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Abstract

In this work we prove that the set of congru-
ences on an nd-groupoid under suitable con-
ditions is a complete lattice which is a sublat-
tice of the lattice of equivalence relations on
the nd-groupoid. The study of these condi-
tions allowed to construct a counterexample
to the statement that the set of (fuzzy) con-
gruences on a hypergroupoid is a complete
lattice.
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1 Introduction

This paper follows the current trend of providing suit-
able fuzzifications of crisp concepts, as a theoretical
tool to the development of new method of reasoning
under uncertainty, imprecision and lack of informa-
tion. Moreover, although originally fuzzy sets were
presented as mappings with codomain [0, 1], the unit
interval was soon replaced by more general structures,
for instance a complete lattice, as in the L-fuzzy sets
introduced by Goguen [7].

This paper follows one of our research lines which is
aimed at investigating L-fuzzy sets where L has the
structure of a multilattice [3]. Roughly speaking, a
multilattice is an algebraic structure in which the re-
strictions imposed on a lattice, namely, the “existence
of least upper bounds and greatest lower bounds” are
relaxed to the “existence of minimal upper bounds and
maximal lower bounds”.

Recently, Cordero et al. [9, 10] proposed an alterna-
tive algebraic definition of multilattice which is more
closely related to that of lattice, allowing for natural

definitions of related structures such that multisemi-
lattices and, in addition, is better suited for applica-
tions. For instance, Medina et al. [12] developed a gen-
eral approach to fuzzy logic programming in which the
authors use a multilattice as underlying set of truth-
values for the logic.

Attending to the description given above, the main
difference that one notices when working with multi-
lattices is that the operators which compute suprema
and infima are no longer single-valued, since there may
be several multi-suprema or multi-infima, or may be
none. This immediately leads to the theory of hyper-
structures, that is, set-valued operations.

Hyperstructure theory was introduced in [11] when
Marty defined hypergroups, began to analyse their
properties and applied them to groups, rational frac-
tions and algebraic functions. Nowadays, a number of
different hyperstructures are widely studied from the
theoretical point of view and for their applications to
many subjects of pure and applied mathematics.

In this paper, we will focus on the most general hyper-
structures, namely hypergroupoid and nd-groupoid.
In a nutshell, let us recall that a hypergroupoid is sim-
ply a binary operator H ×H → P(H) r {∅}, whereas
a non-deterministic groupoid (nd-groupoid, for short)
is a binary operator H × H → P(H), that is, a hy-
pergroupoid n which the restriction of the codomain
being the non-empty subsets is dropped.

Our interest in nd-groupoids and hypergroupoids
arises from the fact that, in a multilattice, the op-
erators which compute the multi-suprema and multi-
infima are precisely nd-groupoids or, if we have for
granted that at least a multi-supremum always exists,
a hypergroupoid. Most of the results will be stated
mainly in terms of multisemilattices.

Several papers have been published on the lattice
of fuzzy congruences on different algebraic structures
[1, 5, 6, 14, 15], and in [4] we initiated research in this



direction. Specifically, we focused on the theory of
congruences on a multilattice, as this is a necessary
step prior to considering the multilattice-based gener-
alization of the concept of L-fuzzy congruence. In this
paper, we consider the particular case of the congru-
ences on an nd-groupoid.

The fact that the structure of nd-groupoid is simpler
than that of a multilattice does not necessarily mean
that the theory is simpler as well. Specifically, the set
of congruences on an nd-groupoid is not a lattice un-
less we assume some extra properties. This problem
led us to review some related literature and, as a re-
sult, we found one counter-example in the context of
congruences on a hypergroupoid.

2 Preliminaries

The concept of multilattice [3] was introduced by Be-
nado in 1954, and is an extension of the concept of lat-
tice by means the so-called multi-suprema and multi-
infima, which are formally defined below:

Definition 2.1 Given (M,≤) a partially ordered set
(poset, hereafter) and B ⊆ M , a multi-supremum
of B is a minimal element of the set of upper bounds
of B and Multi-sup(B) denote the set of all the multi-
suprema of B. Dually, we define the multi-infima.

