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Abstract

In this paper, we focus on the notions
of congruence, ideal and homomorphism
on the generalized structure of multilat-
tice. We provide suitable definitions of
these notions in order to guarantee the
classical relationship between these con-
cepts.
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1 Introduction

The study of congruences is important both
from a theoretical standpoint and for its appli-
cations in the field of logic-based approaches
to uncertainty. Regarding applications, the
notion of congruence is intimately related to
the foundations of fuzzy reasoning and its re-
lationships with other logics of uncertainty [9].
More focused on the theoretical aspects of
Computer Science, some authors [1, 17] have
pointed out the relation between congruences,
fuzzy automata and determinism.

In spatial reasoning, the interest has been fo-
cused on spatial relationships and the impre-
cision attached to information and knowledge
to be handled; two main components being
knowledge representation and reasoning. In
[3] we can see that the fuzzy set framework as-
sociated to the formalism provided by math-
ematical morphology and formal logics allows
for deriving appropriate representations and
reasoning tools.

There have also been studies on qualitative
reasoning about the morphological relation of
congruence. A spatial congruence relation is
introduced in [6] which, moreover, provides
an algebraic structure to host relations based
on it.

The previous paragraphs have shown the use-
fulness of the theory of (crisp) congruences re-
garding practical applications. At this point,
it is important to recall that the problem
of providing suitable fuzzifications of crisp
concepts is an important topic which has
attracted the attention of a number of re-
searchers. Since the inception of fuzzy sets
and fuzzy logic, there have been approaches to
consider underlying sets of truth-values more
general than the unit interval; for instance,
consider the L-fuzzy sets introduced in [10],
where L is a complete lattice.

This paper originated as part of a research line
aimed at investigating L-fuzzy sets where L
has the structure of a multilattice. The con-
cepts of ordered and algebraic multilattice
were introduced by Benado in [2]. A multi-
lattice is an algebraic structure in which the
restrictions imposed on a (complete) lattice,
namely, the “existence of least upper bounds
and greatest lower bounds” are relaxed to
the“existence of minimal upper bounds and
maximal lower bounds”.

Much more recently, Cordero et al. [14] pro-
posed an alternative algebraic definition of
multilattice which is more closely related to
that of lattice, allowing for natural definitions
of related structures such as multisemilattices
and, in addition, is better suited for applica-



tions. For instance, Medina et al. [15] devel-
oped a general approach to fuzzy logic pro-
gramming based on a multilattice as underly-
ing set of truth-values for the logic.

A number of papers have been published on
the lattice of fuzzy congruences on different
algebraic structures [7, 8, 16, 19], and in this
paper we continue the research in this direc-
tion initiated in [4], as a necessary step prior
to considering the multilattice-based general-
ization of the concept of L-fuzzy congruence.

In this paper, we concentrate not only on con-
gruences but, as well, on other notions which
traditionally are related to them, namely, ho-
momorphisms and ideals. Specifically, in Sec-
tion 2, after introducing the preliminary defi-
nitions, we prove that the set of congruences
on a multilattice forms a complete lattice.
Then, in Section 3 we propose alternative
definitions to the notions of ideal of a mul-
tilattice and homomorphism between multi-
lattices, and we show that these new defini-
tions allow to recover the classical relation-
ships between congruences, ideals and homo-
morphisms which are not preserved by other
definitions provided in the literature.

2 On the lattice of congruences on
multilattices

Let us recall the concept of multilattice:

Given (M,≤) a partially ordered set (hence-
forth poset) and B ⊆ M , a multi-supremum
of B is a minimal element of the set of up-
per bounds of B and multisup(B) denotes the
set of multi-suprema of B. Dually, we de-
fine the multi-infima which will be denoted
multinf(B).

Definition 1 A poset, (M,≤), is an ordered
multilattice if and only if it satisfies that, for
all a, b, x ∈ M with a ≤ x and b ≤ x, there
exists1 z ∈ multisup{a, b} such that z ≤ x and
its dual version for multinf{a, b}.

A multilattice is said to be full if
1Note that the definition is consistent with the exis-

tence of two incomparable elements without any mul-
tisupremum. In other words, multisup{a, b} can be
empty.

multisup{a, b} 6= ∅ and multinf{a, b} 6= ∅
for all a, b ∈M .

Similarly to lattice theory, if we define a∨b =
multisup{a, b} and a ∧ b = multinf{a, b}, it is
possible to define multilattices algebraically
and, conversely, if we define a ≤ b if and only
if a ∨ b = {b} it is possible to obtain the
ordered version of multilattice. Both defini-
tions of multilattice are proved to be equiva-
lent (see [13, Theorem 2.11]).

Remark 2 In the rest of the paper we will
frequently write singletons without braces.

