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Resumen In this paper we show that Georgescu and Popescu con-
cept lattices can be seen as a complete sublattice of the
product of two suitable multi-adjoint concept lattices, un-
der this embedding we can prove the corresponding repre-
sentation theorem by the representation theorem for multi-
adjoint concept lattice, which makes the proof easier.

This paper shows that the recently intro-
duced framework of multi-adjoint concept lat-
tices naturally embeds the generalization of
fuzzy concept lattices under the assumption
of non-commutative conjunctors developed by The plan of this paper is the following: In Section 2 we
Georgescu and Popescu. make a brief summary of the basic notions used in for-
mal concept analysis together with a short reminder of the
multi-adjoint concept lattices. Moreover, in this section, we
also give several properties of the mappings involved in the
fundamental theorem of multi-adjoint lattices. This result
let us in Section 3, after a introduction of their approach,
prove the representation theorem of this framework. The
paper ends with some conclusions and some possible vias

1 Introduction of future work.

Key words: Concept lattices, multi-adjoint lat-
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When working with methods which use uncertainty, impre- 2 Multi-adjoint concept lattice

cise data or incomplete information one of the main tools is

the formal concept analysis; the classical approach in thigA basic notion in formal concept analysis is that of Galois
context is that introduced by Ganter and Wille [5]. After connection, since each Galois connection has an associated
this, there has been many approaches trying to generalizeomplete lattice, calleGalois latticeor concept lattice

it, like the fuzzy concept lattices presented by Burusco and_ . . )
Fuentes-Gordez [3] and later developed by Pollandt [13] DTeTnmon 1 L_et (Sfl’ <) and T(PQ’ <2) be posets, a pair
which are based on the lattide, 1]. Other approaches (> )Ofmappings: Py — P, ': I, — Py forms aGalois
emerge trying to work with non-commutative fuzzy logic connectiorbetween?; and P if and only if:

and similarity in the work of Georgescu and Popescu [6].
Bélohlavek in [2] proposed a generalization of the equal-
ity relation and similarity relation inside the fuzzy con- 2. z <; z!! forall z € P;.
cept analysis which he callefi-equalities. This last ap-
proach was extended in the case of the classical equality
(L = {0,1}), by Krajti [7, 8] introducing the generalized
concept lattices.

1. T and! are decreasing.

3.y <y yltforally € P,.

If P, andP, are complete lattices then the following theo-
rem can be established, see [4]:

Recently, a new approach has been proposed by Medina i

et al in [9, 12] who introduced the multi-adjoint concept TTh(—forem 1 Lgt (L1, jl)’_(L2’ =2) be complete lattices,
lattices, joining the multi-adjoint lattices with concept lat- (") a G?Ims connecflon betweed,, L, and C, =
tices. To do this the authors needed to generalize the adjoirt\®>¥) | 2 = ¥,z = yha € L1,y € Ly} thenCis a
pairs into what they called adjoint triples. This new struc- complete lattice, where

ture directly generalizes almost all the approaches previ- /\<$¢7yi> — </\ z;, (\/ yi)”>

ously cited, but the one of Georgescu and Popescu. el iel el



Vi@iy)y = (\Vz)'™ \w) that, in principle,L,, L, and P could be simply posets,
icl icl iel the reason to consider complete lattices is that multi-adjoint
frames will be used as the underlying lattice on which the
In the rest of the section, a generalization of multi-adjoint operations will be made; hence, general joins and meets are
lattices is introduced in order to admit different sorts, in required.
which we allow non-commutative conjunctors as in [1, 6, o )
10]. To begin with, the adjoint pairs are generalized to ad-Definition 4 Given a frame(Ly, Ly, P, &1, -+ - &n), @

joint triples, the basic blocks of multi-adjoint concept lat- cOntextis a tuple(4, B, R, o) such thatA and B are non-
tices, as follows: empty setsR is a P-fuzzy relationR: A x B — P and

o: B — {1,...,n} is a mapping which associates any ob-
Definition 2 Let (P, <1), (Ps, <2), (Ps,<s3) be posets JectinB with some particular adjoint triple in the frame.
and&:P1 X Py — P3, /P33 x P, — P, \_:P3 X
P, — P, be applications, thef&;, ./, ), is anadjoint
triple with respect taP, , P, P; if:

Following the usual terminologw is to be considered as
a set of attributes anB as a set of objects.

