
TOWARDS A FUZZY ANSWER SET SEMANTICS
FOR RESIDUATED LOGIC PROGRAMS

Nicolás Madrid Labrador, Manuel Ojeda-Aciego
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Abstract

In this work we introduce the first steps to-
wards the definition of an answer set seman-
tics for residuated logic programs with nega-
tion.
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1 Introduction

Twenty years later of the introduction of the stable
model semantics in classical logic programming, we
are still seeing a number of different applications of
this notion in different logical frameworks.

Answer set semantics is an intuitive and elegant gener-
alisation of the stable model semantics which provides
a powerful solution for knowledge representation and
non-monotonic reasoning problems. Originally, they
were intended to deal with two negations, one strong
negation and default negation. The use of these two
types of negation is advocated in many contexts of
interest, in particular in [12] there use is justified in
relation to web rules.

It is convenient to note that stable models were ini-
tially aimed at formalizing the use of negation in
logic programming as negation-as-failure and, thus,
are closely related to reasoning under uncertainty. For
instance, the closed world assumption for a given pred-
icate P allows for extracting negative knowledge about
P from the absence of positive information about it.

The ideal environment for developing a theory of man-
agement of uncertainty is fuzzy logic. Therefore, fuzzy
logic programming has become a target theory for a
suitable generalization of answer set semantics.

In this paper, we focus on the initial definitions of sta-
ble model and answer set in the framework of resid-
uated logic programs [2], as a initial step towards an
answer set semantics for multi-adjoint logic programs,
which were introduced in [8].

2 Preliminaries

In this section we include the definitions needed to
introduce our approach to residuated logic programs
with negation. Let us start with the definition of resid-
uated lattice:

Definition 1 A residuated lattice is a triple L =
((L,≤), ∗,←) such that:

1. (L,≤) is a complete and bounded lattice with
largest element 1 and least element 0.

2. (L, ∗, 1) is a commutative monoid unit element 1.

3. ∗ and ← form an adjoint pair, i.e:

z ≤ (x← y) iff y ∗ z ≤ z for all x, y, z ∈ L.

If the infimum in L can be defined in terms of ∗ and←
as x∧y = x∗ (y ← x), then the operators ∗ and← be-
have like a generalized conjunction (increasing in every
argument) and a generalized implication (decreasing
in the antecedent and increasing in the consequent),
see [7].

In the rest of the paper we will consider two differ-
ent types of operators of negation, which will modelize
strong negation ∼ and default negation ¬. The former
negation operator will be used in order to define a kind
of consistency for a fuzzy interpretation, whereas the
latter will be used during the construction of a reduct
(or program division).

Definition 2 A residuated lattice with negation is an
algebra (L, ∗,←,∼,¬), where (L, ∗,←) is a residuated
lattice, ∼ is a negation operator and ¬ is a default
negation operator.



In order to introduce our logic programs, we will as-
sume a set Π of propositional symbols. If p ∈ Π, then
both p and ∼ p are called literals. We will denote arbi-
trary literals with the symbol ` (possible subscripted),
and the set of all literals as Lit.

Definition 3 Given a residuated lattice with negation
(L, ∗,←,∼,¬), an extended residuated logic program
P is a set of weighted rules of the form

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

where ϑ is an element of L and `, `1, . . . , `n are literals.

Rules will be frequently denoted as 〈` ← B; ϑ〉. As
usual, the formula B is called the body of the rule
whereas ` is called its head. We consider facts as
rules with empty body, which are interpreted as a rule
〈`← 1; ϑ〉.

Definition 4 A (fuzzy) interpretation is a mapping
I : Lit→ L; note that the domain of an interpretation
can be extended to any rule by homomorphic extension.

We say that I satisfies a rule 〈`← B; ϑ〉 if and only if
I(B) ∗ ϑ ≤ I(`) or, equivalently, ϑ ≤ I(`← B).

Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the domain of our interpretations is the
whole set of literals Lit, hence we are following an
approach which is not compositional with regard to
either the strong negation or, as usual, default nega-
tion.

An extended general residuated logic program P is said
to be:

• definite if it does not contain negation operators.

• general if it does not contain strong negation, but
might contain default negation.

• normal if it does not contain default negation but
it might contain strong negation.

3 Fuzzy stable sets

Our aim in this section is to adapt the approach given
in [5] to the general residuated logic programs just
defined in the section above.

Let us consider a general residuated logic program P
together with a fuzzy interpretation I. To begin with,
we will construct a new general program PI by substi-
tuting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬̇M(pm+1) ∗ · · · ∗ ¬̇M(pn) ∗ ϑ〉

Notice that the new program PI is general, that is,
does not contain default negation; in fact, the con-
struction closely resembles that of a reduct in the clas-
sical case, this is why we introduce the following:

Definition 5 The program PI is called the reduct of P
wrt the interpretation I.

