
Homogenizing multi-adjoint logic programs∗

Jesús Medina, Manuel Ojeda-Aciego
Dept. Matemática Aplicada. Univ. Málaga, Spain

{jmedina,aciego}@ctima.uma.es

Abstract

The concept of homogeneous multi-adjoint
logic program is introduced, and a procedure
to homogenize an arbitrary multi-adjoint
logic program is presented. The procedure
is proved to preserve models and, moreover,
some complexity results are given.

Keywords: Fuzzy Logic Programming

1 Introduction

The fuzzy logic is a powerful mathematical tool
for dealing with modelling and control aspects of
complex processes, as well as with uncertain, in-
complete and/or inconsistent information. The
main advantages of fuzzy logic systems are the
capability to express nonlinear input/output re-
lationships by a set of qualitative if-then rules,
and to handle both numerical data and linguis-
tic knowledge, especially the latter, which is ex-
tremely difficult to quantify by means of tradi-
tional mathematics.

Multi-adjoint logic programming is a general the-
ory of logic programming which allows the simul-
taneous use of different implications in the rules
and rather general connectives in the bodies; in [4]
a continuous fixpoint semantics was introduced.
Regarding implementation issues, a neural-based
approach to the implementation of the fixpoint
semantics of multi-adjoint logic programming has
been recently proposed [3] following some ideas
from [1].

∗ This research was partially supported by Spanish
DGI project BFM2000-1054-C02-02.

The implementation using neural networks needs
some preprocessing of the initial program to
transform it in a homogeneous program, form of
homogeneous rules. These rules represent exactly
the simplest type of (proper) rules we can have in
our program. In this work, we introduce the con-
cept of homogeneous multi-adjoint logic program,
and present a procedure to homogenize an arbi-
trary multi-adjoint logic program. The procedure
is proved to preserve models and, moreover, some
complexity results are given.

2 Preliminary definitions

To make this paper as self-contained as possi-
ble, the necessary definitions about multi-adjoint
structures are included in this section.

The first interesting feature of multi-adjoint logic
programs is that a number of different implica-
tions are allowed in the bodies of the rules. For-
mally, the basic definition is given below:

Definition: A tuple (L,�,←1,&1, . . . ,←n,&n)
is said to be a multi-adjoint lattice if 〈L,�〉 is a
lattice, and the following items are satisfied:

1. 〈L,�〉 is bounded;

2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L and all i;

3. (←i,&i) is an adjoint pair in 〈L,�〉 for all i.

Definition: A multi-adjoint program is a set of
weighted rules 〈A←i B, ϑ〉 satisfying:

1. The head A is a propositional symbol.

2. The body formula B is a formula of F built
from propositional symbols by the use of
monotone operators.



3. The weight ϑ is an element of L.

Facts are rules with body > (which usually will
not be written).1

Definition:

1. An interpretation is a mapping I from the
set of propositional symbols Π to the lattice
〈L,�〉.

2. An interpretation I satisfies 〈A ←i B, ϑ〉 if
and only if ϑ � Î (A←i B).

3. An interpretation I is a model of a multi-
adjoint logic program P iff all weighted rules
in P are satisfied by I.

3 Homogeneous programs

Regarding the implementation of the semantics, it
is useful to introduce the concept of homogeneous
rules. These rules represent exactly the simplest
type of (proper) rules we can have in our pro-
gram. In some sense, homogeneous rules allow
a straightforward generalization of the standard
logic programming framework, in that no oper-
ators other than ←i and &i (and possibly some
aggregators) are used.

Definition: A weighted formula is said to be ho-
mogeneous if it has one of the following forms:

• 〈A←i B1 &i · · ·&i Bn, ϑ〉
• 〈A←i @(B1, . . . , Bn),>〉
• 〈A←i B1, ϑ〉

where A,B1, . . . , Bn are propositional symbols.

In the following we present a procedure for trans-
forming a given multiadjoint logic program into a
homogeneous one.

