3.

3. If Γ2 B Γ1, Γ3 Bn Γ1 and it is not the case thatΓ2 Bn Γ1, thenΓ3 B Γ2.

4. If Γ1 B Γ2 B Γ3 and eitherΓ1 Bn Γ2 or Γ2 Bn Γ3, thenΓ1 Bn Γ3.

Proof:

1. The proof of this item is trivial, just consider axiom N3.

2. Given
−→
�A ∈ Γ2 we have to prove thatA ∈ Γ3. Assume,A /∈ Γ3, by Γ1 Bn Γ3 and using

Lemma 4.2(2Bn ), we would have
−→
♦n ¬A ∈ Γ1. On the other hand, usingΓ1 6Bn Γ2, we know there

exists a formulaB such that
−→
�n B ∈ Γ1 andB /∈ Γ2. Thus,

−→
�A ∧ ¬B ∈ Γ2 and, usingΓ1 B Γ2, we

obtain
−→
♦ (
−→
�A ∧ ¬B) ∈ Γ1. As a result, we obtain that

−→
♦n ¬A ∧

−→
♦ (
−→
�A ∧ ¬B) ∈ Γ1.

We will prove that a contradiction arises from the assumption thatA /∈ Γ3 by applying a case-based
reasoning. The key issue is to take into account that the formula(−→

♦n C ∧
−→
♦D

)
→

(−→
♦n (C ∧D) ∨

−→
♦ (
−→
♦C ∧D) ∨

−→
♦n (C ∧

−→
♦D)

)
is a theorem ofMQN (Proposition 4.1), therefore some of the following three conditions should hold
(whereC andD have been substituted, respectively, by¬A and

−→
�A ∧ ¬B):

(a)
−→
♦n (¬A ∧ −→�A ∧ ¬B) ∈ Γ1. This contradicts the fact that

−→
�n B ∈ Γ1.

(b)
−→
♦ (
−→
♦¬A ∧ −→�A ∧ ¬B)) ∈ Γ1. This possibility is clearly contradictory.

(c)
−→
♦n (¬A ∧

−→
♦ (
−→
�A ∧ ¬B)) ∈ Γ1. This leads to

−→
♦n
−→
♦¬B ∈ Γ1 and, by axiom N5,

−→
♦n ¬B ∈ Γ1,

contradicting
−→
�n B ∈ Γ1.



As a result, it cannot be the case thatA /∈ Γ3 and, therefore,Γ2 B Γ3.

3. Similar to the previous case.

4. Firstly, assumeΓ1 Bn Γ2 and
−→
�n A ∈ Γ1. By axiom N5, we also have

−→
�n
−→
�A ∈ Γ1 and

−→
�A ∈ Γ2;

now, usingΓ2 B Γ3, we obtainA ∈ Γ3. AssumingΓ2 Bn Γ3, the same idea (but now using axiom N4)
leads toΓ1 Bn Γ3. QED

4.2. Completeness ofMQN

As stated above, we will provide a proof of completeness by using the step-by-step method. We have
to start the construction upon the concept ofpre-frame, which is a generalization of a frame in that the
landmarks are not required.

Definition 4.2. A pre-frameis a tuple obtained by eliminating either one or both frame constants from
a frame, that is, a pre-frame is either(S, <,≺) or (S,+α, <,≺) or (S,−α, <,≺).

The following definitions are needed in order to formally describe the construction method of each
step in the completeness proof.

Definition 4.3.

1. Given a (pre-)frameΣ, a traceof Σ is a functionfΣ : S −→ 2L(MQ)N

such that the setfΣ(x) is a
maximal consistent set for allx ∈ S.

2. LetfΣ be a trace ofΣ = (S,+α,−α, <). ThenfΣ is called:

• Coherentif it satisfies for allx, y:

(a) α+ ∈ fΣ(+α) andα− ∈ fΣ(−α)
(b) If x < y, thenfΣ(x) B fΣ(y)

(c) If x < y, thenfΣ(x) I fΣ(y)
(d) If x ≺ y, thenfΣ(x) Bn fΣ(y)

•
−→
♦ -propheticif it is coherent and for all formulaA and allx ∈ S:

if
−→
♦A ∈ fΣ(x), there existsy such thatx < y andA ∈ fΣ(y) (1)

The definition of
−→
� -propheticand

−→
♦n -propheticis similar, but considering the order relations

< and≺, respectively.

•
←−
♦ -historic if it is coherent and for all formulaA and allx ∈ S:

if
←−
♦A ∈ fΣ(x), there existsy such thaty < x andA ∈ fΣ(y) (2)

The definition of
←−
� -historicand

←−
♦n -historic is similar.

• The expressions (1) and (2) are called
−→
♦ -prophetic (resp.

←−
♦ -historic) conditionals forfΣ

wrt
−→
♦A (resp.

←−
♦A) andx. The same terminology is applied to connectives

−→
� ,
−→
♦n ,
←−
� ,
←−
♦n .

• fΣ is said to befull if it is prophetic and historic.



The key concepts ofextensionof a frame andactiveor exhaustedconditional are given in the defini-
tion below:

Definition 4.4.

1. Given two framesΣ1 = (S1,+α1,−α1, <1,≺1),Σ2 = (S2,+α2,−α2, <2,≺2), we say that
Σ2 is an extension ofΣ1 if the following conditions are satisfied:S1 ⊆ S2, <1⊆<2, ≺1⊆≺2,
+α1 = +α2,−α1 = −α2.

Similarly, we say that a pre-frameΥ1 is an extension of the pre-frameΥ2.

2. LetfΣ be a trace of a frameΣ = (S,+α,−α, <,≺).

• A
−→
♦ -prophetic conditional forfΣ (with respect to

−→
♦A andx) is said to beactiveif

−→
♦A ∈

fΣ(x) but there is noy such thatx < y andA ∈ fΣ(y); otherwise, if there existsy such that
x < y andA ∈ fΣ(y) the conditional is said to beexhausted.3

• The definition ofactiveandexhausted
−→
� -prophetic (

−→
♦n -prophetic) conditional are given in a

similar manner.

• For conditionals of typehistoric the definitions are similar.

