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Resumen

This paper shows that the recently intro-
duced framework of multi-adjoint concept lat-
tices naturally embeds the generalization of
fuzzy concept lattices under the assumption
of non-commutative conjunctors developed by
Georgescu and Popescu.
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1 Introduction

When working with methods which use uncertainty, impre-
cise data or incomplete information one of the main tools is
the formal concept analysis; the classical approach in this
context is that introduced by Ganter and Wille [5]. After
this, there has been many approaches trying to generalize
it, like the fuzzy concept lattices presented by Burusco and
Fuentes-Gonźalez [3] and later developed by Pollandt [13]
which are based on the lattice[0, 1]. Other approaches
emerge trying to work with non-commutative fuzzy logic
and similarity in the work of Georgescu and Popescu [6].
Bělohĺavek in [2] proposed a generalization of the equal-
ity relation and similarity relation inside the fuzzy con-
cept analysis which he calledL-equalities. This last ap-
proach was extended in the case of the classical equality
(L = {0, 1}), by Krajči [7, 8] introducing the generalized
concept lattices.

Recently, a new approach has been proposed by Medina
et al in [9, 12] who introduced the multi-adjoint concept
lattices, joining the multi-adjoint lattices with concept lat-
tices. To do this the authors needed to generalize the adjoint
pairs into what they called adjoint triples. This new struc-
ture directly generalizes almost all the approaches previ-
ously cited, but the one of Georgescu and Popescu.

In this paper we show that Georgescu and Popescu con-
cept lattices can be seen as a complete sublattice of the
product of two suitable multi-adjoint concept lattices, un-
der this embedding we can prove the corresponding repre-
sentation theorem by the representation theorem for multi-
adjoint concept lattice, which makes the proof easier.

The plan of this paper is the following: In Section 2 we
make a brief summary of the basic notions used in for-
mal concept analysis together with a short reminder of the
multi-adjoint concept lattices. Moreover, in this section, we
also give several properties of the mappings involved in the
fundamental theorem of multi-adjoint lattices. This result
let us in Section 3, after a introduction of their approach,
prove the representation theorem of this framework. The
paper ends with some conclusions and some possible vias
of future work.

2 Multi-adjoint concept lattice

A basic notion in formal concept analysis is that of Galois
connection, since each Galois connection has an associated
complete lattice, calledGalois latticeor concept lattice.

Definition 1 Let (P1,≤1) and (P2,≤2) be posets, a pair
(↑, ↓) of mappings↓:P1 → P2, ↑:P2 → P1 forms aGalois
connectionbetweenP1 andP2 if and only if:

1. ↑ and↓ are decreasing.

2. x ≤1 x
↓↑ for all x ∈ P1.

3. y ≤2 y
↑↓ for all y ∈ P2.

If P1 andP2 are complete lattices then the following theo-
rem can be established, see [4]:

Theorem 1 Let (L1,�1), (L2,�2) be complete lattices,
(↑, ↓) a Galois connection betweenL1, L2 and C =
{〈x, y〉 | x↑ = y, x = y↓;x ∈ L1, y ∈ L2} thenC is a
complete lattice, where∧

i∈I

〈xi, yi〉 = 〈
∧
i∈I

xi, (
∨
i∈I

yi)↓↑〉



∨
i∈I

〈xi, yi〉 = 〈(
∨
i∈I

xi)↑↓,
∧
i∈I

yi〉

In the rest of the section, a generalization of multi-adjoint
lattices is introduced in order to admit different sorts, in
which we allow non-commutative conjunctors as in [1, 6,
10]. To begin with, the adjoint pairs are generalized to ad-
joint triples, the basic blocks of multi-adjoint concept lat-
tices, as follows:

Definition 2 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets
and &:P1 × P2 −→ P3, ↙:P3 × P2 −→ P1, ↖:P3 ×
P1 −→ P2 be applications, then(&,↙,↖), is anadjoint
triple with respect toP1, P2, P3 if:

• & is increasing in both arguments.

• ↙ and↖ are increasing in the first argument and de-
creasing in the second.

• x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x,
wherex ∈ P1, y ∈ P2 andz ∈ P3.

This last property is known asadjoint propertyand gener-
alises themodus ponensrule in a non-commutative multi-
valued setting. Notice that no boundary condition is re-
quired, in difference to the usual definition of multi-adjoint
lattice [11] or implication triples [1].

