
Extended homogenization for
multi-adjoint logic programs

Jesús Medina Moreno
Dept. Matemática Aplicada.

Universidad de Málaga
jmedina@ctima.uma.es

Manuel Ojeda Aciego
Dept. Matemática Aplicada.

Universidad de Málaga
aciego@ctima.uma.es

Resumen

The theory of multi-adjoint logic programs
has been introduced as a unifying framework
to deal with uncertainty, imprecise data or
incomplete information. From the applic-
ative part, a neural net based implement-
ation of homogeneous propositional multi-
adjoint logic programming on the unit in-
terval has been presented elsewhere, but re-
stricted to the case in which the only con-
nectives involved in the program were the
usual product, Gödel and Lukasiewicz to-
gether with weighted sums.

A generalization of the homogenization pro-
cess needed for the neural implementation is
presented here in order to deal with a more
general family of adjoint pairs, but maintain-
ing the advantage of the existing implement-
ation. Its soundness is proved and the com-
plexity of the transformation is analysed.

Keywords: Uncertainty and Approximate
Reasoning.

1 Introduction

The study of reasoning methods under uncertainty, im-
precise data or incomplete information has received
increasing attention in the recent years. A number of
different approaches have been proposed with the aim
of better explaining observed facts, specifying state-
ments, reasoning and/or executing programs under
some type of uncertainty whatever it might be.

One important and powerful mathematical tool that
has been used for this purpose at theoretical level is
fuzzy logic. From the applicative side, neural networks
have a massively parallel architecture-based dynamics

which are inspired by the structure of human brain, ad-
aptation capabilities, and fault tolerance. The recent
paradigm of soft computing promotes the use and in-
tegration of different approaches for the problem solv-
ing.

The main advantages of fuzzy logic systems are the
capability to express nonlinear input/output relation-
ships by a set of qualitative if-then rules, and to
handle both numerical data and linguistic knowledge,
especially the latter, which is extremely difficult to
quantify by means of traditional mathematics. The
main advantage of neural networks, on the other hand,
is the inherent learning capability, which enables the
networks to adaptively improve their performance.

Recently, a new approach presented in [2] introduced
a hybrid framework to handling uncertainty, expressed
in the language of multi-adjoint logic but implemen-
ted by using ideas from the world of neural networks.
The handling of uncertainty inside their logic model is
based on the use of a generalised set of truth-values
as a generalization of [6]. On the other hand, multi-
adjoint logic programming [4] generalizes residuated
logic programming [1] in that several different implic-
ations are allowed in the same program, as a means to
facilitate the task of the specification.

Considering several implications in the same program
is interesting because it provides a more flexible frame-
work for the specification of problems, for instance, in
situations in which connectives are built from the users
preferences. In these contexts, it is likely that know-
ledge is described by a many-valued logic program
where connectives have many-valued truth functions
and, perhaps, aggregation operators (such as arith-
metic mean or weighted sum) where different implica-
tions could be needed for different purposes, and dif-
ferent aggregators are defined for different users, de-
pending on their preferences.

In [2] a neural-like implementation of multi-adjoint lo-
gic programming was presented with the restriction

that the only connectives involved in the program were
the usual product, Gödel and Lukasiewicz together
with weighted sums. A key point of the implement-
ation was a preprocessing of the initial program to
transform it into a homogeneous program, detailed
in [3]. As the theoretical development of the multi-
adjoint framework does not rely on particular prop-
erties of the product, Gödel and Lukasiewicz adjoint
pairs, it seems convenient to allow for a generalization
of the implementation to admit, at least, a family of
continuous t-norms (recall that any continuous t-norm
can be interpreted as the ordinal sum of product and
 Lukasiewicz t-norms).

The purpose of this paper is to present a “finer” ho-
mogenization process for multi-adjoint logic programs
such that conjunctors which are built as ordinal sums
of product, Gödel and Lukasiewicz t-norms are decom-
posed into its components so that, as a result, the ori-
ginal neural approach is still applicable.

The structure of the paper is as follows: In Section 2,
the syntax and semantics of multi-adjoint logic pro-
grams are introduced, together with the homogeniz-
ation procedure; in Section 3, the translation from
multi-adjoint programs into homogeneous programs is
extended in order to cope with conjunctors defined
as ordinal sums, the preservation of the semantics is
proved under this extended transformation, and the
complexity of the translation is studied. The paper
finishes with some conclusions and pointers to future
work.

