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Abstract

The notion of coherence, introduced in the
context of fuzzy answer set programming
(FASP) [4], provides a metalogic condition
on the obtained models in FASP. In this
work, we relate it with the concept of N -
contradiction which is used in the definition
of antonyms.

1 Introduction

Answer set semantics is an intuitive and elegant gener-
alisation of the stable model semantics which provides
a powerful solution for knowledge representation and
non-monotonic reasoning problems. Its applicability
has been widely manifested by a lot of researches in
different areas.

Originally, they were intended to deal with two nega-
tions, one strong and one default negation. The use
of these two types of negation is advocated in many
contexts of interest, in particular in [8] their use is
justified in relation to web rules.

In [4], in order to generalize the answer set semantics
to general residuated logic programs, a generalization
of consistency was proposed, it was called coherence
in order to distinguish it from other generalizations in
the fuzzy framework.

In this approach, we provide additional insight and
motivation in favour of the notion of coherence instead
of other generalizations of consistency. We show that
non-coherent interpretations contradict the negation
meta-rule by an excess of information and we relate
the use of the strong negated propositional symbols
with computing with N -contradictory concepts.

In this paper, we start by briefly recalling the prelimi-
nary definitions needed in order to introduce coherent
interpretations in the framework of general residuated

logic programs. Then we further motivate the coherent
condition as generalization of consistency and the rela-
tionship with the concept of N -contradictory L fuzzy
sets studied in [6].

2 Preliminary definitions

As stated in the introduction, the notion of coherence
was introduced in the framework of general residuated
logic programming, a generalization of logic program-
ming in which the underlying mathematical basis is
that of residuated lattices.

The syntax of general residuated logic programs as-
sumes a set Π of propositional symbols. If p ∈ Π, then
both p and ∼ p are called literals. We will denote arbi-
trary literals with the symbol ` (possible subscripted),
and the set of all literals as Lit.

Definition 1 Given a residuated lattice with two
negations (L, ∗,←,∼,¬), a general residuated logic
program P is a set of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

where ϑ is an element of L and `, `1, . . . , `n are literals.

Definition 2 A fuzzy L-interpretation is a mapping
I : Lit→ L; that is, an L-fuzzy subset of literals.

We say that I satisfies a rule 〈`← B; ϑ〉 if and only
if I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules (and
facts) in P.

The fuzzy answer set semantics described in [4, 5] is
defined in two steps. Firstly, a treatment of strong
negation in the context of residuated logic program-
ming is provided in terms of the notion of coherence
as a generalization in the fuzzy framework of the con-
cept of consistence. Then, fuzzy answer sets for gen-
eral residuated logic programs are defined as a suitable
generalization of the Gelfond-Lifschitz reduct.



As our interest in this work is on the notion of co-
herence, our natural environment is that of extended
residuated logic programs, that is, those which do not
contain default negation.

Note that, as our interpretations are defined on the set
of literals, every extended program has a least model
which can be obtained, for instance, by iterating the
immediate consequence operator, see [1]. However,
one has to take into account the interaction between
opposite literals. For example, in the classical case we
reject the inconsistent models, i.e p and ∼ p cannot be
true at the same time.

This notion of inconsistency is generalized to the fuzzy
framework, where one can allow that two opposite lit-
erals live together . . . under some requirements.

Definition 3 A fuzzy L-interpretation I over Lit is
coherent if the inequality I(∼ p) ≤ ∼ I(p) holds for
every propositional symbol p.

Now, the key definition in extended residuated logic
programs is the following:

Definition 4 Let P be an extended residuated logic
program, we say that P is coherent if its least model is
coherent.

Now, a natural question arises: Why coherent inter-
pretations provide an interesting generalization? We
have three main reasons. Firstly, it is easy to imple-
ment, because it only depends on the negation opera-
tor; secondly, it allows to formalise lack of knowledge.
For example I such that I(`) = 0 for all ` ∈ Lit is al-
ways coherent. And finally, coherence coincides with
consistency in the classical framework.

In the next section we present additional motivations
on the notion of coherence and we compare it with
another approach in the fuzzy framework: the N -
contradictory fuzzy sets.