An interesting result we can extract from the adjoint prop-
erty and that we will use later, is the following lemma:

Lemma 1 If P1, P2, P3 have bottom element,P1, P2 have
top element and(&,↙,↖) is an adjoint triple, then for all
x ∈ P1, y ∈ P2 andz ∈ P3 the following properties hold:

1. ⊥1 & y = ⊥3; x&⊥2 = ⊥3.

2. z ↖ ⊥1 = >2; z ↙ ⊥2 = >1.

Proof. The proof is straightforward from the adjoint prop-
erty. 2

In order to introduce a Galois connection generalizing that
given in the classical concept lattices framework, the con-
sideration of several adjoint triples leads to the following
definition of multi-adjoint frame.

Definition 3 A multi-adjoint frameL is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where Li are complete lattices andP is a poset, and
such that(&i,↙i,↖i) is an adjoint triple with respect to
L1, L2, P for all i = 1, . . . , n.

A multi-adjoint frame as above will be denoted as
(L1, L2, P,&1, . . . ,&n), for short. It is convenient to note

that, in principle,L1, L2 andP could be simply posets,
the reason to consider complete lattices is that multi-adjoint
frames will be used as the underlying lattice on which the
operations will be made; hence, general joins and meets are
required.

Definition 4 Given a frame(L1, L2, P,&1, . . . ,&n), a
contextis a tuple(A,B,R, σ) such thatA andB are non-
empty sets,R is a P -fuzzy relationR:A × B → P and
σ:B → {1, . . . , n} is a mapping which associates any ob-
ject inB with some particular adjoint triple in the frame.

Following the usual terminology,A is to be considered as
a set of attributes andB as a set of objects.

The fact that in a multi-adjoint context each object (or at-
tribute) has an associated implication is interesting, in that
subgroups with different degrees of preference can be es-
tablished in a convenient way; however, a complete study
of this possibility is outside the scope of this paper.

Now, given a frame and a context for that frame, the fol-
lowing mappings↑σ :LB

2 → LA
1 and↓

σ

:LA
1 → LB

2 can be
defined:

g↑σ (a) = inf{R(a, b) ↙σ(b) g(b) | b ∈ B}
f↓

σ

(b) = inf{R(a, b) ↖σ(b) f(a) | a ∈ A}

Notice that these mappings generalise those given in [3, 8]
and, as it is proved below, generate a Galois connection.

Proposition 1 Given a frame(L1, L2, P,&1, . . . ,&n) and
a context(A,B,R, σ), the pair(↑σ , ↓

σ

) is a Galois connec-
tion betweenLA

1 andLB
2 .

Now, a conceptis a pair〈g, f〉 satisfying thatg ∈ LB
2 ,

f ∈ LA
1 and thatg↑ = f andf↓ = g; with (↑, ↓) being the

Galois connection defined above.

Definition 5 The multi-adjoint concept latticeassociated
to a multi-adjoint frame(L1, L2, P,&1, . . . ,&n) and a
context(A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 andg↑ = f, f↓ = g}

with the ordering〈g1, f1〉 � 〈g2, f2〉 iff g1 � g2 (equiva-
lentlyf1 � f2).

Note that, by Theorem 1, the poset(M,�) defined above
is a complete lattice, since the arrows(↑, ↓) form a Galois
connection between the complete latticesLA

1 andLB
2 .

From now on, given a multi-adjoint concept lattice,
(M,�), (L1, L2, P,&1, . . . ,&n) will be its frame and
(A,B,R, σ) its context associated.

The representation theorem for multi-adjoint concepts pre-
sented later, is similar to those given in the different theo-
ries of concept lattices. To begin with, we need to introduce
some definitions and preliminary results.



Definition 6 Given a setA, a posetP with bottom element
⊥, and elementsa ∈ A, x ∈ P , the characteristic mapping
@x

a:A→ P is defined as:

@x
a(a′) =

{
x, if a′ = a
⊥, otherwise

The following lemma gives a technical property which will
be needed later.

Lemma 2 In the concept lattice(M,�), givena ∈ A,
b ∈ B, x ∈ L1 andy ∈ L2, the following equalities hold:

@x
a
↓(b′) = R(a, b′) ↖σ(b′) x for all b′ ∈ B

@y
b
↑(a′) = R(a′, b) ↙σ(b) y for all a′ ∈ A

The following definitions introduce properties which will
be used in the statement of Proposition 2.