The idea of the proof of completeness is to show that for any consistent formulaA, a frameΣ =
(S, α+, α−, <,≺) and a full tracefΣ can be defined, such thatA ∈ fΣ(x) for somex ∈ S. This frame
Σ is constructed step-by-step and, in order to obtain an initial frame to work with, a procedure is needed
in which, beginning with a pre-frame, an initial frameΣ0 is obtained.

Obtaining an initial frame

We considerΥ0 = (S′, <′,≺′) whereS′ = {x0}, <′ =≺′ = ∅, for which the tracefΥ0 is defined as
fΥ0(x0) = Γ0 whereΓ0 is a maximal consistent set containingA, which exists by Lindenbaum’s lemma.
The next step depends on whetherΓ0 contains eitherα+, or α− or none of them (these alternatives are
pairwise incompatible because of the consistency ofΓ0 and Axioms c2 and c3).

• Assume thatα− ∈ Γ0, then we forcex0 = −α and, as a result, we have
−→
♦α+ ∈ Γ0 = fΥ0(x0)

because of Axiom c3. By Lemma 4.4(1) there existsΓ1 such thatα+ ∈ Γ1. Now, we consider the
frameΣ0 = (S0, <0,≺0) as follows:

– S0 = {x0,+α}
– <0= {(x0,+α)}
– ≺0= {(x0,+α)}, if fΥ0(x) Bn Γ1; otherwise define≺0= ∅.

and the corresponding trace is defined asfΣ0 = fΥ0 ∪ {(α+,Γ1)}, which is clearly coherent.

• The caseα+ ∈ Γ0 is similar by using the mirror image of Axiom c3.

3In other words, a conditional is said to be active if the conditional expression is not satisfied, whereas is said to be exhausted
if the consequent is satisfied.



• Finally, assume that neitherα+ nor α− is in Γ0. We need to apply two steps as the previously
described, one for introducing each frame constant. This can be done in a coherence-preserving
way by using the theorem

−→
♦α− ∨ α− ∨ (

←−
♦α− ∧

−→
♦α+)∨ α+ ∨

←−
♦α+ (see Proposition 4.1) then,

taking into account that neitherα+ norα− is in Γ0, we have
−→
♦α−∨(

←−
♦α−∧

−→
♦α+)∨

←−
♦α+ ∈ Γ0.

Lemma 4.4 allows to introduce a new frame constant, and we are in one of the previous cases.

Now, we can consider that we have an initial frame to work with. This frameΣ0 is the basis of the
construction of the frameΣ stated above as the countable union of a countable sequence of finite frames,
Σ0,Σ1, . . . ,Σn, . . .; with this aim:

• We will consider an indexed denumerable infinite set4 S = {xi | i ∈ N} whose elements will be
used to build the frames in the sequenceΣi; we will consider the classΞS of frames(S,+α,−α, <
,≺), whereS is a finite subset ofS.

• We will also consider an enumeration of formulasA0, A1, . . . , An, . . . of the languageL(MQ)N ,
so that we can also assign a code number to each prophetic (historic) conditional in the usual way.

From the initial frame onwards

Assume thatΣn = (Sn, <n,≺n) andfΣn are defined. If no conditional is active, thenΣn+1 = Σn,
fΣn+1 = fΣn and the construction is finished. Otherwise, i.e., if there are prophetic (or historic) condi-
tionals forfΣn which are active, then we choose the conditional(C) with the lowest code number and
then, by theexhausting lemmabelow, construct an extensionΣn+1 = (Sn+1, <n+1,≺n+1) ∈ ΞS of Σn

and an extensionfΣn+1 of fΣn such that the conditional(C) for fΣn+1 is exhausted.
Although the trace of each of these finite frames is coherent, in general, it fails to be either prophetic

or historic. However, the tracefΣ of Σ, defined as the countable union of the countable sequence of
finite framesΣi, can be proven to be full. Thus, the consistent formulaA is verified by applying the
trace lemma.

To finish the proof of completeness we have just to state and prove the two lemmas referenced above.
The first one follows easily by induction on the complexity ofA.

Lemma 4.8. (Trace lemma)
Let fΣ be a full trace of a multimodal qualitative frameΣ. Let h be an interpretation assigning to each
propositional variablep the seth(p) = {x ∈ S | p ∈ fΣ(x)}. Then, for any formulaA we have
h(A) = {x ∈ S | A ∈ fΣ(x)}.

Regarding the proof of the exhausting lemma, it is worth to notice that we will use a stronger version
of coherent tracesΣ wrt Bn , in the sense thatx ≺ y if and only if fΣ(x) Bn fΣ(y). Such a trace will be
said to bestrongly≺-coherent.

In the construction we will guarantee that any finite frameΣk of the sequenceΣ0,Σ1, . . . is strongly
≺-coherent (note that this holds trivially forΣ0).

4Note thatx0 (and possiblyx1) have been used in the construction of the initial frameΣ0.



Lemma 4.9. (Exhausting lemma)
Let fΣk

be a strongly≺-coherent trace of a frameΣk ∈ ΞS , and suppose that there is a prophetic
(historic) conditional,(C), for fΣk

which is active. Then there is a frameΣk+1 ∈ ΞS and a strongly
≺-coherent tracefΣk+1

extendingfΣk
, such that(C) is a conditional5 for fΣk+1

which is exhausted.

Proof:

Exhausting active
−→
� -prophetic conditionals

Consider the case of an active
−→
� -prophetic conditional:

If
−→
�A ∈ fΣk

(x), then there existsy such thatx < y andA ∈ fΣk
(y)

That is, we have
−→
�A ∈ fΣk

(x) but there does not existy satisfying the consequent of the conditional.
Our goal is to select a new frameΣk+1 in the classΞS which is an extension ofΣk and, moreover,

define a new tracefΣk+1
, extendingfΣk

, for which the previous conditional is exhausted. This is proved
by induction on the numberl of successors ofx in Sk.

To begin with, let us consider a maximal consistent setΓ such thatfΣk
(x) I Γ andA ∈ Γ, which

exists by Lemma 4.4(1I).

1. If l = 0, thenΣk+1 is defined as follows:

Sk+1 = Sk ∪ {y}, wherey ∈ S r Sk

<k+1 = <k ∪{(x, y)} ∪ {(z, y) | z <k x}
≺k+1 = ≺k ∪{(z, y) | z ≤k x andfΣk+1

(z) Bn Γ}
fΣk+1

= fΣk
∪ {(y, Γ)}

Lemma 4.3(1,1I) guarantees the coherence of the definitions for both white and black triangles.
The strong≺-coherence offΣn+1 is ensured by construction and Lemma 4.7(4).