The fact that in a multi-adjoint context each object (or at-

e & isincreasing in both arguments. tribute) has an associated implication is interesting, in that
) o ) subgroups with different degrees of preference can be es-
* ./ and™\ are increasing in the first argument and de- (apjished in a convenient way; however, a complete study

creasing in the second. of this possibility is outside the scope of this paper.
ex <2y iff x&y<zz iff y<szN\ = Now, given a frame and a context for that frame, the fol-
wherez € P,y € P, andz € Ps. lowing mappings-: LY — L{ and!”: L{* — L can be
defined:
This last property is known aadjoint propertyand gener-
. . . . Ta — 1 a(b
alises themodus ponenaule in a non-commutative multi- 9 U(a) = inf{R(a,0) /7 g(b) | b€ B}
valued setting. Notice that no boundary condition is re- ) = inf{R(a,b) o fla)|ac A}

quired, in difference to the usual definition of multi-adjoint

lattice [11] or implication triples [1]. Notice that these mappings generalise those given in [3, 8]

and, as it is proved below, generate a Galois connection.
An interesting result we can extract from the adjoint prop-
erty and that we will use later, is the following lemma: Proposition 1 Givenaframé Ly, Ly, P, &1, . . ., &n) @and
acontexi{ A, B, R, o), the pair(1-, ") is a Galois connec-
Lemma 1 If P, P, P; have bottom elemenk;, P> have  tion betweer.{ and LJ.
top element andg;, ./, \) is an adjoint triple, then for all
z € P,y € P, andz € P; the following properties hold: ~ Now, aconceptis a pair (g, f) satisfying thaty € L%,
f € L{ and thaty! = f and f! = g; with (T, !) being the
1 L1 &y=lg 2&Lo= Ls. Galois connection defined above.

2.2\ L1 =To 2/ 1o=T1. Definition 5 The multi-adjoint concept latticassociated
to a multi-adjoint frame(Ly, Lo, P, &1, ..., &) and a

Proof. The proof is straightforward from the adjoint prop- context(4, B, R, o) is the set

erty. 0

Y M={(g.f)|ge L8 [ € Li andg! = f, 1" = g}
In order to introduce a Galois connection generalizing that h the orderi - o < .
given in the classical concept lattices framework, the con-VIth the or ering(gi, f1) = (92, f2) iff g1 < g (equiva-

sideration of several adjoint triples leads to the following lently f1 < f2).

definition of multi-adjoint frame. Note that, by Theorem 1, the pogett, <) defined above
is a complete lattice, since the arroWs!) form a Galois

Definition 3 A multi-adjoint framec is a tuple : .
) P connection between the complete lattidggsand L2 .

(L1, Ly, P, =1, =2, <, &1,/ N1 - &ens /7 Nn) From now on, given a multi-adjoint concept lattice,
(M, =), (L1,La, P, &1,...,&n) Wil be its frame and

where L; are complete lattices and is a poset, and (A, B, R, ) its context associated

such that(&;, /%, \;) is an adjoint triple with respect to
Li,Ly,Pforalli=1,...,n. The representation theorem for multi-adjoint concepts pre-

sented later, is similar to those given in the different theo-
A multi-adjoint frame as above will be denoted as ries of concept lattices. To begin with, we need to introduce
(L1, La, P, &1, - .., &n), for short. It is convenient to note some definitions and preliminary results.