Now, we will introduce a notation which will
be useful hereafter. LetR be a binary relation
in M and X, Y ⊆ M , then X R̂Y denotes
that, for all x ∈ X, there exists y ∈ Y such
that xRy and for all y ∈ Y there exists x ∈ X
such that xRy.

Definition 3 Let (M,∨,∧) be a multilattice,
a congruence on M is any equivalence rela-
tion ≡ such that if a ≡ b, then a ∨ c ≡̂ b ∨ c
and a ∧ c ≡̂ b ∧ c, for all a, b, c ∈M .

Example 4 Let (M,∨,∧) be the multilattice
which is described in the figure below.
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The partition

{{0, a1, a2, a3, a4, d}, {c, b1, b2, b3, b4, 1}}

defines a non-trivial congruence. However,

R={{0, a1, b1, c}, {a2, b2, a3, b3}, {a4, b4, d, 1}}

is not a congruence because 0Ra1 but a4 ∈
a1∨a2 and there is not an element x ∈ 0∨a2 =
a2 such that xRa4.

The following results are consequences from
the definition, and will be useful later.



Lemma 5 Let ≡ be a congruence relation in
a multilattice M , let [a] be the equivalence
class of an element a, and consider a, b ∈M :

1. If b ∈ [a] then ∅ 6= a ∨ b ⊆ [a] and ∅ 6=
a ∧ b ⊆ [a]

2. If there exist z ∈ a∧ b and w ∈ a∨ b such
that z ≡ w, then a ≡ b

3. If z, w ∈ a∨b with z 6= w and z ≡ w then
a ∨ b ⊆ [a] = [b].

4. If z, w ∈ a∧b with z 6= w and z ≡ w then
a ∧ b ⊆ [a] = [b].

Proof:

(1) As b ≡ a then a ∨ b ≡̂ a ∨ a = a which
implies ∅ 6= a∨ b ⊆ [a]. The other result
is proved similarly.

(2) Let us assume that there exist z ∈ a ∧ b
and w ∈ a ∨ b such that z ≡ w. Then
a = a∧w ≡̂ a∧z = z = b∧z ≡̂ b∧w = b.
By transitivity, one obtains a ≡ b.

(3) If z, w ∈ a ∨ b with z 6= w then a, b ∈
z ∧ w. Since z ≡ w, by Item (1), a, b ∈
z∧w ⊆ [z] and, therefore, a ≡ b. Finally,
applying Item (1) again, a∨b ⊆ [a] = [b].

(4) Dual to (3).

�

Lemma 6 Let ≡ be a congruence relation in
a multilattice M , and consider a, b, t ∈M . If
a ≤ b with a ≡ b, then

1. For all z ∈ a ∧ t we have that

∅ 6= (b ∧ t) ∩ z↑⊆ [z]

2. For all w ∈ b ∨ t we have that

∅ 6= (a ∨ t) ∩ w↓⊆ [w]

where z↑= {x | x ≥ z} and w↓= {x | x ≤ w}.

Proof: If z ∈ a ∧ t, then z ≤ a ≤ b and
z ≤ t and, since (M,∨,∧) is a multilattice,
there exists w ∈ b ∧ t with z ≤ w. Moreover,
for any w ∈ b ∧ t with z ≤ w, it is easy to
prove that z ∈ a ∧ w. As a ≡ b we have that
z ∈ a ∧ w ≡̂ b ∧ w = w. The second item can
be proved analogously. �

The following result can be viewed as a suit-
able generalisation to multilattices of a simi-
lar result about lattices given by Grätzer [11,
page 26]. Its usefulness can be seen in that it
reduces the set of requirements to be checked
in order to prove that a given binary relation
is a congruence relation.

Theorem 7 (See [4]) Let (M,∨,∧) be a
multilattice and R be a binary relation. Then
R is a congruence relation if and only if the
following conditions hold:

1. R is reflexive

2. xRy if and only if there exist z ∈ x ∧ y
and w ∈ x ∨ y with zRw

3. If x ≤ y ≤ z with xRy and yRz, then
xRz

4. If x ≤ y with xRy, then x∧ t R̂ y ∧ t and
x ∨ t R̂ y ∨ t.

It is well-known that, for every set A, the set
of equivalence relations on A, Eq(A), with the
inclusion ordering (in the powerset of A×A)
is a complete lattice in which the infimum is
the meet and the supremum is the transitive
closure of the join.

In [4] the authors proved that the set of con-
gruences on a multilattice is a complete lat-
tice under the assumption of m-distributivity.
This requirement can be avoided by means of
a more involved proof which is given below:

Theorem 8 The set of the congruences in
a multilattice M , Con(M), is a sublattice of
Eq(M). Furthermore, Con(M) is a complete
lattice w.r.t. the inclusion ordering.

Proof: Let {≡i}i∈Λ be a set of congruences
in M , consider ≡∩ to be its intersection and
≡tc be the transitive closure of their union.