Note also thatΣk+1 as defined is a finite frame, that is, belongs to the classΞS . Specifically,
Lemma 4.7(4) guarantees conditions (i) and (ii) of Definition 2.1 for≺k+1; moreover, condition
(iii) is immediate because the new pointy clearly satisfies+α ≤k+1 x <k+1 y.

2. If l > 0, let x′ be the successor ofx in Σk. The definitions ofSk+1 andfΣk+1
are the same as

above. Now, we have two subcases to consider:

(a) x <k x′.

If
−→
�A ∈ fΣk

(x′), then we apply the inductive case.

If
−→
�A /∈ fΣk

(x′), as it is obvious thatA /∈ fΣk
(x′); therefore, we have that¬A ∧ ¬

−→
�A ∈

fΣk
(x′). Now, by coherence offΣk

(x), we havefΣk
(x) I fΣk

(x′), as we also have
fΣk

(x) I Γ, by Lemma 4.3(2I) we have three possibilities out of which onlyΓ I fΣk
(x′)

is not contradictory.

5Given a conditional forfΣ, if we simply replace the labelΣ with Σ′ whereΣ ⊆ Σ′, we have a conditional forfΣ′ but with
the same code number as the conditional forfΣ. Then we can say that in both cases we refer to the same conditional.



Therefore, we havefΣk
(x) I Γ I fΣk

(x′). This means that it is possible to select a point
y ∈ S r Sk to be located betweenx andx′ where we will consider the setΓ, by preserving
coherence, that is, the relations<k+1 and≺k+1 are defined as follows (recall thatSk+1 and
fΣk+1

have the same definition as in the previous case):

<k+1 = <k ∪{(x, y), (y, x′)} ∪ {(z, y) | z <k x} ∪ {(y, z) | x′ <k z}
≺k+1 = ≺k ∪{(z, y) | z ≤k x andfΣk

(z) Bn Γ} ∪ {(y, z) | x′ ≤k z andΓ Bn fΣk
(z)}

Lemma 4.6(1) and Lemma 4.3(1) ensure the coherence offΣk+1
w.r.t. B. Lemma 4.3(1I)

is needed to guarantee the coherence w.r.tI. Strong≺-coherence offΣk+1
is obtained by

construction and Lemma 4.7(4).

Finally, let us prove thatΣk+1 is in ΞS . Conditions (i) and (ii) are given by Lemma 4.7(4); to
check condition (iii) we only need to show that for the new pointy and anyz the following
property holds: if eitherz ≺k+1 y or y ≺k+1 z it cannot be the case thatz, y ∈ INF.

Take anyz such thatz ≺k+1 y and assumez ∈ INF. By coherence offΣk+1
w.r.t B, we

would havefΣk+1
(α−) B fΣk+1

(z) B fΣ(α+); thus, clearly,
←−
♦α− ∧

−→
♦α+ ∈ fΣk+1

(z).
Now, by using Axiom N6, asz ≺k+1 y, by coherence, we haveα+ ∨

←−
♦α+ ∈ fΣk+1

(y) and,
again by coherence, this means thaty /∈ INF. The casey ≺k+1 z is similar

(b) x 6<k x′.

Under these conditions let us prove that−α <k x <k +α and, furthermore,x′ = +α.

As
−→
�A ∈ fΣk

(x), by using Axiom c4 and coherence offΣk
it follows thatx 6= −α; as a

result, byx 6<k x′, we obtainx′ = +α and−α <k x <k +α (recall thatx′ is the successor
of x).

Now, in order to apply Lemma 4.6(2), let us prove that the relationfΣk
(x) I fΣk

(x′) does
not hold. By contradiction, using the coherence offΣk

we would haveα+ ∈ fΣk
(x′) and,

by the mirror image of Axiom c4 (takingA = ⊥) and Lemma 4.2(1) we would obtain
⊥ ∈ fΣk

(x) in contradiction with the consistency offΣk
(x).

Moreover, recall that we havefΣk
(x) I Γ andfΣk

(x) B fΣk
(x′), thus, by Lemma 4.6(2),

we haveΓ B fΣk
(x′). This fact allows to define<k+1 as above with a pointy (associated

to Γ) betweenx andx′, note that in this casex <k+1 y 6<k+1 x′.

Regarding the negligibility ordering, the relation≺k+1 is defined as in the previous case.

Finally, Lemma 4.3(1,1I) guarantees the coherence of the tracefΣk+1
w.r.t. B andI, and

strong≺-coherence is given by construction and Lemma 4.7(4). The same justification as
above serves to show thatΣk+1, as defined, is inΞS .

Exhausting active
−→
♦n -prophetic conditionals

Consider an active
−→
♦n -prophetic conditional wrt

−→
♦n A andx, that is, we have

−→
♦n A ∈ fΣk

(x), but there
does not existy such thatx ≺ y andA ∈ fΣk

(y).
By Lemma 4.4(1Bn ), there existsΓ such thatfΣk

(x) Bn Γ andA ∈ Γ. Now, we will select an
extension ofΣk containing a new pointy ∈ Sr Sk, to whichΓ is assigned by preserving coherence. We
will proceed inductively on the number of successors ofx in Sk.

For the casel = 0, the extension is defined straightforwardly.



If l > 0, then makeSk+1 = Sk ∪ {y}, wherey ∈ S r Sk and definefΣk+1
= fΣk

∪ {(y, Γ)}; let us
consider the set{x∗ | x ≺k x∗}, and reason by cases depending on whether the set is empty or not:

1. {x∗ | x ≺k x∗} = ∅.

Let x′ be the last element in the frameSk, now define<k+1 and≺k+1 as follows:

<k+1 = <k ∪{(x′, y)} ∪ {(z, y) | z <k x′}
≺k+1 = ≺k ∪{(x, y)} ∪ {(z, y) | z ≤k x′ andfΣk

(z) Bn Γ}

We only need to prove the coherence offΣk+1
: the coherence wrtB is justified by Lemma 4.7(1)

and Lemma 4.3(1), and strong≺-coherence by construction and Lemma 4.7(4). The case of
I is proved by using the obvious relation+α ≤k x′; therefore by Lemma 4.5(1 or 2) and
Lemma 4.3(1I) we obtain the coherence.