3.1 Handling rules

We will state a procedure for transforming a given
program into another (equivalent) one containing
only facts and homogeneous rules. It is based on

1We will consider one designated implication to be used
for the representation of facts, which is denoted ←. This
designated implication will be also used in the procedure
of translation of a program into a homogeneous one.

two types of transformations: The first one han-
dles the main connective of the body of the rule,
whereas the second one handles the subcompo-
nents of the body.

T1. A formula 〈A ←i &j(B1, . . . ,Bn), ϑ〉 is sub-
stituted by the following pair of formulas:

〈A←i A1, ϑ〉
〈A1 ←j &j(B1, . . . ,Bn),>〉

where A1 is a fresh propositional symbol, and
〈←j ,&j〉 is an adjoint pair.

For the case 〈A ←i @(B1, . . . ,Bn), ϑ〉 in
which the main connective of the body of the
rule happens to be an aggregator, the trans-
formation is similar:

〈A←i A1, ϑ〉
〈A1 ← @(B1, . . . ,Bn),>〉

where A1 is a fresh propositional symbol, and
← is a designated implication.

T2. A weighted formula 〈A←i Θ(B1, . . . ,Bn), ϑ〉,
where Θ is either &i or an aggregator, and a
component Bk is assumed to be either of the
form &j(C1, . . . , Cl) or @(C1, . . . , Cl), is sub-
stituted by the following pair of formulas in
either case:

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ←j &j(C1, . . . , Cl),>〉

or

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ← @(C1, . . . , Cl),>〉

The procedure to transform the rules of a program
so that all the resulting rules are homogeneous, is
presented in Fig. 1. It is based in the two previous
transformations, and in its description by abuse
the notation we use the terms T1-rule (resp. T2-
rule) to mean an adequate input rule for transfor-
mation T1 (resp. T2):

Some applications of the algorithm below are pre-
sented in the examples below:

2



Program Homogenization
begin

repeat
for each T1-rule do
Apply transformation T1

end-for

for each T2-rule do
Apply transformation T2

end-for
until neither T1- nor T2-rules exist

end

Figure 1: Pseudo-code for the procedure.

Example 1 Consider the following T1-rule
〈A ←P (B1 &P B2) &G B3, ϑ〉 (note that the
main connective in the body is not the adjoint
conjunctor to the implication). A first step of the
previous algorithm gives:

〈A←P A1, ϑ〉 Homogeneous
〈A1 ←G (B1 &P B2) &G B3,>〉

Now, the second rule has to be modified, and the
result is given below:

〈A←P A1, ϑ〉 Homogeneous
〈A1 ←G A2 &G B3,>〉 Homogeneous
〈A2 ←P B1 &P B2,>〉 Homogeneous

Example 2 Consider the rule

〈A←P (B1 &G B2) &P @(B3, B4), ϑ〉

The first step of the algorithm gives

〈A←P A1 &P @(B3, B4), ϑ〉
〈A1 ←G B1 &G B2,>〉 Homogeneous

The procedure continues with the first rule above

〈A←P A1 &P A2, ϑ〉 Homogeneous
〈A2 ← @(B3, B4),>〉 Homogeneous
〈A1 ←G B1 &G B2,>〉 Homogeneous

The idea of including new symbols and definitions
for these symbols is a reformulation and adap-
tation of the technique introduced originally in
the context of automated deduction in [5]. The
original aim of this technique was to obtain a
structure-preserving transformation of a formula
into clause form.

3.2 Handling facts

After the exhaustive application of the previous
procedure we can assume that all our rules are ho-
mogeneous. Regarding facts, it might be possible
that the program contained facts about the same
propositional symbol but with different weights.

Assume all the facts about A are

〈A← >, ϑj〉 j ∈ {1, . . . , l}

then, the following fact is substituted for the pre-
vious ones

〈A← >, sup{ϑj | j ∈ {1, . . . , l}〉

the computed truth-value for A will be de-
noted ϑA.

The new program obtained from P after the ho-
mogenization of rules and facts is denoted P∗.
Note that in this new program there are new
propositional symbols, if Π is the set of propo-
sitional symbols occurring in P, then the set of
propositional symbols occurring in P∗ is denoted
Π∗; obviously Π ⊆ Π∗.