Now, we introduce the definition of multilattice.

Definition 2.2 A poset (M,≤) is said to be a multi-
semilattice if it satisfies that, for all a, b, x ∈M with
a ≤ x and b ≤ x, there exists z ∈ Multi-sup({a, b}) such
that z ≤ x.

Similarly to what happens in the theory of lattices, a
poset (M,≤) is said to be a multilattice if it is a
multisemilattice and also its dual (M,≥).

Note that the definition is consistent with the existence
of two incomparable elements without any multisupre-
mum. In other words, Multi-sup({a, b}) can be empty.

Let us move now to the context of congruences on
different algebraic structures.

It is well-known that given a lattice L, the set of all
congruence relations on L, partially ordered by set in-
clusion, is a complete lattice [8]. In the recent lit-
erature, several authors have presented different ap-
proaches to fuzzy congruence relations on some alge-
braic structures [5, 6, 13, 15]. The most general frame
which almost includes multilattices seems to be that
of a hypergroupoid. In [2], the notion of fuzzy congru-
ence relation on hypergroupoid is introduced.

Note that we will assume the following notational con-
vention: If X,Y ⊆ H then X ≡ Y denotes that, for

all x ∈ X, there exists y ∈ Y such that x ≡ y and for
all y ∈ Y there exists x ∈ X such that x ≡ y.

Definition 2.3 Let (H, ·) be a hypergroupoid, that is,
a mapping · : H ×H → P(H) r {∅}. A congruence
relation on H is an equivalence relation ≡ such that
for all a, b, c ∈ H, if a ≡ b, then ac ≡ bc.

Definition 2.4 (Zadeh, [16]) Let H be a nonempty
set. A fuzzy relation ρ on H is a fuzzy subset of
H × H (i.e. ρ is a function from H × H to [0, 1]).
Now, ρ is said to be a fuzzy equivalence relation if

1. ρ(x, x) = supy,z∈H ρ(y, z) (fuzzy reflexivity),

2. ρ(y, x) = ρ(x, y) (fuzzy symmetry),

3. ρ(x, y) ≥ supz∈H min(ρ(x, z), ρ(z, y)) (fuzzy tran-
sitivity).

Definition 2.5 (Bakhshi and Borzooei [2]) Let (H, ·)
be a hypergroupoid and ρ a fuzzy relation on H.

1. ρ is fuzzy left (right) compatible if for all u ∈
ax (u ∈ xa) there exists v ∈ ay (v ∈ ya) and for
all v ∈ ay (v ∈ ya) there exists u ∈ ax (u ∈ xa)
such that ρ(u, v) ≥ ρ(x, y), for all x, y, a ∈ H and
fuzzy compatible if it is both fuzzy left and right
compatible.

2. ρ is a fuzzy (left, right) congruence relation on
H if it is a fuzzy (left, right) compatible equiva-
lence relation on H.

Under the additional assumption of commutativity
with respect to the usual composition of binary re-
lations, Bakhshi and Borzooei [2], apparently proved
that the set of all fuzzy congruence relations on an
hypergroupoid (H, ·) is a complete lattice where, in
particular, the infimum of two congruences is its inter-
section. The following example proves that, without
additional hypotheses, the statement is false even in a
crisp setting.

Example 2.1 Let H be the set {a, b, c, u0, u1, v0, v1}
provided with a commutative hyperoperation ∗ which is
defined as follows:

a ∗ a = a ∗ b = b ∗ b = {a, b}; a ∗ c = {u0, u1};

b ∗ c = {v0, v1} and x ∗ y = {c}, elsewhere

Consider R,S : H × H → {0, 1} two binary rela-
tions, where R is the least equivalence relation con-
taining {(a, b), (u0, v0), (u1, v1)} and S the least equiv-
alence relation containing {(a, b), (u0, v1), (u1, v0)}. A
simple (but tedious) check shows that R ◦ S = S ◦ R
and they are both compatible with the hyperoperation



∗, therefore, both R and S are congruence relations.
However, one can check that the intersection R ∩ S is
not a congruence relation.