2. {x∗ | x ≺k x∗} 6= ∅.

Let us consider̃x = min{x∗ | x ≺k x∗} (which can be shown to exist); moreover, letx′ be the
immediate successor ofx.

If it was the case that
−→
♦n A ∈ fΣk

(x̃), then we would apply induction; otherwise, we would have

¬
−→
♦n A ∈ fΣk

(z) for all z such thatx <k z (by Axiom N4). As a result, and taking into account
that ¬A ∈ fΣk

(x̃), by Lemma 4.7(1) and Lemma 4.3(2) we have that eitherΓ B fΣk
(x̃) or

fΣk
(x̃) B Γ.

• Let us assumeΓ B fΣk
(x̃):

Recall that for allz satisfyingx <k z <k x̃ we have thatfΣk
(x) 6Bn fΣk

(z) by strong≺-
coherence6, and sofΣk

(z) B Γ (by Lemma 4.7(2)). Thus<k+1 and≺k+1 can be defined as
follows:

<k+1 = <k ∪ {(x, y), (y, x̃)} ∪ {(z, y) | z <k x} ∪ {(y, z) | x̃ <k z}
≺k+1 = ≺k ∪ {(x, y)} ∪ {(z, y) | z <k x̃ andfΣk

(z) Bn Γ} ∪ {(y, z) | Γ Bn fΣk
(z)} (3)

The coherence offΣk+1
w.r.t B and strong coherence w.r.t.Bn are justified as above. The case

I is handled by Lemmas 4.5(1), 4.6(4), and 4.3(1I).

• Now, assumefΣk
(x̃) B Γ, and consider the set{x∗ | x̃ <k x∗ such thatΓ B fΣk

(x∗)}. Two
possible cases arise:

– The set is empty.
In this case, we consider the last element ofSk and proceed as in case 1 above.

– The set is non-empty.
Let x′ be the first element of the set, then the extended orderings<k+1 and≺k+1 are
defined as in (3) but changing̃x by x′.

Finally, it is not difficult to check that the definition provided forΣk+1 belongs toΞS .

6This is where strong≺-coherence is used.



Exhausting active
−→
♦ -prophetic conditionals

Consider now an active
−→
♦ -prophetic conditional:

if
−→
♦A ∈ fΣk

(x), there exists ay such thatx < y andA ∈ fΣk
(y)

that is, we have
−→
♦A ∈ fΣk

(x), but there does not existy such that bothx < y andA ∈ fΣk
(y).

The idea again is to select a convenient extension ofΣk as in the previous cases; we will give an
inductive proof on the number of successorsl of x in Σk.

1. If l = 0, then+α ≤k x and, by coherence,α+ ∨
←−
♦α+ ∈ fΣk

(x). On the other hand, the formula

(α+ ∨
←−
♦α+) → (

−→
♦A →

−→
�A) is a theorem (Proposition 4.1); therefore maximality leads to

−→
�A ∈ fΣk

(x), which reduces to a previous case.

2. For the casel > 0 we apply a case-based argumentation depending on whether
−→
�A ∈ fΣk

(x), or
−→
♦n A ∈ fΣk

(x), or both
−→
�A /∈ fΣk

(x) and
−→
♦n A /∈ fΣk

(x).

The cases
−→
�A ∈ fΣk

(x) and
−→
♦n A ∈ fΣk

(x) have been already solved, so let us assume
−→
�A,

−→
♦n A /∈

fΣk
(x), and letx′ be the successor ofx in the frame.

Now, if
−→
♦A ∈ fΣk

(x′), then apply the inductive case; otherwise it is clearly the case that¬A ∧
¬
−→
♦A ∈ fΣk

(x′).

On the other hand, by Lemma 4.4(1), there exists a maximal consistent setΓ such thatfΣk
(x) B Γ

andA ∈ Γ. We select a pointy ∈ S r Sk to be located betweenx andx′ to which we will
associateΓ. Specifically, we have

Sk+1 = Sk ∪ {y}, wherey ∈ S r Sk

<k+1 = <k ∪{(x, y), (y, x′)} ∪ {(z, y) | z <k x} ∪ {(y, z) | x′ <k z}
≺k+1 = ≺k ∪{(z, y) | z <k x andfΣk+1

(z) Bn Γ} ∪ {(y, z) | x′ ≤k z andΓ Bn fΣk+1
(z)}

fΣk+1
= fΣk

∪ {(y, Γ)}

In order to prove the coherence of the trace offΣk+1
we take into account the following:

(i) RegardingB, we apply Lemma 4.3(1 and 2) to obtain condition (a) of coherence.

(ii) RegardingI, to prove condition (b), we only have to consider the induced relation< between
y and the rest of points in the frameΣk+1. Recall that we are under the assumption that

−→
�A /∈

fΣk
(x), therefore it is not the case thatfΣk

(x) I Γ.

To begin with, we have information enough to prove thatx = −α. With this purpose, let us
proceed by considering the relation ofx with x′:

• It cannot be the case thatx <k x′, otherwise by coherence offΣk
we would havefΣk

(x) I
fΣk

(x′). Recall thatfΣk
(x) B Γ B fΣk

(x′), now by Lemma 4.6(4I) we obtainfΣk
(x) I Γ,

which is a contradiction.



• Now, if x 6= −α, by x 6<k x′, we would have that−α <k x <k +α = x′. By coherence
of fΣk

we obtain
←−
♦α− ∧

−→
♦α+ ∈ fΣk

(x) and, and byfΣk
(x) B Γ B fΣk

(x′) it is easily

obtained that
←−
♦α− ∧

−→
♦α+ ∈ Γ. Finally, by Lemma 4.5(1) we obtainfΣk

(x) I Γ, which is
a contradiction and, thus,x = −α.

Sincex = −α, it is obvious thatx 6<k+1 y holds, and we will only have to consider the successors
of y in the frameΣk+1. We have two possibilities:

(2.1)y 6<k+1 x′.

In this case coherence is immediately guaranteed.

(2.2)y <k+1 x′.

It cannot be the case thatx′ 6= +α, by usingx = −α we also have−α <k x′ <k +α; therefore,
−α <k+1 y <k+1 x′ <k+1 +α.