2 Preliminary definitions

To make this paper as self-contained as possible, the
necessary definitions about multi-adjoint structures
are included in this section. For motivating comments,
the interested reader is referred to [4].

Multi-adjoint logic programming is a general theory of
logic programming which allows the simultaneous use
of different implications in the rules and rather general
connectives in the bodies.

The first interesting feature of multi-adjoint logic pro-
grams is that a number of different implications are
allowed in the bodies of the rules. The basic definition
is the generalization of residuated lattice given below:

Definition 1 Let 〈L,�〉 be a lattice. A multi-adjoint
lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n) satisfy-
ing the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top ele-
ments;

2. >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for i =

1, . . . , n;

3. (&i,←i) is an adjoint pair in 〈L,�〉 for i =
1, . . . , n; i.e.

(a) Operation &i is increasing in both arguments,
(b) Operation ←i is increasing in the first argu-

ment and decreasing in the second argument,
(c) For any x, y, z ∈ P , we have that x � (y ←i

z) holds if and only if (x &i z) � y holds.

In the rest of the paper we restrict to the unit interval,
although the general framework of multi-adjoint logic
programming is applicable to a general lattice.

2.1 Syntax of multi-adjoint logic programs

A multi-adjoint program is a set of weighted rules
〈F, ϑ〉 satisfying the following conditions:

1. F is a formula of the form A ←i B where A is a
propositional symbol called the head of the rule,
and B is a well-formed formula, which is called the
body, built from propositional symbols B1, . . . , Bn

(n ≥ 0) by the use of monotone operators.

2. The weight ϑ is an element (a truth-value) of [0, 1].

Facts are rules with body1 1 and a query (or goal)
is a propositional symbol intended as a question ?A
prompting the system.

2.2 Semantics of multi-adjoint logic programs

Once presented the syntax of multi-adjoint programs,
the semantics is given below.

Definition 2 An interpretation is a mapping I from
the set of propositional symbols Π to the lattice
〈[0, 1],≤〉.

Note that each of these interpretations can be uniquely
extended to the whole set of formulas, and this exten-
sion is denoted as Î. The set of all the interpretations
is denoted IL.

The ordering ≤ of the truth-values L can be easily ex-
tended to IL, which also inherits the structure of com-
plete lattice and is denoted v. The minimum element
of the lattice IL, which assigns 0 to any propositional
symbol, will be denoted M.

Definition 3

1. An interpretation I ∈ IL satisfies 〈A ←i B, ϑ〉 if
and only if ϑ ≤ Î (A←i B).

1It is also customary to use write > instead of 1, and
even not to write any body.

2. An interpretation I ∈ IL is a model of a multi-
adjoint logic program P iff all weighted rules in P
are satisfied by I.

3. An element λ ∈ L is a correct answer for a pro-
gram P and a query ?A if for any interpretation
I ∈ IL which is a model of P we have λ ≤ I(A).

The operational approach to multi-adjoint logic pro-
grams used in this paper will be based on the fixpoint
semantics provided by the immediate consequences op-
erator, given in the classical case by van Emden and
Kowalski [5], which can be generalised to the frame-
work of multi-adjoint logic programs by means of the
adjoint property, as shown below:

Definition 4 Let P be a multi-adjoint program; the
immediate consequences operator, TP : IL → IL, maps
interpretations to interpretations, and for I ∈ IL and
A ∈ Π is given by

TP(I)(A) = sup
{

ϑ &i Î(B) | 〈A←i B, ϑ〉 ∈ P
}

As usual, it is possible to characterise the semantics of
a multi-adjoint logic program by the post-fixpoints of
TP; that is, an interpretation I is a model of a multi-
adjoint logic program P iff TP(I) v I. The TP operator
is proved to be monotonic and continuous under very
general hypotheses.

Once one knows that TP can be continuous under very
general hypotheses [4], then the least model can be
reached in at most countably many iterations begin-
ning with the least interpretation, that is, the least
model is TP ↑ω(M).

2.3 Obtaining a homogeneous program

Regarding the implementation as a neural network
of [2], the introduction of the so-called homogeneous
rules, provided a simpler and standard representation
for any multi-adjoint program.

Definition 5 A weighted formula is said to be homo-
geneous if it has one of the following forms:

• 〈A←i &i(B1, . . . , Bn), ϑ〉

• 〈A←i @(B1, . . . , Bn), 1〉

• 〈A←i B1, ϑ〉

where A,B1, . . . , Bn are propositional symbols.