The previous example motivated the search for a suf-
ficient condition which granted the structure of com-
plete lattice for the set of congruences on a hyper-
groupoid and, by extension, on an nd-groupoid.

The idea underlying this missing property comes from
a previous work by the authors [4], in which we studied
congruence relations on a multilattice M as a natural
inception for the fuzzy case. In that paper, we proved
that the set of equivalence relations compatible with
both operations of a multilattice forms a complete lat-
tice, under a suitable form of distributivity.

In the following section we extend the concept of hy-
pergroupoid by formally introducing and studying the
properties of nd-groupoids, together with a suitable
generalization of the property of distributivity, albeit
in a framework with just one operation!!

3 Congruence relations in
nd-groupoids

We are specially interested in a generalization of
hypergroupoid that we will call non deterministic
groupoid (nd-groupoid, for short).

We consider a set A endowed with an nd-operation,
· : A × A → P(A) and thus the pair (A, ·) is called
nd-groupoid. Notice that the definition allows the
assignment of the empty set to a pair of elements, that
is a · b = ∅, this mere fact, albeit simple, represents
an important difference with hypergroupoids.

Notation: As usual, we will use the notational con-
ventions:

• If a ∈ A and X ⊆ A aX = {ax | x ∈ X} and
Xa = {xa | x ∈ X}. In particular, a∅ = ∅a = ∅

• We will use multiplicative notation and, thus, the
dot is omitted.

• When the result of the nd-operation is a singleton,
we will often omit the braces.

As stated in the introduction, our interest in extend-
ing the concept of hypergroupoid is justified by the
algebraic characterization of multilattices and multi-
semilattices, since the operators for multi-suprema and
multi-infima are both examples of nd-groupoids.

With this idea in mind, we introduce below the ex-
tension to the framework of nd-groupoids of some
well-known properties. Assume that (A, ·) is an nd-
groupoid:

• Idempotency: aa = a for all a ∈ A.

• Commutativity: ab = ba for all a, b ∈ A.

• Left m-associativity: (ab)c ⊆ a(bc) when ab =
b, for all a, b, c ∈ A.

• Right m-associativity: a(bc) ⊆ (ab)c when
bc = c, for all a, b, c ∈ A.

• m-associativity: if it is left and right m-
associative.

Note that the prefix ‘m’ has its origin in the concept
of multilattice.

We will focus our interest in the binary relation usually
named natural ordering, which is defined by

a ≤ b if and only if ab = b

In general, this relation is not an ordering, but we
have sufficient conditions which guarantee the prop-
erties of an ordering. Specifically, it is reflexive if the
nd-groupoid is idempotent, the relation is antisymmet-
ric if the nd-groupoid is commutative and, finally, it is
transitive if the nd-groupoid is m-associative.

The two following properties of nd-groupoids have an
important role in multilattice theory:

• C1: c ∈ ab implies that a ≤ c and b ≤ c.

• C2: c, d ∈ ab and c ≤ d imply that c = d.

These two properties are named comparability. Sim-
ilarly to lattice theory, we can define algebraically the
concept of multisemilattice as an nd-groupoid that
satisfies idempotency, commutativity, m-associativity
and comparability laws. Both definitions of multi-
semilattice can be proved to be equivalent consider-
ing a · b = Multi-sup{a, b} and ≤ the natural ordering
(see [10, Theorem 2.11]).

In the following, we will consider congruence relations
on an nd-groupoid. This concept is defined in the same
manner as in Definition 2.3.

The following result is an immediate consequence from
the definition.

Lemma 3.1 Let (A, ·) be an idempotent nd-groupoid
and ≡ be a congruence relation. If a ≡ b then ∅ 6=
ab ≡ a.

Theorem 3.2 Let (A, ·) be an nd-groupoid satisfying
idempotency and property C1. An equivalence relation
≡ is a congruence if and only if the following holds:

∀a, b, c ∈ A, if a ≤ b and a ≡ b, then ac ≡ bc.