As a result of the definition, note that given two fuzzy
interpretations I and J , then the reducts PI and PJ

have the same rules, and might only differ in the values
of the weights. By the monotonicity properties of ∗
and ¬, we have that if I ≤ J then the weight of a rule
in PI is greater or equal than its weight in PJ .

In the following lemma, we show that every model M
of the program P is a model of the reduct PM .

Lemma 1 M is a model of P iff M is a model of PM .

Proof Let us consider a rule in P

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

Assume that M is a model of P, then M satisfies the
rule above, that is

M(p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn) ∗ ϑ ≤ I(p)

Now, by the homomorphic extension of interpretations
and the adjoint property, the inequality above is equiv-
alent to:

¬M(pm+1) ∗ · · · ∗ ¬M(pn) ∗ ϑ ≤M(p← p1 ∗ · · · ∗ pm)

that is, M satisfies the rule

〈p← p1 ∗ · · · ∗ pm; ¬M(pm+1) ∗ · · · ∗ ¬M(pn) ∗ ϑ〉

�

Recall that a fuzzy interpretation can be interpreted as
a L-fuzzy subset. Now, as usual, the notion of reduct
allows for defining a stable set for a program.

Definition 6 Let P be an extended residuated logic
program and let I be a fuzzy interpretation; I is said
to be a stable set of P iff I is a minimal model of PI .

Theorem 1 Any stable set of P is a minimal model
of P.

1Note the use of a dotted version of the negation symbol
to denote the semantical negation operator.



Proof Let M be a stable set of P which, by definition,
is a model of PM . Now, by Lemma 1, M is a model
of P. In order to prove minimality, assume that N is
another model of P such that N ≤M , and let us show
that N = M . Let us note the following facts about N :

1. N is a model of PN , again by Lemma 1.

2. The weights in the rules in PN are greater or equal
than those in PM , by the remark to Definition 5.

As a result, since N is a model of PN , then N is a
model of PM as well.

Finally, as M is a minimal model of PM , then M ⊆ N .
�

Thanks to Theorem 1 we know that every stable set is
a model, thus we have a suitable generalization of the
concept of stable model in this generalized framework.
Hereafter, specially in a semantic context, we will use
the term stable model to refer to a stable set.

This approach to reducts and stable models is a conser-
vative extension of the classical approach, as we show
below:

Firstly, a classical (bi-valued) extended program P can
be seen as an extended residuated logic program on the
lattice {0, 1} and such that each rule in P has weight 1.

Now, let us see that the construction of our (fuzzy)
reduct on a classical program provides exactly the clas-
sical reduct.

Consider a rule in P, which can be written as follows:

〈p← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn; 1〉

Now, given a fuzzy interpretation I, the rule is trans-
formed in the reduct in the rule p ← p1 ∧ · · · ∧ pn

together with a new weight. Obviously, the value of
this weight is either 0 or 1, as follows:

• if pi /∈ M for all i ∈ {m + 1, ..., n}, the assigned
value of the rule is

1 ∗ ¬pm+1 ∗ · · · ∗ ¬pn = 1 ∗ ¬0 ∗ · · · ∗ ¬0 = 1

• if pi ∈ M for some i ∈ {m + 1, ..., n}; then the
formula for constructing the weight in the reduct
leads to the value 0.

As a result, the rule is transformed in either

〈p← p1 ∧ · · · ∧ pm; 1〉

or

〈p← p1 ∧ · · · ∧ pm; 0〉

Note that the effect of the weight 0 is similar to elim-
inate the rule, the same as in the classical approach.

In the following example we use a simple general resid-
uated program with just one rule in order to show
some subtle differences generated by the extension to
the fuzzy case:

Example Let us consider the following program with
just one rule P = {p← ¬q}. In classical logic, for this
program there exist exactly four different interpreta-
tions, and only one of them is a stable model, namely,
I(p) = 1 and I(q) = 0.

Now, let us consider the extended version of the pro-
gram above, where the only difference is that we can
assign a weight to the rule and that the propositional
symbols are evaluated in a residuated lattice with
negation

〈p← ¬q; ϑ〉

Given a fuzzy interpretation I : Π→ L, the reduct PI

is the rule (actually, the fact) below

〈p; ϑ ∗ ¬̇I(q)〉

for which the least model is M(p) = ϑ ∗ ¬̇I(q), and
M(q) = 0. As a result, I is a stable model of P if and
only if I(p) = ϑ ∗ ¬̇I(0). �

4 Fuzzy answer sets

In this section, we concentrate on strong negation and
we will consider normal residuated logic programs.