Definition 7 Given a complete latticeL, a subsetK ⊆ L
is infimum-dense (resp. supremum-dense) if and only if for
all x ∈ L there existsK ′ ⊆ K such thatx = inf(K ′)
(resp.x = sup(K ′)).

Definition 8 Let (M,�) be a multi-adjoint concept lat-
tice,(V,v) a lattice andα:A×L1 → V , β:B×L2 → V
two maps. We say thatβ is (V,R)-related withα if we have
that:

1a) α[A× L1] is infimum-dense;

1b) β[B × L2] is supremum-dense; and

2) for eacha ∈ A, b ∈ B, x ∈ L1 andy ∈ L2:

β(b, y) v α(a, x) iff x&σ(b) y ≤ R(a, b)

Proposition 2 Given a multi-adjoint concept lattice
(M,�), a complete lattice(V,v) and a mappingf ∈
L1

B , if there exist two applicationsβ:B × L2 → V ,
α:A×L1 → V , whereβ is (V,R)-related withα we have
that:

1. f↓(b) = sup{y ∈ L2 | β(b, y) v vf}, wherevf

denotesinf{α(a, f(a)) | a ∈ A}.

2. If gv(b) denotessup{y ∈ L2 | β(b, y) v v}, then
sup{β(b, gv(b)) | b ∈ B} = v.

Lemma 3 Let (V,v) be a complete lattice,(M,�) a
multi-adjoint concept lattice, and applicationsα:A ×
L1 → V andβ:B×L2 → V such thatβ is (V,R)-related
to α. Then the following mappingϕ:M→ V :

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B}
= inf{α(a, f(a)) | a ∈ A}

is an isomorphism.

We can now state the representation theorem for multi-
adjoint concept lattices.

Theorem 2 Given a complete lattice(V,v) and a multi-
adjoint concept lattice(M,�), we have thatV is isomor-
phic toM if and only if there exist applicationsα:A ×
L1 → V , β:B × L2 → V such thatβ is (V,R)-related
to α.

Now, we introduce some interesting properties that can be
applied to the kind of mapsα andβ given in Theorem 2.
The first one shows that the hypothesis thatα is decreasing
andβ is increasing assumed in Krajči’s basic theorem on
generalized concept lattices [7] can be omitted.

Proposition 3 Let 〈P,≤〉 be a poset,〈L1,�1〉, 〈L2,�2〉,
〈V,�V 〉 be complete lattices and a relationR:A×B → P ;
if there exist two applicationsβ:B×L2 → V ,α:A×L1 →
V , whereβ is (V,R)-related withα we have that:

1. For all indexed set{yj}j∈J ⊆ L2 andb ∈ B, β satis-
fies:

β(b, sup{yj | j ∈ J}) = sup{β(b, yj) | j ∈ J}

2. For all indexed set{xj}j∈J ⊆ L1 anda ∈ A, α sat-
isfies:

α(a, sup{xj | j ∈ J}) = inf{α(a, xj) | j ∈ J}

Corollary 1 With the hypotheses of the proposition above,
we have thatβ is increasing in the second argument andα
is decreasing in the second argument.

The next result shows some boundary properties ofα and
β functions.

Proposition 4 If β is (V,R)-related withα we have that
β(b,⊥2) = ⊥V andα(a,⊥1) = >V for all b ∈ B and
a ∈ A.

Proof. Givena ∈ A let us prove thatα(a,⊥1) = >V . As,
by Lemma 1,⊥1 & y ≤ R(a, b) for all b ∈ B andy ∈ L2,
from Property 2 we obtain thatβ(b, y) v α(a,⊥1) for all
b ∈ B andy ∈ L2.

On the other hand, asβ is supremum-dense, there exists a
subset of indicesΛ such that>V = sup{β(bi, yi) | i ∈
Λ}, therefore, from the comment above and the supremum
property we have that:

>V = sup{β(bi, yi) | i ∈ Λ} v α(a,⊥1)

Hence,>V = α(a,⊥1).

The other equality follows similarly. 2

This result can be used to prove that any subset ofA× L1

is related to a concept; moreover, it is used in next section
in order to generalize the framework introduced in [6].