Definition 6 Given a set4, a posetP with bottom element We can now state the representation theorem for multi-
1,and elements € A, x € P, the characteristic mapping adjoint concept lattices.

@?: A — Pis defined as: . _ _
Theorem 2 Given a complete latticél, C) and a multi-

@ (a) :{ z, ifad=a adjoint concept latticé M, <), we have thai” is isomor-
@ 1, otherwise phic to M if and only if there exist applicationa: A x
L, — V, 3:B x Ly — V such thatg is (V, R)-related
The following lemma gives a technical property which will 1o a.

be needed later. ] ) ) )
Now, we introduce some interesting properties that can be

Lemma 2 In the concept latticg M, <), givena € A, applied to the kind of mapa and g given in Theorem 2.
b€ B,z € Ly andy € Lo, the following equalities hold: ~ The first one shows that the hypothesis tha decreasing
and g is increasing assumed in Ki@ig basic theorem on
@rt(®) = R(a,b)\op)x foral v eB generalized concept lattices [7] can be omitted.
/ / o !/
o'(@) = R@0) /7@y foral o'€A Proposition 3 Let (P, <) be a poset{Li, <1), (L2, <),
(V,<v) be complete lattices and arelatidtt Ax B — P;
The following definitions introduce properties which will if there exist two applications: Bx Ly — V, a: Ax L; —
be used in the statement of Proposition 2. V, whereg is (V, R)-related witha we have that:

Definition 7 Given a complete latticé, a subsetk’ C L

is infimum-dense (resp. supremum-dense) if and only if for 1. Forallindexed sefy;}je; < L, andb € B, § satis-

all x € L there existsK’ C K such thatz = inf(K") fies:

(resp.z = sup(K")). B(b,suply; [ j € J}) = sup{B(b,y;) [ j € J}
Definition 8 Let (M, <) be a multi-adjoint concept lat- 2 For all indexed sefr;}jes € Ly anda € A, a sat-
tice,(V,C) alatticeanda: Ax L1 - V,3:Bx Ly — V isfies:

two maps. We say thatis (V, R)-related witho if we have

that: a(a,sup{z; | j € J}) = nf{a(a, z;) | j € J}

Corollary 1 With the hypotheses of the proposition above,

la) a[A x L;]is infimum-dense; i PO
we have thafi is increasing in the second argument amd

1b) B[B x L] is supremum-dense; and is decreasing in the second argument.
2) foreacha € A, b€ B,z € Ly andy € Ly: The next result shows some boundary properties ahd
0 functions.

ﬁ(bv y) C Oé(@, JJ) iff x&a(b) y < R<aa b)

Proposition 4 If 5 is (V, R)-related witha we have that
B(b, Ls) = Ly anda(a, ;) = Ty forall b € B and
a € A.

Proposition 2 Given a multi-adjoint concept lattice
(M, =), a complete latticgV,C) and a mappingf €
L, B, if there exist two applicationg: B x Ly — V,
a: A x Ly — V,whereg is (V, R)-related witha we have

that: Proof. Givena € A let us prove thatv(a, L1) = Ty. As,

by Lemmal,L; &y < R(a,b) forallb € B andy € Lo,
\ from Property 2 we obtain that(b,y) C a(a, L) for all
1. f4(b) = sup{y € Ly | B(b,y) C vy}, wherevy be Bandy € L.
denotesnf{«a(a, f(a)) | a € A}.
On the other hand, g% is supremum-dense, there exists a

2. If gu(b) denotessup{y € L | 8(b,y) T v}, then  gsybset of indices\ such thatTy = sup{B(b;,y;) | i €
sup{B(b, g(b)) | b € B} = v. A}, therefore, from the comment above and the supremum

) property we have that:
Lemma 3 Let (V,C) be a complete lattice(M, <) a

multi-adjoint concept lattice, and applications: A x Ty =sup{B(b;,y:) | i € A} C afa, L1)
L, — Vandg: B x Ly — V such that3 is (V, R)-related
to a. Then the following mapping: M — V:

v({g,f)) = sup{B(b,g(b))| b€ B}
= inf{a(a, f(a)) | a € A} This result can be used to prove that any subset ef L,

is related to a concept; moreover, it is used in next section
is an isomorphism. in order to generalize the framework introduced in [6].