3 On coherence

In the previous section, the notions of coherent in-
terpretation and coherent program were introduced.
Here, we focus on widely explaining the concept of co-
herence. Specifically, we start by recalling some prop-
erties of coherent interpretations, then we present ad-
ditional motivations to consider the coherence as an
adequate generalization of consistency and, finally, we
relate it with other approaches.

3.1 Recalling some properties of coherence

We recall that a coherent interpretation is an L-
interpretation such that I(∼ p) ≤ ∼(I(p)) for all literal

` ∈ Lit and that an extended residuated logic program
P is coherent if its least model is coherent. Although
the definition of coherent program might look a hard
restriction, the following property of coherent interpre-
tations shows that a program is coherent if and only
if it has, at least, one coherent model.

Proposition 1 Let I and J be two interpretations sat-
isfying I ≤ J . If J is coherent, then I is coherent.

Proof Let p be a propositional symbol. By using
I ≤ J , coherence of J and the decreasing property of
∼̇ we have I(∼ p) ≤ J(∼ p) ≤ ∼̇J(p) ≤ ∼̇I(p) �

Corollary 1 An extended residuated logic program is
coherent if and only if it has at least one coherent
model.

Proposition 1 and its contrapositive, which states that
one cannot recover coherence by adding knowledge,
play an important role in the usefulness of coherent
interpretations.

In order to continue with some properties of the notion
of coherence, take into account that an interpretation
I assigns a truth degree to any negative literal ∼ p
independently from the negation operator. This way,
if we have two different negation operators (∼1 and
∼2) we can talk about the coherence of I wrt any of
these operators.

Proposition 2 Let ∼1 and ∼2 be two negation opera-
tors such that ∼1 ≤ ∼2, then any interpretation I that
is coherent wrt ∼1 is coherent wrt ∼2.

Proof Let p be a propositional symbol, then I(∼ p) ≤
∼̇1I(p) ≤ ∼̇2I(p). �

The following example shows us the importance in the
negation operator selected as strong negation to deter-
mine the coherence of a residuated logic program.

Example Consider the lattice [0, 1] with its usual
order, Gödel connectives, and the following program P:

r1 : 〈p←; 1〉
r2 : 〈q ← p; 0.8〉
r3 : 〈∼ q ←; 0.7〉

The least model is M = {(p, 1); (q, 0.8); (∼ q, 0.7)}. If
we consider the usual negation n(x) = 1− x to deter-
mine the coherence of the program we obtain that P
is not coherent, and the least model semantics fails in
this case. However, if we consider the negation:

n(x) =
{

1 if x ≤ 0.8
0 if x ≥ 0.8



the program is coherent and the least model semantics
provides a meaning to the program. �

We define an ordering among extended residuated
logic programs as follows: Let P1 and P2 be two ex-
tended programs, then P1 ⊆ P2 if and only if for each
rule 〈ri;ϑ1〉 in P1 there exists another rule1 〈ri;ϑ2〉 in
P2 such that ϑ1 ≤ ϑ2.

Proposition 3 Let P1 ⊆ P2 be two extended programs
then the least model of P1 is smaller than the least
model of P2.

Proof Since P1 ⊆ P2, we can affirm that for all L-
interpretation I

TP1(I) ≤ TP2(I)

This implies that lfp(TP1) ≤ lfp(TP2) �

Therefore we can say that the greater a program is the
more information it provides. Now it is easy to prove
that the coherence is also decreasingly conserved under
the order of extended residuated logic programs.

Corollary 2 Let P1 ⊆ P2 be two extended programs.
If P2 is coherent then P1 is coherent as well.

3.2 Motivation for the condition of
coherence

There are many ideas underlying the concept of incon-
sistence: conflicting inference, inferring contradiction
formulas, lack of models, etc. Coherence focuses on the
idea of excess of information, which leads to a conflict
with the negation meta-rule. Let n be a negation oper-
ator, the negation meta-rule is defined as follows: “if
p has truth value ϑ then n(p) has assigned the truth
value n(ϑ)”. Contradicting the negation meta-rule by
excess of information means that the program rules
infer more information for a propositional symbol p
than it could be inferred using the negation meta-rule.
Let us see, using the properties described in the last
section, that non-coherent interpretations are affected
by this excess of information.