Since ≡∩ and ≡tc are equivalence relations,
they satisfy the conditions (1) and (3) of The-
orem 7. On the other hand, condition (2) is a
consequence of Lemma 5. Thus, we have just
to check condition (4) in order to show that
both relations ≡∩ and ≡tc are congruences.

Let us consider x ≤ y with x ≡∩ y. Lemma 6
ensures that, if z ∈ x ∧ t, then there exists
w ∈ y ∧ t with z ≡∩ w.

Now, let us consider w ∈ y∧t, and let us prove
that there exists z ∈ x ∧ t such that z ≡∩ w.
To this end, we will distinguish two cases:

a) If there exists z ∈ x ∧ t such that z ≤ w
then, by Lemma 6, z ≡∩ w.

b) Otherwise, let us prove that x∧ t ⊆ [w]∩.
For all i ∈ Λ, there exists z ∈ x ∧ t such
that z ≡i w. By Lemma 6, there exists
w′ ∈ y∧t such that z ≤ w′ and z ≡i w′ ≡i

w. So, w, w′ ∈ y ∧ t with w 6= w′ and
w ≡i w′ and, by Lemma 5, y ∧ t ⊆ [y]i.
Now, from x ≡i y we have x ∧ t ≡̂i y ∧
t. Therefore, w ∈ [y]i and x ∧ t ⊆ [y]i.
Finally, as this argument is applicable to
all i ∈ Λ, x ∧ t ⊆ [w]∩.

For ∨ we proceed similarly.

The transitive closure, ≡tc, is an equivalence
relation. Now, we prove compatibility with
the operations. Let x ≡tc y, that is, there
exists a sequence x1, . . . , xn such that x1 =
x, xn = y and x1 ≡i1 x2 ≡i2 · · · ≡in−1

xn with i1, i2, · · · , in−1 ∈ Λ. Then x1 ∨
t≡̂i1x2∨ t≡̂i2 . . . ≡̂in−1xn∨ t and x1∧ t≡̂i1x2∧
t≡̂i2 . . . ≡̂in−1xn ∧ t. Therefore, x∨ t ≡̂tc y ∨ t
and x ∧ t ≡̂tc y ∧ t. �

3 Ideals, homomorphisms, and
congruences

There have been several proposed definitions
for the notion of ideal of a multilattice. The
definition of ideal in a multilattice is not
canonical. For instance, one can find the
notion of s-ideals introduced by Rach̊unek,
or the l-ideals of Burgess, or the m-ideals
given by Johnston [12, 18]. In this section,
we introduce an alternative definition which

is more suitable for extending the classical re-
sults about congruences and homomorphisms.

Definition 9 Let (M,∨,∧) be a multilattice.
A non-empty set I ⊆M is said to be an ideal
if the following conditions hold:

1. i, j ∈ I implies ∅ 6= i ∨ j ⊆ I.

2. i ∈ I implies i ∧ a ⊆ I for all a ∈M .

3. For all a, b ∈ M , if a ∧ b ∩ I 6= ∅ then
a ∧ b ⊆ I.

The set of ideals in M is denoted by I(M).

The following lemma can be obtained directly
from the definition above:

Lemma 10 A non-empty intersection of ide-
als of a multilattice is an ideal.

Theorem 11 If (M,∨,∧) is a full multilat-
tice then (I(M),⊆) is a complete lattice.

Proof: The hypothesis of M being full guar-
antees that the arbitrary intersection of ide-
als is non-empty and, furthermore, M is an
ideal. Therefore, (I(M),⊆) is a complete inf-
semilattice with top element, hence, a com-
plete lattice. �

Theorem 12 Let (M,∨,∧) be a multilattice
with bottom element 0, and let ≡ be a congru-
ence relation. Then [0] is an ideal of M .

Proof: Item 1 of the definition is a conse-
quence of Lemma 5, whereas item 2 is a con-
sequence of the definition of congruence.

For item 3, assume x ∈ a ∧ b and x ≡ 0,
consider y ∈ a∧ b with x 6= y and let us prove
that y ≡ 0. Since x ≤ a and y ≤ a there exists
a′ ∈ x ∨ y such that a′ ≤ a. Analogously,
there exists b′ ∈ x∨y with b′ ≤ b. Notice that
a′ 6= b′ because if a′ = b′ then x = y. We have
a′, b′ ∈ x∨ y and, since x∨ y ≡̂ 0∨ y = y, thus
a′ ≡ b′; now, by Lemma 5(3), we have that
x ∨ y ⊆ [y] = [x] = [0]. �

In previous works, the notion of homomor-
phism is extended to the theory of multi-
lattices as follows: h : M → M ′ is a ho-
momorphism if h(a ∨ b) ⊆ h(a) ∨ h(b) and



h(a ∧ b) ⊆ h(a) ∧ h(b). As we will provide an
alternative definition of a homomorphism, we
will use the term Benado-homomorphism to
refer to this definition, named after the per-
son who introduced it. Now, as stated previ-
ously, we will introduce a new definition that
fits better to the expected extension of the
classical results.