Hence, Ty = a(a, 11).

The other equality follows similarly. a



Proposition 5 Given a multi-adjoint concept lattice
M,2),v e V,aeAx L1 - V,8:BxLy -V
such that3 is (V, R)-related witha we have that for each
K C A x L there exists a unique concefy, f) € M
such that

inf{a(a,z) [ (a,2) € K} = sup{B(b,9(b)) | b € B}

inf{a(a, f(a)) | a € A}

Proof. GivenK C A x L,
defined as:

leth: A — L; be the function

h(a) =sup{z | (a,2) € K}

Therefore, we have:

inf{a(a,z) | (a,z) € K} inf{a(a,h(a)) | a € A}
sup{B(b, h' (b)) | b € B}
p((ht,htT)
inf{a(a,ht(a)) | a € A}
where(1) is given by Propositions 4 and &) by Proposi-

tion 2 and(3), (4) by Lemma 3. Then the required concept
is (b, h!T). The uniqueness follows from Lemma 3. O

3 Concept lattices for non-commutative
fuzzy logics

In this section we will show how the concept lattice in-
troduced in [6] can be embedded in the general setting o
multi-adjoint concept lattices. This embedding, together
with the representation theorem for multi-adjoint concept

Georgescu-Popescu concepts (in their notaiory) and
(Top, 1°P) would be written(T, ) and(1, |)).

In the following definition, we introduce the term t-concept
to distinguish them from the multi-adjoint based concepts.

Definition 9 Let (A, B,R) be a context. The triple
(g, f, f) € LB*4x4 s called at-conceptif and only if
it satisfies:

g =fi9'r=f ft=9;ftr=yg

If M1, M5 denote the complete lattices of concepts from
the Galois connectiong, |) and(1,,, |°?), and consider
the set

L ={(g, f1, f2) € LB**** | (g, f1, f2) is a t-concept

with the ordering(g, f1, f2) =< (¢, f1, f5) if and only if

g < ¢ (equivalentlyf; < fj or fo < fi), thenl is a
complete lattice because it is isomorphic to the complete
sublattice of M; x My containing the pairdg;, f1) €
My, (g2, f2) € M satisfying thay; = g».

This new framework generalizes the given in [6] in that it
allows to define the same concepts but avoids the require-
ment of (L, &, 1) to be a monoid, in the same way that
multi-adjoint lattices generalize residuated lattices. The
representation theorem for t-concepts is stated below as a
generalization of that by Georgescu and Popescu.

Proposition 6 A lattice(V, C) is isomorphic to a complete
attice of t-conceptg if and only if there exist two complete
attices(V1, C1) and(V5, Co) and four applications

lattices, allows us to prove a more general fundamental the-

orem for those concept lattices.

To represent the Georgescu-Popescu concept lattices inside

our framework we will consider two multi-adjoint frames
(L,L,P, &) and (L, L, P, &°P), where&°? is defined as
&°P(z,y) = y & =, with contextsC; = (A, B, R, 0;), 1 =

{1, 2}, respectively, where; (b) = &, o2(b) = &°? for all

b € B (we will omit any further reference @because both
contexts have only one adjoint triple); finally, the Galois
connection associated gois written as(T, |) and to& is
(Top, 1°P), and are defined as:

g'(a) = inf{R(a,b) / g(b)|be B}
fr) = inf{R(a,b)\ f(a)|a € A}
g'(a) = inf{R(a,b)\ g(b)|be B}
X)) = inf{R(a,b) / f(a)|ac A}

whereg € LB andf € LA.