Notice first that a coherent L-interpretation never con-
tradicts the negation meta-rule (wrt ∼) by excess of
information. Given a coherent interpretation I, if I
contradicts the negation metarule (wrt ∼) it is easy to
prove that every interpretation less than or equal to I
contradicts this meta-rule as well. Contrariwise, if we
consider the following L-interpretation:

I(`) =
{

I(p) if ` is the propositional symbol p
∼ I(p) if ` is the literal symbol ∼ p

1Note that the only difference between both rules is the
assigned weight.

we obtain a non-contradictory interpretation includ-
ing more information in I. Therefore a coherent in-
terpretation either satisfies the negation meta-rule or
contradicts it by lack of information. According to
the explanation described above, considering coherent
interpretation seems a convenient option to avoid a
contradiction with the negation metarule by excess of
information.

When I is a non-coherent L-interpretation, then
there exists a propositional symbol p such that either
I(∼ p) > ∼ I(p) or I(∼ p) and ∼ I(p) are incompara-
ble elements in L. In both cases a non-coherent in-
terpretation implies a contradiction with the negation
meta-rule. Is this contradiction given by an excess of
information? Certainly. The contrapositive of Propo-
sition 1 tells us that by adding information to I we
will never obtain a coherent interpretation, thus the
lack of information is not the reason of this contradic-
tion. Therefore the only possibility to obtain a non
contradictory2 interpretation is by removing informa-
tion. Thus if we obtain an incoherent interpretation
as least fixpoint of a logic program, it has been due
to an excess of information in the program (possibly
erroneous information). As a result, rejecting non-
coherent interpretations seems convenient as well.

An important remark is that coherence can be inter-
preted with an empirical sense and that the strong
negation operator can (and should) be fixed at the
beginning. More precisely, when the propositional
symbol are fixed, each one has an empirical motiva-
tion, i.e a definition given in a natural language. At
this point, the programmer has to determine what the
strong negated propositional symbols mean. A pos-
sibility is described in the next section and is related
to computing with antonyms. This way, ∼ p could
symbolize an antonym of p and the negation operator
used represents the degree of contradiction between p
and ∼ p (see section 3.3). Therefore the choice of the
strong negation operator is determined by empirical
motivation and not for technical stuff.

Of course this is not the only generalization of consis-
tency in the fuzzy framework. In several approaches
is usual to find the following, and popular, generaliza-
tion.

Definition 5 Let ∗ be a t-norm and ∼ a negation op-
erator. We say that an interpretation I : Lit → L on
the set of literals is α-consistent if for all propositional
symbol p we have that I(p) ∗ I(∼ p) ≤ α.

Note that, by the adjoint condition, I(p) ∗ I(∼ p) ≤ α
iff I(∼ p) ≤ α ← I(p). In other words, α-consistence
provides an upper bound to the value of I(∼ p) in

2with respect to the negation meta-rule



terms of I(p) and the parameter α. On its turn, recall
that a coherent interpretation directly provides such
an upper bound, namely ∼ I(p), which depends only
on the operator intended to interpret the strong nega-
tion. Obviously, in a classical context, both terms are
equivalent. There is not a universal motivation to pre-
fer one instead of another, the choice depends on the
context. In the next section we relate the coherence
with computing with antonyms, so if we want to use
antonyms in our residuated logic programs it seems
convenient to use the concept of coherence as general-
ization of inconsistency.

3.3 Coherence and N-contradiction

The concept of N -contradiction is defined over fuzzy
sets in [6] and is closely related to computing with
antonyms [7]; in fact, one condition for (A,B) to be
an antonym pair is that A is N -contradictory with B.

The aim of this section is to connect coherence and
strong negation with the concept of N -contradiction
and, consequently, with computing with antonyms.

Recall that, given a lattice L, an L-fuzzy set A defined
over the universe X 6= ∅ is a set A = {(x, µA(x)) : x ∈
X} such that µA(x) ∈ L for all x ∈ X. The function
µA is called the membership function of A and usually
an L-fuzzy set is denoted directly by its membership
function. A fuzzy answer set is an L-fuzzy answer set
where L is the unit real interval [0, 1].

The following definition describes when an L-fuzzy set
is N -contradictory with respect to another L-fuzzy set.