Proposition 5 Given a multi-adjoint concept lattice
(M,�), v ∈ V , α:A × L1 → V , β:B × L2 → V
such thatβ is (V,R)-related withα we have that for each
K ⊆ A × L1 there exists a unique concept〈g, f〉 ∈ M
such that

inf{α(a, x) | (a, x) ∈ K} = sup{β(b, g(b)) | b ∈ B}
= inf{α(a, f(a)) | a ∈ A}

Proof. GivenK ⊆ A× L1, leth:A→ L1 be the function
defined as:

h(a) = sup{x | (a, x) ∈ K}

Therefore, we have:

inf{α(a, x) | (a, x) ∈ K} (1)
= inf{α(a, h(a)) | a ∈ A}
(2)
= sup{β(b, h↓(b)) | b ∈ B}
(3)
= ϕ(〈h↓, h↓↑)
(4)
= inf{α(a, h↓↑(a)) | a ∈ A}

where(1) is given by Propositions 4 and 3,(2) by Proposi-
tion 2 and(3), (4) by Lemma 3. Then the required concept
is 〈h↓, h↓↑〉. The uniqueness follows from Lemma 3. 2

3 Concept lattices for non-commutative
fuzzy logics

In this section we will show how the concept lattice in-
troduced in [6] can be embedded in the general setting of
multi-adjoint concept lattices. This embedding, together
with the representation theorem for multi-adjoint concept
lattices, allows us to prove a more general fundamental the-
orem for those concept lattices.

To represent the Georgescu-Popescu concept lattices inside
our framework we will consider two multi-adjoint frames
(L,L, P,&) and (L,L, P,&op), where&op is defined as
&op(x, y) = y&x, with contextsCi = (A,B,R, σi), i =
{1, 2}, respectively, whereσ1(b) = &, σ2(b) = &op for all
b ∈ B (we will omit any further reference toσ because both
contexts have only one adjoint triple); finally, the Galois
connection associated to& is written as(↑, ↓) and to&2 is
(↑op, ↓op), and are defined as:

g↑(a) = inf{R(a, b) ↙ g(b) | b ∈ B}
f↓(b) = inf{R(a, b) ↖ f(a) | a ∈ A}

g↑op(a) = inf{R(a, b) ↖ g(b) | b ∈ B}
f↓

op

(b) = inf{R(a, b) ↙ f(a) | a ∈ A}

whereg ∈ LB andf ∈ LA.

The four arrows associated to the two Galois connec-
tions naturally provide the means to reproduce adequately

Georgescu-Popescu concepts (in their notation(↑, ↓) and
(↑op, ↓op) would be written(↑,⇓) and(⇑, ↓)).

In the following definition, we introduce the term t-concept
to distinguish them from the multi-adjoint based concepts.

Definition 9 Let (A,B,R) be a context. The triple
(g, f, f ′) ∈ LB×A×A is called at-conceptif and only if
it satisfies:

g↑ = f1 ; g↑op = f2 ; f↓1 = g ; f2
↓op = g

If M1, M2 denote the complete lattices of concepts from
the Galois connections(↑, ↓) and(↑op, ↓op), and consider
the set

L = {(g, f1, f2) ∈ LB×A×A | (g, f1, f2) is a t-concept}

with the ordering(g, f1, f2) � (g′, f ′1, f
′
2) if and only if

g ≤ g′ (equivalentlyf1 ≤ f ′1 or f2 ≤ f ′2), thenL is a
complete lattice because it is isomorphic to the complete
sublattice ofM1 × M2 containing the pairs〈g1, f1〉 ∈
M1, 〈g2, f2〉 ∈ M2 satisfying thatg1 = g2.

This new framework generalizes the given in [6] in that it
allows to define the same concepts but avoids the require-
ment of (L,&, 1) to be a monoid, in the same way that
multi-adjoint lattices generalize residuated lattices. The
representation theorem for t-concepts is stated below as a
generalization of that by Georgescu and Popescu.