OéliAXL—>‘/1
ﬂliBXL—>V1

OéQZAXL—>Vv2
ﬁg:BXL—)VQ

)
)

such thats; is (V;, R)-related witha;, and there exists an
isomorphism from V' to the set of pairs

(

whereK,, K> € A x L and

inf
(a,z)EK2

inf

(a,z)EK1 o (Cl, l'),

as(a, x))

apt = apt” (1)

inf
(a,z)EK>2

inf
(a,x)EKy

Proof. Firstly, lety: V' — £ be an isomorphism ant,

M the multi-adjoint concept lattices associated to the Ga-
lois connectiong T, |) and(1,,, |°7) respectively, then, by
the representation theorem on multi-adjoint concept lat-
tices and considerin; = My, Vo = My, there exist

The four arrows associated to the two Galois connec-a1: A X L — Vi, a0: AX L — Vs, 61: B x L — V; and
tions naturally provide the means to reproduce adequatelys,: B x L — V5 satisfying thats; is (V;, R)-related with



ay; and two isomorphisme;: M; — Vi, po: My — V5
defined, by Lemma 3, as:

p1((g,f)) = inf{ai(a, f(a)) [a € AL
p2((g,f)) = inf{az(a, f(a)) [a € A}

Now, if we definell;: L — M andIly: L — Ms, as
(g, f1, fo) = (g, f1) andIlx(g, f1, f2) = (g, f2), re-
spectively, we can consider the mappinglefined for all
veVas

v(v) = (1 (I (¥(v))), 22 (4 (v)))

()
whose image, for every € V, is: if ¥(v) = (g, f1, f2)
and we consider the subsét§ = {(a, fi(a)) | a € A}
and Ky = {(a, f2(a)) | a € A} of A x L, we have the
equality(1), that is:

inf @.;d =

o nt inf(@f;l(“))l
a,r)e Ky

acA
i

2 R

i fa(a)y 1P
20

A
Ol

= inf @’

(a,z)EK2
where(x) is given becauséy, fi, f2) is t-concept, more-
over,

inf  aq(a,z) =
(a,x)€K1

inf au(a, fi(a))
©1({g, f1))
= 1Tl (v (v)))

and similarly thatinf , ,)cx, a2(a,z) = pa(l2((v))),
so the image of is the required one. Furthermore,is

homomorphism since all the mappings involved in its def-
inition are homomorphisms. Now, we are going to prove

that it is bijective.

Letwvy, vy € V be, ifv(v1) = v(vs) then, asp; andy,, are
isomorphisms, we obtain equivalently that:

(I (¥ (v1)), 2 (9 (v1))) = (T (Y (v2)), 29 (v2)))

Now, if ¥(v1) = (g, f1, f2) andy)(v2) = (¢', f1, f3) the
equality above means that
g =92 f1=fas f1 = [

Hence, ag) is an isomorphismy; = v, andv is injective.
Let now (inf 4 2)e x, @1(a, z),inf (4 2)c K, @2(a,z)), with
Ky, Ky C A x L satisfying the equality1), by Propo-
sition 5 we have that there are (unique) concepts f1),
(g2, f2) such that

inf  aq(a,z), inf
(a,x)EK1 (a,z)EKo

= (;2:& i (a, fi(a)), ;gg az(a, f2(a)))

= (p1({g1, f1)), p2({g2, f2)))

as(a,x)) =

where the last equality is given by definition abovemf
andy,, andf; satisfies that

fit(0) = inf{R(a,b) \ fi(a) | a € A}
W inf{R(a,b) \. sup {z;}|ac A}
(a,z;)EK,
@ inf{ inf {R(a,b)\ z;}|ac€ A}
(a,x;)EK,
= inf {R(a,b
ok {R(a,b) N\ o}
3) . xl
= f {@Z(b
ok {9 (0}
where (1) is given by the definition off; (Proposi-

tion 5), (2) from the adjoint property and3) from
Lemma 2. In a similar way, we can prove that ™ (b) =
inf o »)er, {Q2F (b)} then, ag(1) is satisfied, we obtain
that £, = £'"". Now if we takev = o({g, f1, f2)),
whereg = 1!, we have that

v(v) =( inf

inf
. ai(a,x), in

as(a,x
(a,z)EK2 2( ))

Thereforev is surjective. So we have proved thats an
isomorphism.