Recall that we have already proved part (a) of coherence forfΣk+1
, thusfΣk+1

(−α) B Γ B

fΣk+1
(x′) B fΣk+1

(+α), and from this we easily obtain
←−
♦α− ∧

−→
♦α+ ∈ Γ and

←−
♦α− ∧

−→
♦α+ ∈

fΣk+1
(x′), thus, by Lemma 4.5(1), we obtainΓ I fΣk+1

(x′). Finally, Lemma 4.3(1I) allows to
finish the proof of coherence of the trace.

(iii) RegardingBn , the strong coherence is proved as previously.

It is not difficult to check that the definition provided forΣk+1 belongs toΞS .

The cases of historic conditionals are handled similarly.
QED

5. Quasi-density properties inL(MQ)N

The existence of several modal connectives in our language allows for considering variations of proper-
ties like density, continuity or others. The study of this kind of properties from a purely logical standpoint
is worth to be done; specifically, we address here some particular cases of the problem of definability
of properties inL(MQ)N obtained as variations of the standard concept of density; other definability-
related issues will be studied elsewhere.

Definition 5.1. Let K be a set of multimodal qualitative frames. The setK is said to bedefinableby a
schema of formulasA if for every frameΣ we have thatΣ ∈ K if and only if A is valid inΣ.

Let P be a property of multimodal qualitative frames, andK the class of all multimodal qualitative
frames satisfyingP , thenP is said to bedefinableif K is definable.

A first approach to quasi-density can be expressed as follows: a frameΣ = (S,+α,−α, <,≺) is
said to bequasi-dense with respect to< (or <-quasi-dense) if the following property holds:

for all x, y ∈ S, if x < y, then there existsz such thatx < z < y (<qd)

It is clear that the usual density

for all x, y ∈ S, if x < y, then there existsz such thatx < z < y (dens)



implies <-quasi-density; however, the other implication needs not hold: a counterexample can be ob-
tained by considering a frame whose only points are the landmarks.

Regarding definability, the formula −→
�
−→
�A→ −→�A (<QD)

can be proved to define<-quasi-density. More formally, we can state the following proposition

Proposition 5.1. The class of frames(S,+α,−α, <) satisfying (<qd) is definable inL(MQ).

If we are interested in recovering the usual density property from<-quasi-density, it is sufficient to
impose the requirement that INF is a non-empty set and does not have either least or greatest points.
From an axiomatic standpoint, we can state the following:

Proposition 5.2. The formula
−→
�
−→
�A→ −→�A (which defines density) can be deduced fromMQ+(<QD)

plus the following axiom schemata:

(
←−
♦α− ∧

−→
♦α+)→

−→
� (
←−
♦α− ∧

−→
♦α+)

(
←−
♦α− ∧

−→
♦α+)→

←−
� (
←−
♦α− ∧

−→
♦α+)

←−
♦ (
←−
♦α− ∧

−→
♦α+) ∨ (

←−
♦α− ∧

−→
♦α+) ∨

−→
♦ (
←−
♦α− ∧

−→
♦α+)

Proof:
The formula

−→
�
−→
�A → −→

�A can be proven by applying a reasoning by cases strategy based on the
theorem

−→
♦α− ∨ α− ∨ (

←−
♦α− ∧

−→
♦α+) ∨ α+ ∨

←−
♦α+ (see Proposition 4.1); specifically, it suffices to

prove
(−→
�
−→
�A ∧ ϕ

)
→ −→�A whereϕ is any of the disjuncts (the details of the derivations are omitted).

QED

Other combinations, e.g. by merging the use of< and< in the property defining density, generate
the properties

for all x, y ∈ S, if x < y, then there existsz such thatx < z < y

for all x, y ∈ S, if x < y, then there existsz such thatx < z < y

which can be shown to be defined, respectively, by the formulas
−→
�
−→
�A→ −→�A and

−→
�
−→
�A→ −→�A.

Interestingly enough, these properties are nothing but alternative formulations of<-quasi-density,
that is, each of the properties above is equivalent to property (<qd).

These alternative cases of quasi-density can be enriched by preventing the landmarks to be affected
by the quasi-density relation:

for all x, y ∈ S, if x < y andx 6= −α, then there existsz such thatx < z < y (mqd-i)

for all x, y ∈ S, if x < y andy 6= +α, then there existsz such thatx < z < y (mqd-ii)

Both cases of weak mixed quasi-density are definable inL(MQ), respectively, by the formulas

(
−→
�
−→
�A ∧ ¬α−)→ −→�A (MQD-i)

−→
�
−→
�A→ −→�(¬α+ → A) (MQD-ii)

as the following proposition shows:



Proposition 5.3.

1. Property (mqd-i) is definable by the formula (MQD-i).

2. Property (mqd-ii) is definable by the formula (MQD-ii).

Proof:
We will only prove the first item above, the proof for the second item is similar.

Let us consider(Σ, h), whereΣ satisfies (mqd-i) and an elementx 6= −α in Σ such thatx 6∈
h(
−→
�A). Then there existsy satisfyingx < y andy 6∈ h(A). By property (mqd-i), we would have an

elementz such thatx < z < y. Thereforez 6∈ h(
−→
�A) and, hence,x 6∈ h(

−→
�
−→
�A). Thus, the formula

(
−→
�
−→
�A ∧ ¬α−)→ −→�A is true in(Σ, h).
Reciprocally, for a frameΣ not satisfying property (mqd-i), we have at least two elementsx, y in

Σ such thatx < y andx 6= −α. Now, let us define a model onΣ in which h(p) = S r {y}; by
analyzing the different possibilities forx it is trivial to check that in any case the model refutes the
instance(

−→
�
−→
�p ∧ ¬α−)→ −→�p in x. QED

When considering the mirror images of the formulas (MQD-i) and (MQD-ii) one obtains the curious
fact that the mirror image of (MQD-i) defines the same property than (MQD-ii) and, similarly, the mirror
image of (MQD-ii) defines the same property than (MQD-i).

Regarding the negligibility connectives we can, for instance, consider the two properties below:

If x ≺ y, then there existsz such thatx ≺ z < y (nqd-i)

If x ≺ y, then there existsz such thatx < z ≺ y (nqd-ii)

On the one hand, for a givenx, property (nqd-i) states that the set of the elements from whichx is
negligible does not have a first element. On the other hand, property (nqd-ii) expresses that there is at
least an intermediate element betweenx and the set of elements from whichx is negligible.