Proposition 6 A lattice(V,v) is isomorphic to a complete
lattice of t-conceptsL if and only if there exist two complete
lattices(V1,v1) and(V2,v2) and four applications

α1:A× L→ V1 ; α2:A× L→ V2

β1:B × L→ V1 ; β2:B × L→ V2

such thatβi is (Vi, R)-related withαi, and there exists an
isomorphismν fromV to the set of pairs(

inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)
)

whereK1,K2 ∈ A× L and

inf
(a,x)∈K1

@x
a
↓ = inf

(a,x)∈K2

@x
a
↓op

(1)

Proof. Firstly, letψ:V → L be an isomorphism andM1,
M2 the multi-adjoint concept lattices associated to the Ga-
lois connections(↑, ↓) and(↑op, ↓op) respectively, then, by
the representation theorem on multi-adjoint concept lat-
tices and consideringV1 = M1, V2 = M1, there exist
α1:A × L → V1, α2:A × L → V2, β1:B × L → V1 and
β2:B × L → V2 satisfying thatβi is (Vi, R)-related with



αi; and two isomorphismsϕ1:M1 → V1, ϕ2:M2 → V2

defined, by Lemma 3, as:

ϕ1(〈g, f〉) = inf{α1(a, f(a)) | a ∈ A};
ϕ2(〈g, f〉) = inf{α2(a, f(a)) | a ∈ A}

Now, if we defineΠ1:L → M1 andΠ2:L → M2, as
Π1〈g, f1, f2〉 = 〈g, f1〉 and Π2〈g, f1, f2〉 = 〈g, f2〉, re-
spectively, we can consider the mappingν defined for all
v ∈ V as

ν(v) = (ϕ1(Π1(ψ(v))), ϕ2(Π2(ψ(v))))

whose image, for everyv ∈ V , is: if ψ(v) = 〈g, f1, f2〉
and we consider the subsetsK1 = {(a, f1(a)) | a ∈ A}
andK2 = {(a, f2(a)) | a ∈ A} of A × L, we have the
equality(1), that is:

inf
(a,x)∈K1

@x
a
↓ = inf

a∈A
(@f1(a)

a )↓

= f↓1
(∗)
= f2

↓op

= inf
a∈A

(@f2(a)
a )↓

op

= inf
(a,x)∈K2

@x
a
↓op

where(∗) is given because〈g, f1, f2〉 is t-concept, more-
over,

inf
(a,x)∈K1

α1(a, x) = inf
a∈A

α1(a, f1(a))

= ϕ1(〈g, f1〉)
= ϕ1(Π1(ψ(v)))

and similarly thatinf(a,x)∈K2 α2(a, x) = ϕ2(Π2(ψ(v))),
so the image ofν is the required one. Furthermore,ν is
homomorphism since all the mappings involved in its def-
inition are homomorphisms. Now, we are going to prove
that it is bijective.

Let v1, v2 ∈ V be, if ν(v1) = ν(v2) then, asϕ1 andϕ2 are
isomorphisms, we obtain equivalently that:

(Π1(ψ(v1)),Π2(ψ(v1))) = ((Π1(ψ(v2)),Π2(ψ(v2)))

Now, if ψ(v1) = 〈g, f1, f2〉 andψ(v2) = 〈g′, f ′1, f ′2〉 the
equality above means that

g1 = g2; f1 = f2; f ′1 = f ′2

Hence, asψ is an isomorphism,v1 = v2 andν is injective.

Let now(inf(a,x)∈K1 α1(a, x), inf(a,x)∈K2 α2(a, x)), with
K1,K2 ⊆ A × L satisfying the equality(1), by Propo-
sition 5 we have that there are (unique) concepts〈g1, f1〉,
〈g2, f2〉 such that

( inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)) =

= ( inf
a∈A

α1(a, f1(a)), inf
a∈A

α2(a, f2(a)))

= (ϕ1(〈g1, f1〉), ϕ2(〈g2, f2〉))

where the last equality is given by definition above ofϕ1

andϕ2, andf1 satisfies that

f1
↓(b) = inf{R(a, b) ↖ f1(a) | a ∈ A}

(1)
= inf{R(a, b) ↖ sup

(a,xi)∈K1

{xi} | a ∈ A}

(2)
= inf{ inf

(a,xi)∈K1

{R(a, b) ↖ xi} | a ∈ A}

= inf
(a,x)∈K1

{R(a, b) ↖ x}

(3)
= inf

(a,x)∈K1

{@x
a
↓(b)}

where (1) is given by the definition off1 (Proposi-
tion 5), (2) from the adjoint property and(3) from
Lemma 2. In a similar way, we can prove thatf2

↓op

(b) =
inf(a,x)∈K2{@x

a
↓op

(b)} then, as(1) is satisfied, we obtain

that f1
↓ = f2

↓op

. Now if we takev = ϕ(〈g, f1, f2〉),
whereg = f1

↓, we have that

ν(v) = ( inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x))

Thereforeν is surjective. So we have proved thatν is an
isomorphism.