In the rest of this section we briefly recall the proced-
ure for translating a multi-adjoint logic program into

one containing only homogeneous rules. The proced-
ure handles separately rules and facts, the latter are
not related to the purpose of this paper, therefore we
will only recall the procedure presented for homogen-
izing rules.

Two types of transformations are considered: The first
one handles the main connective of the body of the
rule, whereas the second one handles the subcompon-
ents of the body.

T1. A weighted rule 〈A←i &j(B1, . . . ,Bn), ϑ〉 is sub-
stituted by the following pair of formulas:

〈A←i A1, ϑ〉
〈A1 ←j &j(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol, and 〈←j

, &j〉 is an adjoint pair.

For the case 〈A←i @(B1, . . . ,Bn), ϑ〉 in which the
main connective of the body of the rule happens
to be an aggregator, the transformation is similar:

〈A←i A1, ϑ〉
〈A1 ← @(B1, . . . ,Bn), 1〉

where A1 is a fresh propositional symbol, and ←
is a designated implication.

T2. A weighted rule 〈A ←i Θ(B1, . . . ,Bn), ϑ〉, where
Θ is either &i or an aggregator, and a com-
ponent Bk is assumed to be either of the form
&j(C1, . . . , Cl) or @(C1, . . . , Cl), is substituted by
the following pair of formulas in either case:

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ←j &j(C1, . . . , Cl),>〉

or

〈A←i Θ(B1, . . . ,Bk−1, A1,Bk+1, . . . ,Bn), ϑ〉
〈A1 ← @(C1, . . . , Cl),>〉

where A1 is a fresh propositional symbol.

The procedure to transform the rules of a program so
that all the resulting rules are homogeneous, is presen-
ted in Fig. 2. It is based in the two previous transform-
ations, and in its description by abuse of notation the
terms T1-rule (resp. T2-rule) are used to mean an ad-
equate input rule for transformation T1 (resp. T2).

3 Considering compound conjunctors

As stated in the introduction, a neural net imple-
mentation of the immediate consequences operator of

Program Homogenization
begin

repeat
for each T1-rule do

Apply transformation T1
end-for

for each T2-rule do
Apply transformation T2

end-for
until neither T1-rules nor T2-rules exist

end

Figure 1: Pseudo-code for translating into a homogen-
eous program.

an homogeneous program was introduced in [2] for
the case of the multi-adjoint lattice ([0, 1],≤, &P ,←P

, &G,←G, &L,←L). As the theoretical development of
the multi-adjoint framework does not rely on partic-
ular properties of these three adjoint pairs, it seems
convenient to allow for a generalization of the imple-
mentation to, at least, a family of continuous t-norms,
for any continuous t-norm can be interpreted as the
ordinal sum of product and Lukasiewicz t-norms.

In order to maintain the most of the proposed imple-
mentation, it makes sense to consider an extra pro-
cess in the homogenization process in order to further
translate a program with new types of t-norms into
one on which the original neural approach is still ap-
plicable.

Recall the definition of ordinal sum of a family of t-
norms:

Definition 6 Let (&i)i∈A be a family of t-norms and
a family of non-empty pairwise disjoint subintervals
[ai, bi] of [0, 1]. The ordinal sum of the summands
(ai, bi, &i), i ∈ A is the t-norm & defined as

&(x, y) =

{
ai + (bi − ai) &i(x−ai

bi−ai
, y−ai

bi−ai
) if x, y ∈ [ai, bi]

min(x, y) otherwise

In order to simplify the notation of ordinal sum, let us
introduce suitable functions for change of scale, to be
able to switch between the intervals [0, 1] and [ai, bi].
Given the unit interval [0, 1] and a subset [ai, bi] ⊆
[0, 1], the function

fi : [ai, bi]→ [0, 1], with fi(x) =
x− ai

bi − ai

is bijective, and its inverse is

f−1
i : [0, 1]→ [ai, bi], with f−1

i (x) = ai + (bi − ai)x

Now, given a t-norm &i consider the following (adap-
ted) t-norm

x &∗
i y =

{
f−1

i (fi(x) &i fi(y)) if x, y ∈ [ai, bi]
min{x, y} otherwise

for all x, y ∈ [0, 1].

With the notations above it is obvious that the ordinal
sum of the summands (ai, bi, &i), i ∈ A can be written
as

x & y = min{x &∗
i y | i ∈ A} (1)

With this expression for the ordinal sum, we can intro-
duce a third type of transformation, to be applied to
those rules of a homogeneous program with an ordinal
sum in the body.