3.3 Preservation of the semantics

It is necessary to check that the semantics of
the initial program has not been changed by the
transformation. The following results will show
that every model of P∗ is also a model of P and,
in addition, the minimal model of P∗ is also the
minimal model of P.

Theorem 1 A model of P∗ is also a model of P.

Proof: It will be sufficient to show that the two
transformations T1 and T2 have this property;
that is, every model of the output of the rules is
also a model of the input of the transformation.

We will give only the prove for transformation T1,
since for T2 the idea is similar. Assume that I is
a model of the rules

〈A←i A1, ϑ〉
〈A1 ←j &j(B1, . . . ,Bn),>〉

therefore we have

ϑ
.
&i I(A1) � I(A)

Î(&j(B1, . . . ,Bn)) � I(A1)

3



Now, by monotonicity, we have

ϑ
.
&i Î(&j(B1, . . . ,Bn)) � I(A)

that is, I is a model of 〈A←i &j(B1, . . . ,Bn), ϑ〉.

The case of an aggregator as the main connective
of the body is similar. 2

Theorem 2 The minimal model of P∗ when re-
stricted to the variables in Π is also the minimal
model of P.

Proof: (Sketch) Assume any model I of P, then
extend it to Π∗ in such a way that it is also a
model of P∗, then use minimality on P∗. 2

4 Complexity of the transformation

In this section we show that the complexity of the
homogenizing procedure is linear.

Theorem 3 Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a
rule with n connectives in the body (n ≥ 1). Then
we have the following affirmations:

• The number of homogeneous rules obtained,
after applying the procedure is: n if Θ = &i

or Θ = @ with ϑ = >; and n + 1 otherwise.

• The number of transformations obtained, af-
ter applying the procedure is: n−1 if Θ = &i

or Θ = @ with ϑ = >; and n otherwise.

Proof: By induction on n: If n = 1, we have just
two straightforward cases.

Now, we assume the result true for all rule with
k < n connectives in the body, and we must prove
it for n connectives.

• If Θ = &i, or Θ = @ and ϑ = >, we must
apply the transformation T2 and we obtain

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ←j Θ′(C1, . . . , Cl),>〉

where←j depends on the connective Θ′. But
in both cases, in the body of the second rule,
there are i connectives with i ≥ 1, and in the

body of the first rule, there are n−i < n con-
nectives. Thus, we can apply the induction
hypothesis and, finally, the number resultant
of rules is i + (n− i) = n.

• Otherwise, we use T1 to obtain

〈A←i A1, ϑ〉
〈A1 ←j Θ(B1, . . . ,Bn),>〉

where if Θ is an aggregator, then ←j is the
designated implication, and if Θ = &j , then
←j is its adjoint implication.

Therefore, similarly to the previous case, the
final number of rules is n and the first one is
homogeneous, so the final number is n + 1.

Similarly, we can prove the other affirmation. 2

5 Conclusions and future work

A procedure for homogenizing a multi-adjoint
program has been introduced. This procedure
is used in [3] as a preprocessing step of the im-
plementation of the fixpoint semantics of multi-
adjoint programs by using ideas borrowed from
neural networks. Future work in this research line
is oriented to further developing the use of the
neural-like implementation of the multi-adjoint
framework in the area of abductive reasoning [2].

References

[1] P. Eklund and F. Klawonn, “Neural fuzzy logic
programming,” IEEE Tr. on Neural Networks, vol.
3, no. 5, pp. 815–818, 1992.

[2] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-
Aciego. A neural approach to abductive multi-
adjoint reasoning. Lect. Notes in Computer Sci-
ence 2443, pages 213–222, 2002.

[3] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-
Aciego. A neural approach to extended logic pro-
grams. Lect. Notes in Computer Science, 2003. To
appear.

[4] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-
adjoint logic programming with continuous seman-
tics. Lect. Notes in Artificial Intelligence 2173,
pages 351–364, 2001.

[5] D. A. Plaisted and S. Greenbaum, “A structure-
preserving clause form translation,” Journal of
Symbolic Computation 2(1):293–304, 1986.

4