Definition 13 Let h : M →M ′ be a map be-
tween multilattices, h is said to be a (non-
deterministic) nd-homomorphism if

h(a ∨ b) =
(
h(a) ∨ h(b)

)
∩ h(M)

h(a ∧ b) =
(
h(a) ∧ h(b)

)
∩ h(M)

Theorem 14 Let h : M → M ′ be a map
where M is full. Then h is a Benado ho-
momorphism if and only if it is an nd-
homomorphism.

Proof: It is sufficient to prove that, for all
a, b, c ∈ A, if h(c) ∈ h(a) ∨ h(b) then there
exists c′ ∈ a ∨ b such that h(c′) = h(c). The
same result for ∧ follows by duality.

Firstly, h(a ∨ c) ⊆ h(a) ∨ h(c) = h(c) and
h(b ∨ c) ⊆ h(b) ∨ h(c) = h(c). Since a ∨ c 6=
∅ 6= b ∨ c, there exist x ∈ a ∨ c and y ∈ b ∨ c
such that h(x) = h(c) = h(y).

On the other hand, any element z ∈ x ∨ y
satisfies h(z) ∈ h(x∨y) ⊆ h(x)∨h(y) = h(c)∨
h(c) = h(c).

As a ≤ z and b ≤ z, there exists c′ ∈ a ∨ b
such that c′ ≤ z. Therefore, h(c) = h(z) =
h(c′∨z) ⊆ h(c′)∨h(z) = h(c′)∨h(c) which im-
plies that h(c′) ≤ h(c). Since also h(c′), h(c) ∈
h(a) ∨ h(b) we deduce h(c′) = h(c). �

In the rest of the section we will focus on the
relationship between congruences and homo-
morphisms.

Definition 15 Let h : A→ B be a mapping.
The kernel relation of h is defined as follows

aR b if and only if h(a) = h(b)

Obviously, for every mapping h, the kernel re-
lation is an equivalence relation. It is remark-
able that the particular definition given for
nd-homomorphism is the key to the following
interesting result.

Theorem 16

1. The kernel relation of any nd-
homomorphism between multilattices
is a congruence.

2. Let (M,∨,∧) be a multilattice and ≡ a
congruence relation, then M/≡ is a mul-
tilattice with

[a] ∨ [b] = {[x] | x ∈ a ∨ b}
[a] ∧ [b] = {[x] | x ∈ a ∧ b}

Moreover, the mapping p : M → M/≡
such that p(x) = [x] is a surjective nd-
homomorphism.

3. Every nd-homomorphism h : M → M ′

can be canonically decompose as h =
i ◦ h ◦ p where h : M/≡ → h(M) is the
isomorphism defined as h([x]) = h(x)
and i : h(M) → M ′ is the inclusion
monomorphism.

Example 17 In the multilattice described in
Example 4, we have the following congruence
relations:

≡ M/≡

≡t {{0, a1, a2, a3, a4, d, c, b1, b2, b3, b4, 1}}
≡1 {{0, a1, a2, a3, a4, d},

{c, b1, b2, b3, b4, 1}}
≡2 {{0, c}, {a1, b1}, {a2, b2},

{a3, b3}, {a4, b4}, {d, 1}}
≡i {{0}, {a1}, {a2}, {a3}, {a4}, {d},

{c}, {b1}, {b2}, {b3}, {b4}, {1}}

The non-trivial quotient multilattices are the
following:
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Finally, the relation between ideals and ho-
momorphisms is stated in the following result
which, again, follows from the particular def-
inition of ideal that we have introduced.

Theorem 18 Let h : M → M ′ be a nd-
homomorphism, and assume that M ′ has a
bottom element 0 such that 0 ∈ h(M). Then
h−1(0) is an ideal of M , called the kernel
ideal.

4 Conclusions and future work

We have introduced specific definitions of the
notions of homomorphism and ideal for the
theory of multilattices which, contrariwise to
alternative definitions that can be found in
the literature, allow to extend the classical
relationship between the concepts of homo-
morphism, congruence and ideal.

As future work, we will study conditions on
a multilattice which guarantee the possibility
of defining congruences from an ideal, in the
same way that distributivity allows to do so
in the theory of lattices.

Another line for future research concerns the
applications of these ideas to the more general
framework of hyperstructures [5].
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donnés. Acta Univ. Palack. Fac. Rer. Natur.,
45:77–81, 1974.

[19] Y. Tan. Fuzzy congruences on a regular semi-
group. Fuzzy Sets and Systems, 117(3):399–
408, 2001.