Proof The necessity is obvious, thus we will just
prove the sufficiency.

If a ≡ b then, by Lemma 3.1, there exists z ∈ ab such
that a ≡ z ≡ b. Property C1 ensures that a ≤ z and
b ≤ z and then, by the condition, ac ≡ zc ≡ bc. �

In the rest of the paper, we focus on the search of
properties that ensure the condition of the previous
theorem.

Proposition 3.3 Let (A, ·) be an m-associative nd-
groupoid that satisfies C1 and, for a, b, c ∈ A, consider
a ≤ b and z ∈ bc:

1. There exists w ∈ ac such that w ≤ z.

2. Furthermore, if (A, ·) is commutative and C2

holds, then a ≡ b implies that every element w
as in the previous item satisfies that w ≡ z.

Proof

1. By hypothesis a ≤ b and, by C1, since z ∈ bc,
we obtain b ≤ z. Therefore a ≤ z because, by
m-associativity of the nd-operation ·, the relation
≤ is transitive.

Now, again by C1, since z ∈ bc, c ≤ z and, by
m-associativity, z = az = a(cz) ⊆ (ac)z. In par-
ticular, we have that z ∈ (ac)z, this implies the
existence of w ∈ ac such that z = wz, that is,
w ≤ z.

2. Consider w ∈ ac such that wz = z (i.e., w ≤ z).
By C1 we have that a ≤ w and w = aw ≡ bw.
Now, it is sufficient to prove that z ∈ bw.

Since b ≤ z and w ≤ z, by m-associativity, z =
bz = b(wz) ⊆ (bw)z, that is, z ∈ (bw)z. Consider
z′ ∈ bw such that z′ ≤ z. By C1, b ≤ z′ and
c ≤ w ≤ z′. Once again, m-associativity ensures
that there exists z′′ ∈ bc such that z′′ ≤ z′ and
therefore z′′ ≤ z. Now, by C2, z′′ = z. From
z ≤ z′ and z′ ≤ z, by commutativity, the relation
≤ is antisymmetric and, hence,z = z′ ∈ bw. �

In order to prove the converse result, we need to in-
troduce the following definition.

Definition 3.4 An nd-operation · in a set A is said
to be m-distributive when, for all a, b, c ∈ A, if a ≤ b
and w ∈ ac, then bw ∩ bc 6= ∅.

The justification of this name is that a multilattice
(A,∨,∧) in which both operations are m-distributive
satisfies the following property: for all a, b ∈ A with
a ≤ b and c ∈ A:

1. (a ∧ b) ∨ c ⊆ (a ∨ c) ∧ (b ∨ c)

2. (a ∨ b) ∧ c ⊆ (a ∧ c) ∨ (b ∧ c)

In fact, the two latter conditions are equivalent to the
m-distributivity of ∧ and ∨, as the following result
shows.

Proposition 3.5 Let (A,∨,∧) be a multilattice and
a, b, c ∈ A. The following conditions are equivalent:

1. If a ≤ b and w ∈ a ∨ c, then b ∨ w ∩ b ∨ c 6= ∅.

2. If a ≤ b, then (a ∧ b) ∨ c ⊆ (a ∨ c) ∧ (b ∨ c).

Proof

• (1 ⇒ 2) If w ∈ (a ∧ b) ∨ c = a ∨ c then, by hy-
pothesis 1, there exists u ∈ b ∨ w ∩ b ∨ c. Since
u ∈ b ∨ w, by property C1, we have w ≤ u and,
therefore, w = w ∧ u ⊆ (a ∨ c) ∧ (b ∨ c).

• (2⇒ 1) Conversely, assume w ∈ a∨c, since a ≤ b,
we have a = a ∧ b and, by hypothesis 2 we have
w ∈ (a ∧ b) ∨ c ⊆ (a ∨ c) ∧ (b ∨ c). Thus, there
exists an element u ∈ a∨ c and v ∈ b∨ c such that
w ∈ u ∧ v. Moreover,1 by C1, w ≤ v and b ≤ v.
By m-associativity we have now that v = b ∨ v =
b ∨ (w ∨ v) ⊆ (b ∨ w) ∨ v. This means that there
exists v′ ∈ b ∨ w such that v = v′ ∨ v (that is,
v′ ≤ v). Finally, we will prove that v ≤ v′ and
thus v = v′ ∈ b ∨ w ∩ b ∨ c as desired.