The formulas that define the properties stated above are, respectively,

−→
�n
−→
�A→ −→�n A (NQD-i)

−→
�
−→
�n A→ −→�n A (NQD-ii)

that is, formally we have the proposition below:

Proposition 5.4. The following classes of frames are definable:

1. K1 = {(S,+α,−α, <,≺) | ≺ satisfies (nqd-i)}
2. K2 = {(S,+α,−α, <,≺) | ≺ satisfies (nqd-ii)}

Proof:

1. Let us prove that
−→
�n
−→
�A→ −→�n A definesK1.

ConsiderΣ ∈ K1 and let(Σ, h) be any model onΣ andx any element inΣ. Now we proceed by
contraposition: ifx 6∈ h(

−→
�n A) then there existsy such thatx ≺ y andy 6∈ h(A). Now, by (nqd-i), we

have somez such thatx ≺ z < y. Thusz 6∈ h(
−→
�A) and sox 6∈ h(

−→
�n
−→
�A).



Conversely, considerΣ = (S,+α,−α, <,≺) 6∈ K1. Then there are somex, y ∈ S such thatx ≺ y
and it does not existz ∈ S such thatx ≺ z < y. Now, the model(Σ, h) whereh(p) = S r {y} refutes
the formula

−→
�n
−→
�p→ −→�n p atx and so

−→
�n
−→
�A→ −→�n A is not valid inΣ and therefore it is not valid inK1.

2. The proof of this case is similar. QED

Once again it is remarkable that the mirror image of (NQD-i) defines the same property as (NQD-ii), and
the mirror of (NQD-ii) defines the same property as (NQD-i). Thus, from an axiomatic point of view,
the extension ofMQN with (NQD-i) and its mirror image is equivalent to the extension with (NQD-i)
and (NQD-ii).

There are other properties which are worth to be studied, for instance, the strong versions of (nqd-i)
and (nqd-ii) in which the middle element is required to becomparablewith one of the extreme points:

If x ≺ y, then there existsz such thatx ≺ z < y (ncqd-i)

If x ≺ y, then there existsz such thatx < z ≺ y (ncqd-ii)

these properties can be proven to be definable by the following schemata:

−→
�n
−→
�A→ −→�n A (NCQD-i)

−→
�
−→
�n A→ −→�n A (NCQD-ii)

6. Conclusions and future work

A sound and complete extension of the minimal system MQ of multimodal qualitative reasoning with
notions of comparability and negligibility has been introduced.

Although the system presented in this work (considering just two landmarks) is considerably simpler
than those stated at the beginning of this section, still it is useful as a stepping stone for considering more
complex systems, for which the logic has to be enriched by adding new modal operators capable to treat
a bigger number of milestones, equivalence classes and/or qualitative relations.

As future work, it is planned to investigate other notions or additional plausible properties of negli-
gibility, together with the analysis of which properties are definable and which are not, and the consider-
ation of the corresponding extensions ofMQN .

A deeper analysis of the notion ofquasi-densityand a study of an analogous notion ofquasi-
continuityand, moreover, further extensions of the system in order to obtain sound and complete versions
with denseness and continuity axioms are envisaged.

We are also investigating the possibility of providing an algebraic presentation of the semantics of
MQN , in order to get a better understanding of the properties of the qualitative relations which facilitate
their proofs.

Last but not least, from the computational standpoint, we are planning to develop theorem provers
for MQ andMQN based either on tableaux or on resolution.
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A. Proof of Proposition 4.1

Proposition 4.1.The following formulas are theorems ofMQN , whereA andB are wff:

T1.
−→
♦α− ∨ α− ∨ (

←−
♦α− ∧

−→
♦α+) ∨ α+ ∨

←−
♦α+

T2. (ϕ ∧ −→�A)→ −→�(ϕ→ A), whereϕ ∈ {
−→
♦α−,

←−
♦α+,

←−
♦α− ∧

−→
♦α+}

T3. (
−→
�A ∧

−→
♦B)→ (

−→
� (A ∧B) ∨

−→
� (
−→
�A ∧B) ∨

−→
� (A ∧

−→
♦B))

T4. (
←−
♦ϕ ∧

−→
♦ϕ)→ ϕ, whereϕ ∈ {

−→
♦α−,

←−
♦α+,

←−
♦α− ∧

−→
♦α+}

T5. (
−→
♦n A ∧

−→
♦B)→ (

−→
♦n (A ∧B) ∨

−→
♦ (
−→
♦A ∧B) ∨

−→
♦n (A ∧

−→
♦B))

T6. (α+ ∨
←−
♦α+)→ (

−→
♦A→

−→
�A)

Proof:
We will only provide a complete proof forT3, which is based onT1, T4 and the following auxiliary
theorems and derived rules which are standard in modal logic:

LM 1 (
−→
�A ∧

−→
�B)→

−→
� (A ∧B)

LM 2
−→
♦ (A ∧B)→ (

−→
♦A ∧

−→
♦B)

LM3 (A ∧
−→
♦B)→

−→
♦ (
←−
♦A ∧B)

P
−→
♦ 1 If ` A→ B then`

−→
♦A→

−→
♦B

Proof of T1. A formal proof inMQN , modulo propositional calculus (PC) is given below:

1.
←−
♦α− ∨ α− ∨

−→
♦α− from c1[ξ/α−]

2.
←−
♦α+ ∨ α+ ∨

−→
♦α+ from c1[ξ/α+]

3.
−→
♦α− ∨ α− ∨ (

←−
♦α− ∧

−→
♦α+) ∨ α+ ∨

←−
♦α+ from 1, 2 byPC

Proof of T4.

1. (
←−
♦
−→
♦α− ∧

−→
♦
−→
♦α−)→

−→
♦
−→
♦α− tautology

2. (
←−
♦
−→
♦α− ∧

−→
♦
−→
♦α−)→

−→
♦α− from 1 byK3 andPC

3. (
←−
♦
−→
♦α+ ∧

−→
♦
−→
♦α+)→

−→
♦α+ [similar to 1–2]

4. (
←−
♦ (
←−
♦α− ∧

−→
♦α+) ∧

−→
♦ (
←−
♦α− ∧

−→
♦α+))→ (

←−
♦
←−
♦α− ∧

−→
♦
−→
♦α+) from LM2 andPC

5.
←−
♦
←−
♦α− →

←−
♦α− from mirror ofK3 by

−→
♦ ,
−→
� andPC

6.
−→
♦
−→
♦α+ →

−→
♦α+ K3 by

−→
♦ ,
−→
� andPC

7. (
←−
♦ϕ ∧

−→
♦ϕ)→ ϕ from 2, 3, and 4–6 byPC

Proof of T3. By T1 we can split the proof into five parts, according to each possible disjunct.