Note that, as our interpretations are defined on the
set of literals, every normal program has a least model
which can be obtained, for instance, by iterating the
immediate consequence operator, see [2].

In the classical case, one has to take into account the
interaction between opposite literals in order to reject
inconsistent models. The advantage of working in a
fuzzy framework is that one can allow that two oppo-
site literals, such as p and ∼ p, live together . . . under
some requirements.

Our approach will be based on a generalization of the
concept of consistency which we have called coherence,
to distinguish it from other existing definitions of con-
sistency in a fuzzy setting.

Definition 7 A fuzzy interpretation I over Lit is co-
herent if for every propositional symbol p the inequality
I(∼ p) ≤ ∼̇I(p) holds.

It is easy to check that our notion of coherence coin-
cides with consistency when applied in the framework
of classical logic.



The following properties of coherent interpretations
will be used in the rest of the section.

Proposition 1 Let I and J be interpretations such
that I ≤ J and J is coherent, then I is coherent as
well.

Proof Let p be a propositional symbol, then by the
inequality I ≤ J , the coherence of J and the decreasing
property of ∼̇ we have

I(∼ p) ≤ J(∼ p) ≤ ∼̇J(p) ≤ ∼̇I(p)

�

Corollary 1 If M is a fuzzy coherent model of P and
T ≤ M is a another model of P then T is a coherent
model as well.

As a consequence of the previous corollary we can in-
troduce the following definition:

Definition 8 Let P be a normal residuated logic pro-
gram, we say that P is coherent if its least model is
coherent.

Example Consider the following normal residuated
logic program over the unit interval and strong nega-
tion ∼x = 1− x:

〈p←; 1〉
〈∼ p←; 0′3〉

This program is not coherent because its unique min-
imal model M = {(p, 1), (∼ p, 0′3)} is not a coherent
interpretation, since

0′3 = M(∼ p) > ∼M(p) = 0

�

Once the concept of coherence has been presented, we
can introduce the notion of fuzzy answer set. Such
a set is a fuzzy set of literals, similarly to the classi-
cal case, which sometimes will be considered a fuzzy
interpretation.

Definition 9 Let P be a coherent normal residuated
logic program; a fuzzy answer set of P is its least co-
herent model of P.

If P is a positive program, then it is a coherent program
and the fuzzy answer set of P is simply the least fuzzy
model of P.

Now, the definition of fuzzy answer set for extended
residuated logic programs is just a combination of that
for normal programs and stable models, via the con-
struction of reducts [6].

Given an extended residuated logic program P, it will
be transformed into a new general logic program P+ in
which we simply “forget” that the rules in the program
are constructed from literals, and consider negative
literals as new, independent, propositional symbol.

Formally, for any propositional symbol p occurring
in P, let p′ be a new propositional symbol, which will
be called the positive form of the negative literal ∼ p.
Every positive literal is, by definition, its own positive
form. The positive form of the literal ` will be denoted
by `+ and P+ will stand for the normal program ob-
tained from P by replacing each rule

`← `1 ∗ `2 ∗ ... ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n

by

`+ ← `+1 ∗ `+2 ∗ ... ∗ `+m ∗ ¬`+m+1 ∗ · · · ∗ ¬`+n

The transformation above can be easily applied to
fuzzy interpretations, in that, an interpretation I such
that I(∼ p) = ϑ is transformed into a fuzzy interpre-
tation I+ such that I+(p′) = ϑ. As a consequence, we
obtain in a straightforward way the following lemma.

Lemma 2 M is a model of P if and only if M+ is a
model of P+.

It is easy to see that the program P+ is a general pro-
gram and, thus, we can consider its stable models.
This leads to our definition of fuzzy answer set for an
extended program.

Definition 10 Given an extended residuated logic
program P, a fuzzy answer set for P is a stable model
for P+.

Now, it is convenient to show that the different defini-
tions made for particular classes of programs coincide
(whenever it makes sense to establish such a compari-
son).

To begin with, in the following proposition, we state
the relationship between the concepts of fuzzy answer
sets for a normal program and stable model for a def-
inite program.

Proposition 2 Let P be a normal residuated logic
program and I a fuzzy coherent interpretation; then
I is a fuzzy answer set of P if and only if I+ is a
stable model of P+.

Proof Follows from the fact that, if P is normal, then
P+ does not contain default negation; as a result, its
only stable model is its least model. �

It is clear, on the other hand, that the concept of fuzzy
stable model for a general program coincides with the



least model of a definite one; simply, because the latter
does not contain negation (neither strong nor default).