Conversely, we have the maps (; such thap; is (V;, R)-
related witheay;, with ¢ € {1,2}, and the isomorphism.
Therefore, by the representation theorem on multi-adjoint
concept lattices we have that there exist two isomorphisms
p1: My — Vi, 02: Mg — Va.

Now, if we consider the functionfrom £ to the complete
sublattice of M; x My containing the pairsgs, f1) €
My, {go, f2) € M, satisfying thatg; = g, defined as

[’(<gaflaf2>) = (<gafl>7<gaf2>) we Clearly have! from
Proposition 5,

inf  o(a,z), inf
(a,z)EK (a,z)EKy

= (p1{g, f1)); p2((g; f2)))
whereK;, Ky C A x L satisfying(1).

as(a,x)) =

Thus the functionp: £ — V defined asp = v~ ! o (¢; x
p2) o ¢ is an isomorphism. a

The following corollary is the representation theorem of the
framework presented in [6].

Corollary 2 LetI: B x A — P be a relation. A lattice
(V,C) isisomorphic taC if and only if there exist two com-
plete latticeg V1, C;) and (V;, C») and five applications:

o AXL =V, ; agAxXL—V,
b1:BxXL—Vy ; [(a:BxXL—V,
v:V -V x Vs

such that:



. a1[A x L] is infimum dense i¥; and as[A x L] is
infimum dense 5.

. 31|B x L] is supremum-dense i, andf32[B x L] is
supremum-dense .

. Foreacha € A,be B,z,y € L:

Br1(b,y) E1 a1(a, )
B2(b,y) Eg az(a, x)

iff
iff

x&y <X I(ba)
&y < 1(b,a)

. v is a monomorphism join-preserving fro onto
Vi x V, such that, for anyv € V, there exist
K1, Ky C A x L satisfying thatinf , e x, @7*

inf (4 )ex, @4 and such thav(v) is equal to the
pair:

inf  (sup p1(b, I(b,a) \ x)),

(a,2)€EK1 beB
inf  (sup Ba(b, I(b,a) \ z)))
(avx)eKQ beB

Proof. The items(1), (2) and (3) are equivalent to the
properties that satisfies;, 5; ¢ € {1,2} of Proposition 6,
considering the residuated case, the relaitod x B — P
defined ask(a,b) = I(b,a) and the definition of V;, R)-
related.

For item(4) we will prove the following equalities:
sup 31 (b, R(a,b) \ )
beB
sup ﬁZ(ba R(a7 b) \/ I)
beB

g (av :C)
Q2 (a7 I)
We will prove the first statement (the proof for the second

is analogous). We have th&i(a,b) \ = = @Z*(b), by
Lemma 2, therefore using Proposition 2 we obtain that

art(b) = sup{y € Ly | B(b,y) C vay }
whereva: = inf{a;(a’,@%(a")) | o’ € A}.
Hence, by Proposition 2, we have that

sup f1 (b, @%4(b))
beB

’U@g

inf{a;(a’,@%(a’)) | a' € A}

a1(a,x)

where the last equality is because is decreasing in the
second argument and Proposition 4.

4 Conclusion and future work

We have given an extension of the multi-adjoint concept

We have proved the representation theorem for this new
framework which embeds the one given in [6].

For future work we could consider the product of several
multi-adjoint concept lattices (non necessary with only one
adjoint triple) and give their representation theorem.

Another point to take into account could be the introduction
of L-equalities relations as@ohlavek do with the fuzzy
concept lattices [2].
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