Conversely, we have the mapsαi, βi such thatβi is (Vi, R)-
related withαi, with i ∈ {1, 2}, and the isomorphismν.
Therefore, by the representation theorem on multi-adjoint
concept lattices we have that there exist two isomorphisms
ϕ1:M1 → V1, ϕ2:M2 → V2.

Now, if we consider the functionι from L to the complete
sublattice ofM1 × M2 containing the pairs〈g1, f1〉 ∈
M1, 〈g2, f2〉 ∈ M2 satisfying thatg1 = g2, defined as
ι(〈g, f1, f2〉) = (〈g, f1〉, 〈g, f2〉) we clearly have, from
Proposition 5,

( inf
(a,x)∈K1

α1(a, x), inf
(a,x)∈K2

α2(a, x)) =

= (ϕ1(〈g, f1〉), ϕ2(〈g, f2〉))

whereK1,K2 ⊆ A× L satisfying(1).

Thus the functionϕ:L → V defined asϕ = ν−1 ◦ (ϕ1 ×
ϕ2) ◦ ι is an isomorphism. 2

The following corollary is the representation theorem of the
framework presented in [6].

Corollary 2 Let I:B × A → P be a relation. A lattice
(V,v) is isomorphic toL if and only if there exist two com-
plete lattices(V1,v1) and(V2,v2) and five applications:

α1:A× L→ V1 ; α2:A× L→ V2

β1:B × L→ V1 ; β2:B × L→ V2

ν:V → V1 × V2

such that:



1. α1[A × L] is infimum dense inV1 andα2[A × L] is
infimum dense inV2.

2. β1[B ×L] is supremum-dense inV1 andβ2[B ×L] is
supremum-dense inV2.

3. For eacha ∈ A, b ∈ B, x, y ∈ L:

β1(b, y) v1 α1(a, x) iff x& y � I(b, a)
β2(b, y) v2 α2(a, x) iff x&op y � I(b, a)

4. ν is a monomorphism join-preserving fromV onto
V1 × V2 such that, for anyv ∈ V , there exist
K1,K2 ⊆ A × L satisfying thatinf(a,x)∈K1 @x

a
↓ =

inf(a,x)∈K2 @x
a
↓op

and such thatν(v) is equal to the
pair:

( inf
(a,x)∈K1

(sup
b∈B

β1(b, I(b, a) ↖ x)),

inf
(a,x)∈K2

(sup
b∈B

β2(b, I(b, a) ↖ x)))

Proof. The items(1), (2) and (3) are equivalent to the
properties that satisfiesαi, βi i ∈ {1, 2} of Proposition 6,
considering the residuated case, the relationR:A×B → P
defined asR(a, b) = I(b, a) and the definition of(Vi, R)-
related.

For item(4) we will prove the following equalities:

sup
b∈B

β1(b, R(a, b) ↖ x) = α1(a, x)

sup
b∈B

β2(b, R(a, b) ↙ x) = α2(a, x)

We will prove the first statement (the proof for the second
is analogous). We have thatR(a, b) ↖ x = @x

a
↓(b), by

Lemma 2, therefore using Proposition 2 we obtain that

@x
a
↓(b) = sup{y ∈ L2 | β(b, y) v v@x

a
}

wherev@x
a

= inf{α1(a′,@x
a(a′)) | a′ ∈ A}.

Hence, by Proposition 2, we have that

sup
b∈B

β1(b,@x
a
↓(b)) = v@x

a

= inf{α1(a′,@x
a(a′)) | a′ ∈ A}

= α1(a, x)

where the last equality is becauseα1 is decreasing in the
second argument and Proposition 4. 2

4 Conclusion and future work

We have given an extension of the multi-adjoint concept
lattices which has allowed us to embed the concept lat-
tice given by Georgescu and Popescu. This extension is
based in a complete sublattice of the product of two multi-
adjoint concept lattices which only have one adjoint triple.

We have proved the representation theorem for this new
framework which embeds the one given in [6].

For future work we could consider the product of several
multi-adjoint concept lattices (non necessary with only one
adjoint triple) and give their representation theorem.

Another point to take into account could be the introduction
of L-equalities relations as B̌elohĺavek do with the fuzzy
concept lattices [2].
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