By C1 we have that b ≤ v′ and c ≤ w ≤ v′ which,
by transitivity, implies c ≤ v′. This means that v′

is an upper bound of b and c and, by definition of
multilattice, there should exist v′′ ∈ b∨c such that
v′′ ≤ v′. But we already know that v′ ≤ v, hence
v′′ ≤ v′ ≤ v, but as v and v′′ are multi-suprema,
the only consistent possibility is that v = v′ = v′′.

�

Proposition 3.6 Let (M, ·) be an m-distributive nd-
groupoid that satisfies C1 and a, b, c ∈M . If a ≤ b and
w ∈ ac then there exists z ∈ bc such that w ≤ z.

Proof By m-distributivity, from a ≤ b and w ∈ ac,
we obtain that there exists z ∈ bw ∩ bc. Now, by C1

w ≤ z. �

Notice that the properties required as hypotheses of
Proposition 3.6 and Proposition 3.3 are those of a mul-
tisemilattice without idempotency. The following re-
sult, stated in terms of a multisemilattice, is a straight-
forward consequence of these two propositions.

1Recall that, as stated in the definition of multilattice,
the order used considered for ∧ is ≥, this explains the fol-
lowing use of property C1 .



Proposition 3.7 Let (M, ·) be an m-distributive mul-
tisemilattice, ≡ be a congruence relation and a, b, c ∈
M . If a ≤ b, a ≡ b, w ∈ ac and z ∈ bc with w ≤ z
then w ≡ z.

Now, we have all the required properties and lemmas
needed in order to face the main goal of this paper,
namely, to prove that the set of congruences of an nd-
groupoid is a complete lattice.

It is well-known that, for every set A, the set of equiv-
alence relations on A, Eq(A), with the inclusion or-
dering (in the powerset of A×A) is a complete lattice
in which the infimum is the meet and the supremum
is the transitive closure of the join. This generaliza-
tion of distributivity will be proved to be a sufficient
condition for the set of congruence relations being a
complete lattice.

Theorem 3.8 The set of the congruence relations in
an m-distributive multisemilattice M , Con(M), is a
sublattice of Eq(M) and, moreover is a complete lattice
wrt the inclusion ordering.

Proof Let {≡i}i∈Λ be a set of congruence relations
in M , consider ≡∩ to be their intersection.

From Theorem 3.2 we have just to check that, for all
a, b, c ∈M , a ≤ b and a ≡∩ b imply that ac ≡∩ bc.

From Proposition 3.3, if z ∈ bc then there exists w ∈ ac
such that w ≤ z and, for all w ∈ ac with w ≤ z and
all i ∈ Λ, w ≡i z (so w ≡∩ z).

Conversely, from Proposition 3.6 and Proposition 3.7,
if w ∈ ac then there exists z ∈ bc such that w ≤ z and,
for all z ∈ bc with w ≤ z and all i ∈ Λ, w ≡i z (so
w ≡∩ z).

The proof for the transitive closure of union follows by
a routine calculation. �

4 Conclusions and future work

We have proved that the set of congruence relations on
an nd-groupoid is a complete lattice which is a sublat-
tice of the lattice its equivalence relations. The main
step in the proof of this statement is the introduction
of the concept of m-distributivity, which allowed for
translating the ideas used in the context of congru-
ences on multilattices.

As future work on this research line, our plan is to
keep investigating new or analogue results concern-
ing congruences on generalized algebraic structures,
specially in a non-deterministic sense. Then, continu-
ing towards our main aim, studying the computational
properties of multilattices as a suitable algebraic struc-
ture on which found an extended theory of fuzzy struc-

tures, we will try to lift our results from a crisp to a
fuzzy setting.
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donnés et le théorème de raffinement de Schreier.
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