In order to improve readability some abbreviations will be used for formulas which occur several
times: for instanceα−∨

−→
♦α− means that we are in an observable negative which we denoteobs−,

similarly inf denotes
←−
♦α− ∧

−→
♦α+.



Case I:
−→
♦α− → T3

1.
−→
♦α− → −→�obs− from c6

2. (
−→
♦α− ∧

−→
�A ∧

−→
♦B)→ (

−→
�obs− ∧

−→
�A ∧

−→
♦B) from 1 byPC

3.
−→
�(obs− ∧

−→
�A)→

−→
� (obs− ∧A) from LM1

4. (
−→
�obs− ∧

−→
�A ∧

−→
♦B)→ (

−→
� (obs− ∧A) ∧

−→
♦B) from 3 byPC

5.
−→
� (obs− ∧A)→

−→
♦ (obs− ∧A) from M1 by

−→
♦ ,
−→
� andPC

6. (
−→
♦α− ∧

−→
�A ∧

−→
♦B)→ (

−→
♦ (obs− ∧A) ∧

−→
♦B) from 2, 4, 5 byPC

7.
(−→
♦ (obs−∧A)∧

−→
♦B

)
→

(−→
♦ (obs−∧A∧B)∨

−→
♦ (
−→
♦ (obs−∧A)∧B)∨

−→
♦ (obs−∧A∧

−→
♦B)

)
from K4 by

−→
♦ ,
−→
� andPC

8. (
−→
♦α−∧

−→
�A∧

−→
♦B)→

(−→
♦ (obs−∧A∧B)∨

−→
♦ (
−→
♦ (obs−∧A)∧B)∨

−→
♦ (obs−∧A∧

−→
♦B)

)
from 6 and 7 byPC

9.
−→
♦ (obs− ∧A ∧B)→

−→
� (A ∧B) from c8by

−→
♦ ,
−→
� andPC

10.
−→
♦ (obs− ∧A ∧

−→
♦B)→

−→
� (A ∧

−→
♦B) from c8by

−→
♦ ,
−→
� andPC

11.
−→
♦ (obs− ∧A)→

−→
�A from c8by

−→
♦ ,
−→
� andPC

12.
−→
♦ (obs− ∧A)→

−→
♦ obs− from LM2 andPC

13. (
−→
♦ (obs− ∧A) ∧B)→ (obs− ∧

−→
�A ∧B) from 11 and 12 byPC

14.
−→
♦ (
−→
♦ (obs− ∧A) ∧B)→

−→
♦ (obs− ∧

−→
�A ∧B) from 13 byP

−→
♦ 1

15.
−→
♦ (obs− ∧

−→
�A ∧B)→

−→
� (
−→
�A ∧B) from c8by

−→
♦ ,
−→
� andPC

16.
−→
♦ (
−→
♦ (obs− ∧A) ∧B)→

−→
� (
−→
�A ∧B) from 14 and 15 byPC

17.
−→
♦α− → T3 from 8 and 9, 10, and 16 byPC

Case II:α− → T3

1. α− → ¬
−→
�A from c4by

−→
� andPC

2. α− → T3 from 1 byPC

Case III:inf→ T3

1. inf→ −→� inf from c5

2. (
−→
� inf ∧

−→
�A)→

−→
� (inf ∧A) from LM1

3. (inf ∧
−→
�A ∧

−→
♦B)→ (inf ∧

−→
� (inf ∧A) ∧

−→
♦B) from 1, 2 byPC

4.
−→
� (inf ∧A)→

−→
♦ (inf ∧A) from M1, by

−→
♦ ,
−→
� andPC

5. (inf ∧
−→
�A ∧

−→
♦B)→ (inf ∧

−→
♦ (inf ∧A) ∧

−→
♦B) from 3, 4 byPC

6. (
−→
♦ (inf ∧A) ∧

−→
♦B)→

(−→
♦ (inf ∧A ∧B) ∨

−→
♦ (inf ∧A ∧

−→
♦B) ∨

−→
♦ (
−→
♦ (inf ∧A) ∧B)

)
from K4 by

−→
♦ ,
−→
� andPC

7. (inf ∧
−→
�A ∧

−→
♦B)→

(−→
♦ (inf ∧A ∧B) ∨

−→
♦ (inf ∧A ∧

−→
♦B) ∨

−→
♦ (
−→
♦ (inf ∧A) ∧B)

)
from 5, 6 andPC

8. (inf ∧
−→
♦ (inf ∧A ∧B))→

−→
� (A ∧B) from c10by

−→
♦ ,
−→
� andPC



9. (inf ∧
−→
♦ (inf ∧A ∧

−→
♦B))→

−→
� (A ∧

−→
♦B) from c10by

−→
♦ ,
−→
� andPC

10.
−→
♦ (inf ∧A)→

−→
♦ inf from LM2 andPC

11. (inf ∧
−→
♦ (
−→
♦ (inf ∧A) ∧B))→

−→
♦ (
←−
♦ inf ∧

−→
♦ (inf ∧A) ∧B) from LM3

12. (
←−
♦ inf ∧

−→
♦ (inf ∧A) ∧B))→ (

←−
♦ inf ∧

−→
♦ inf ∧

−→
♦ (inf ∧A) ∧B)) from 10 byPC

13.
−→
♦ (
←−
♦ inf ∧

−→
♦ (inf ∧A) ∧B))→

−→
♦ (
←−
♦ inf ∧

−→
♦ inf ∧

−→
♦ (inf ∧A) ∧B)) from 12 byP

−→
♦ 1

14. (inf ∧
−→
♦ (
−→
♦ (inf ∧A) ∧B))→ (inf ∧

−→
♦ (
←−
♦ inf ∧

−→
♦ inf ∧

−→
♦ (inf ∧A) ∧B))