At this point it should be clear that there exists an-
other “reasonable” possibility for defining a fuzzy an-
swer set for an extended program; namely, the con-
struction of reduct2 to be directly applied on an ex-
tended program, PI , and then, compute its least
model. If this least model coincides with I. The nat-
ural question here is whether I is a fuzzy answer set
for P, in the sense of Definition 10.

Lemma 3 Let P be an extended residuated logic pro-
gram, then (PI)+ = (P+)I+ .

Proof Let us consider a rule of P

〈`← `1 ∗ · · · ∗ `m ∗ ¬`m+1 ∗ · · · ∗ ¬`n; ϑ〉

when constructing its reduct wrt I we obtain

〈`← `1 ∗ · · · ∗ `m; ¬̇(I(`m+1)) ∗ · · · ∗ ¬̇(I(`n)) ∗ ϑ〉

whose positive form is

〈`+ ← `+1 ∗ · · · ∗ `+m; ¬̇(I(`m+1)) ∗ · · · ∗ ¬̇(I(`n)) ∗ ϑ〉

this is the resulting rule under (PI)+.

On the other hand, the positivisation of the initial rule
is

〈`+ ← `+1 ∗ · · · ∗ `+m ∗ ¬`+m+1 ∗ · · · ∗ ¬`+n ; ϑ〉

and when computing its reduct wrt I+ we obtain

〈`+ ← `+1 ∗· · ·∗`+m; ¬̇(I+(`+m+1))∗· · ·∗¬̇(I+(`+n ))∗ϑ〉

which is the resulting rule under (P+)I+ .

Finally, note that, by definition, ¬̇(I+(`i)) = ¬̇(I(`+i ))
for all i = {1, ..., n}. Therefore the rules are the same
under both combinations. �

From the above lemma, we can compute a fuzzy an-
swer set for an extended logic program P by means of,
abusing a little bit of terminology, the extended stable
models.

Formally, we have the following theorem:

Theorem 2 Let P a extended residuated logic pro-
gram. A coherent fuzzy interpretation I is a fuzzy an-
swer set of P if and only if I is an extended stable
of P.

Proof : Straightforward from Lemma 3. �

2Note that we write PI to note that P needs not be a
general program; anyway, the construction of the reduct is
the same.

5 Other approaches to fuzzy answer
set programming

Several approaches have been developed in order to
cope with negation in a fuzzy logic programming set-
ting. To the best of our knowledge, one of the first
studies of negation in fuzzy logic programming was in-
troduced in [11], which developed a compositional ap-
proach to encompass strong negation, in opposition to
the well-known but non-compositional approach of [3].

In [4] a foundation for fuzzy logic programming was
developed, but his approach was not based on impli-
cation rules, but on Horn clauses on which negation
is interpreted as default negation. Simultaneously, [1]
introduced the so-called antitonic logic programs, for
which a well-founded and a stable model semantics
was developed; antitonic logic programs are based, as
our programs, on a residuated lattice, but their rules
must satisfy the condition that their bodies should be
either increasing in all variables or decreasing in all
variables and, thus, they cannot accomodate rules con-
taining both positive and negative literals in their bod-
ies. Moreover, they consider partial interpretations, in
the form of pairs of interpretations in order to keep
track of the information about truth and non-falsity.

There are other approaches based on annotated
multiple-valued logic [9]. In this paper, the underly-
ing truht-values set is a complete lattice, and the main
difference is that interpretations assign an interval to
literals (in a manner similar to [1]).

More recently, a general introduction to fuzzy answer
set programming has been introduced in [10], however
their approach is not directly applicable to residuated
logic programs, since the programs they considered did
not have weights.

6 Conclusions and future work

In this paper we have set the initial definitions in order
to start a thorough study of the answer set semantics
of extended residuated logic programs. The definitions
of fuzzy stable model for general program and of fuzzy
answer set for a coherent normal program are used in
order to provide the more general definition of fuzzy
answer set for an extended fuzzy program. Finally, we
conclude with the result that fuzzy answer sets can,
equivalently, be computed by means of extended stable
models.

A number of issues still have to be studied: for in-
stance, the epistemological implications of the concept
of coherence. In this paper, we have only taken into
account that the resulting fuzzy answer sets should be
validated against some consistency-related notion. Fu-



ture work, should go towards imbricating this notion
with threshold computation which turns out to be an
important issue for negation-as-failure. For instance,
the absence of evidence of p could be interpreted that
the value of p is at most a threshold value which cannot
be detected by the sensors which provide our informa-
tion.

Finally, it is important to relate our approach with
other existing approaches, and study their possible in-
teractions, advantages and disadvantages.
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