Definition 6 Let N be a negation operator, an L-
fuzzy set A is N -contradictory with respect to the L-
fuzzy set B if and only if A(x) ≤ N(B(x)) for all
element x in the universe

The following lemma shows that the negation operator
used to establish the N -contradiction also represents
a grade of contradiction:

Lemma 1 Let N1 and N2 be two negations operator
such that N1(x) ≤ N2(x) for all x ∈ L. Let A and B
be two L-fuzzy sets. If A is N1-contradictory wrt B
then A is N2-contradictory wrt B

Proof As A is N1-contradictory wrt B then A(x) ≤
N1(B(x)) for all x ∈ L. Using the hypotesis N1 ≤
N2, we obtain the inequality: A(x) ≤ N1(B(x)) ≤
N2(B(x)) for all x ∈ L.

�

As we said above, the negation operator in Defini-
tion 6 indicates a grade of contradiction between both

L-fuzzy sets. For example, consider the greatest nega-
tion operator:

N>(x) =
{

0 if x = 1
1 if x < 1

Then, an L-fuzzy set is N -contradictory wrt another
L-fuzzy set (N is a non fixed negation operator) if
and only if is N> contradictory. That means that N>
determines the lowest level of contradiction. On the
other hand, the least negation operator:

N⊥(x) =
{

0 if x 6= 1
1 if x = 1

determines the bigest level of contradiction in the sense
that if an L-fuzzy set is N⊥-contradictory wrt another
L-fuzzy set then is N -contradictory for all negation
operator N . This last level of contradiction establishes
that an element in the universe cannot has a positive
value in both L-fuzzy sets.

Let us clarify the concept of N -contradiction through
an example:

Example Consider the following fuzzy set defined
over the interval [0, 100]:

CloseTo20(x) =


0 if x ≤ 10

x−10
5 if 10 ≤ x ≤ 15
1 if 15 ≤ x ≤ 25

30−x
5 if 25 ≤ x ≤ 30
0 if x ≥ 30

which represents the numbers of [0, 100] which are
close to the number 20. It is not difficult to obtain N -
contradictory sets wrt closeTo20. A N⊥-contradictory
set wrt CloseTo20 is CloseTo100:

CloseTo100(x) =

 0 if x ≤ 90
x−90

5 if 90 ≤ x ≤ 95
1 if x ≥ 95

Moreover, is possible to find L-fuzzy sets which are
also contradictories with closeTo20 but in a lesser
level. For example the following fuzzy set is (1 − x)-
contradictory wrt closeTo20:

CloseTo35(x) =


0 if x ≤ 25

x−25
5 if 25 ≤ x ≤ 30
1 if 30 ≤ x ≤ 40

45−x
5 if 40 ≤ x ≤ 45
0 if x ≥ 45

�

To finish the section, we show that the strong negation
and the coherence conditions are related with the con-
cept of N -contradiction. Let A and B be two L-fuzzy



sets. Assume that B is N -contradictory wrt A. Sup-
pose also that the general residuated logic program P
contains the following propositional symbols (together
them meta-interpretations):

p ≡ The element δ belongs to A

q ≡ The element δ belongs to B

If we want to represent the N -contradictory relation
between A and B for the element δ in P, and then in
the information inferred by it, we identify the strong
negation operator with N and we include the following
rule:

〈∼ p← q ; 1〉

Observe that all fuzzy answer set of this program (with
the above rule includes in it) holds I(q) ≤ I(∼ p) ≤
∼ I(p) = N(I(p)). Hence the information inferred by
the program holds the relation of N -contradictory be-
tween A and B for the element δ.

The same representation of the notion of N -
contradiction can be done by identifying q with ∼ p.
Each choice has good and bad features. Identifying
q with ∼ p reduces the number of literals and thus it
reduces the computational complexity. However not
doing it supplies the possibility to represent various
N -contradictory L-fuzzy sets with respect to a given
one.

4 Conclusion and future work

We have recalled the basic definition of answer set
semantics for general residuated logic programs. We
have focused on motivating the use of the notion of co-
herence as a generalization of consistency in the fuzzy
framework. We have presented several reasons to con-
sider coherent interpretations: they do not contradict
the negation metarule by an excess of information and
are useful to reasoning with N -contradictory concepts.

We have started with the first steps towards reasoning
with antonyms in general residuated logic programs.
Therefore, future work should go towards the complete
introduction of antonyms in this framework.
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