from 11, 13 byPC

15. (
←−
♦ inf ∧

−→
♦ inf)→ inf T4

16. (inf ∧
−→
♦ (
−→
♦ (inf ∧A) ∧B))→ (inf ∧

−→
♦ (inf ∧

−→
♦ (inf ∧A) ∧B))

from 14, 15 byPC andP
−→
♦ 1

17. (inf ∧
−→
♦ (inf ∧A))→

−→
�A from c10by

−→
♦ ,
−→
� andPC

18. (inf ∧
−→
♦ (inf ∧A) ∧B)→ (inf ∧

−→
�A ∧B) from 17 byPC

19.
−→
♦ (inf ∧

−→
♦ (inf ∧A) ∧B)→

−→
♦ (inf ∧

−→
�A ∧B) from 18 byP

−→
♦ 1

20. (inf ∧
−→
♦ (
−→
♦ (inf ∧A) ∧B))→ (inf ∧

−→
♦ (inf ∧

−→
�A ∧B)) from 19 byPC

21. (inf ∧
−→
♦ (inf ∧

−→
�A ∧B))→

−→
� (
−→
�A ∧B) from c10by

−→
♦ ,
−→
� andPC

22. (inf ∧
−→
♦ (
−→
♦ (inf ∧A) ∧B))→

−→
� (
−→
�A ∧B) from 20, 21 byPC

23. inf→ T3 from 7 and 8, 9 and 22 byPC

Case IV:α+ → T3:

1.
−→
�A→

−→
♦A from M1 by

−→
♦ ,
−→
� , andPC

2. (α+ ∧
−→
�A ∧

−→
♦B)→ (

−→
♦A ∧

−→
♦B) from 1 byPC

3.
(−→
♦A∧

−→
♦B

)
→

(−→
♦ (A∧B)∨

−→
♦ (
−→
♦A∧B)∨

−→
♦ (A∧

−→
♦B)

)
from K4 by

−→
♦ ,
−→
� , andPC

4. (α+ ∧
−→
�A ∧

−→
♦B)→

(−→
♦ (A ∧B) ∨

−→
♦ (
−→
♦A ∧B) ∨

−→
♦ (A ∧

−→
♦B)

)
from 2, 3 byPC

5. (α+ ∧
−→
♦ (A ∧B))→

−→
� (A ∧B) from c7by

−→
♦ ,
−→
� andPC

6. (α+ ∧
−→
♦ (A ∧

−→
♦B))→

−→
� (A ∧

−→
♦B) from c7by

−→
♦ ,
−→
� andPC

7. (α+ ∧
−→
♦ (
−→
♦A ∧B))→

−→
♦ (
←−
♦α+ ∧

−→
♦A ∧B) from LM3

8. (
←−
♦α+ ∧

−→
♦A)→

−→
�A from c9by

−→
♦ ,
−→
� andPC

9. (
←−
♦α+ ∧

−→
♦A ∧B)→ (

−→
�A ∧B) from 8 byPC

10.
−→
♦ (
←−
♦α+ ∧

−→
♦A ∧B)→

−→
♦ (
−→
�A ∧B) from 9 byP

−→
♦ 1

11. (α+ ∧
−→
♦ (
−→
♦A ∧B))→ (α+ ∧

−→
♦ (
−→
�A ∧B)) from 7, 10 byPC

12. (α+ ∧
−→
♦ (
−→
�A ∧B))→

−→
� (
−→
�A ∧B)) from c7by

−→
♦ ,
−→
� andPC

13. (α+ ∧
−→
♦ (
−→
♦A ∧B))→

−→
� (
−→
�A ∧B)) from 11, 12 byPC

14. α+ → T3 from 4 and 5, 6 and 13 byPC



Case V:
←−
♦α+ → T3:

1.
−→
�A→

−→
♦A from M1 by

−→
♦ ,
−→
� andPC

2. (
←−
♦α+ ∧

−→
�A ∧

−→
♦B)→ (

−→
♦A ∧

−→
♦B) from 1 byPC

3.
(−→
♦A∧

−→
♦B

)
→

(−→
♦ (A∧B)∨

−→
♦ (
−→
♦A∧B)∨

−→
♦ (A∧

−→
♦B)

)
from K4 by

−→
♦ ,
−→
� andPC

4. (
←−
♦α+ ∧

−→
�A ∧

−→
♦B)→

(−→
♦ (A ∧B) ∨

−→
♦ (
−→
♦A ∧B) ∨

−→
♦ (A ∧

−→
♦B)

)
from 2, 3 byPC

5. (
←−
♦α+ ∧

−→
♦ (A ∧B))→

−→
� (A ∧B) from c9by

−→
♦ ,
−→
� andPC

6. (
←−
♦α+ ∧

−→
♦ (A ∧

−→
♦B))→

−→
� (A ∧

−→
♦B) from c9by

−→
♦ ,
−→
� andPC

7. (
←−
♦α+ ∧

−→
♦ (
−→
♦A ∧B))→

−→
♦ (
←−
♦
←−
♦α+ ∧

−→
♦A ∧B) from LM3

8.
←−
♦
←−
♦α+ →

←−
♦α+ from mirror ofK3 by

−→
♦ ,
−→
� andPC

9.
−→
♦ (
←−
♦
←−
♦α+ ∧

−→
♦A ∧B)→

−→
♦ (
←−
♦α+ ∧

−→
♦A ∧B) from 8 byPC andP

−→
♦ 1

10. (
←−
♦α+ ∧

−→
♦A)→

−→
�A from c9by

−→
♦ ,
−→
� andPC

11. (
←−
♦α+ ∧

−→
♦A ∧B)→ (

−→
�A ∧B) from 10 byPC

12.
−→
♦ (
←−
♦α+ ∧

−→
♦A ∧B)→

−→
♦ (
−→
�A ∧B) from 11 by P

−→
♦ 1

13. (
←−
♦α+ ∧

−→
♦ (
−→
♦A ∧B))→ (

←−
♦α+ ∧

−→
♦ (
−→
�A ∧B)) from 7, 9, 12 byPC

14.
−→
♦ (
−→
�A ∧B))→

−→
� (
−→
�A ∧B) from c9by

−→
♦ ,
−→
� andPC

15. (
←−
♦α+ ∧

−→
♦ (
−→
♦A ∧B))→→

−→
� (
−→
�A ∧B) from 13, 14 byPC

16.
←−
♦α+ → T3 from 4, and 5, 6 and 15 byPC

QED