First of all, it is convenient to consider these sum-like
conjunctors as general aggregator operators, so that
after the (standard) homogenization process we can
assume that the weight of the obtained rule is 1.

T3. The homogeneous rule2 〈A←i B1 & B2, 1〉, where
& is expressed as in (1) is substituted by the fol-
lowing n + 1 formulas:

〈A1 ← B1 &∗
1 B2, 1〉
...

〈An ← B1 &∗
n B2, 1〉

〈A←G &G(A1, . . . , An), 1〉

where A1, . . . , An are fresh propositional symbols.

After applying this transformation to a homogeneous
program, we obtain another homogeneous program in
whose bodies no t-norm appears as an ordinal sum.
This kind of homogenous program is called sum-free
homogeneous program (in short sf-homogeneous pro-
gram).

Example 1 Consider the elements a1 = 0.1, b1 =
0.5, a2 = 0.7, b2 = 0.9 and the ordinal sum &s defined
as

x &s y

 f−1
1 (f1(x) &P f1(y)) if x, y ∈ [a1, b1]

f−1
2 (f2(x) &L f2(y)) if x, y ∈ [a2, b2]

min{x, y} otherwise

Then if we have the homogeneous rule 〈A ←s

B1 &s B2, 1〉, applying T3, this is transformed in

〈A1 ← B1 &∗
P B2, 1〉 sf-homogeneous

〈An ← B1 &∗
L B2, 1〉 sf-homogeneous

〈A←G &G(A1, . . . , An), 1〉 sf-homogeneous
2To simplify the presentation, let us assume that the

body has just two arguments.

The procedure to transform the rules of a program
so that all the resulting rules are sf-homogeneous, is
presented in Fig. 2. In its description by abuse of nota-
tion we use the terms T1-rule (resp. T2-rule, T3-rule)
to mean an adequate input rule for transformation T1
(resp. T2, T3).

Program sf-Homogenization
begin

repeat
for each T1-rule do

Apply transformation T1
end-for

for each T2-rule do
Apply transformation T2

end-for

for each T3-rule do
Apply transformation T3

end-for

until neither T1- nor T2- nor T3-rules exist
end

Figure 2: Pseudo-code for translating into a sf-
homogeneous program.

3.1 Preservation of the semantics

It is necessary to check that the semantics of the initial
program has not been changed by the transformation.
The following results will show that every model of the
sf-homogenized program P∗ is also a model of the ori-
ginal program P and, in addition, the minimal model
of P∗ is also the minimal model of P.

Theorem 1 Let P be a homogeneous program, then
every model of the program P∗, obtained after to apply
the sf-homogenization process to P, is also a model of
P when restricted to the variables occurring in P.

Proof: It will be sufficient to show that the transform-
ation T3 satisfies that every model of its output is also
a model of its input, as the proof for T1 and T2 was
given in [3].

Assume that I is a model of the rules

〈A1 ← B1 &∗
1 B2, 1〉, . . . , 〈An ← B1 &∗

n B2, 1〉
〈A←G &G(A1, . . . , An), 1〉

therefore we have

Î(B1 &∗
i B2) ≤ I(Ai) and Î(&G(A1, . . . , An)) ≤ I(A)

for all i ∈ {1, . . . , n}. Now, by monotonicity, we have

&G(Î(B1 &∗
1 B2), . . . , Î(B1 &∗

n B2)) ≤ I(A)

Recall that we want to prove that I satisfies the rule
〈A ←i B1 & B2, 1〉, that is, Î(B1 & B2) ≤ I(A), where
& is an ordinal sum of &∗

i , i ∈ {1, . . . , n}.

But this is true by Equation (1) since we have

I(B1) & I(B2) = mini∈{1,...,n}{I(B1) &∗
i I(B2)}

= &G(Î(B1 &∗
1 B2), . . . , Î(B1 &∗

n B2))
≤ I(A) �

Theorem 2 Given a program P, the minimal model
of the program P∗ obtained after applying sf-
homogenization, is also a model of P when restricted
to variables in P.

The idea underlying the proof is to consider any model
I of P, then extend it to P∗ in such a way that it is also
a model of P∗, finally use minimality on P∗. The key
point is to notice that, for every “fresh” propositional
variable Ai introduced by the process, there is only one
rule headed with Ai in the resulting program. This
feature allows the extension of any model I to these
new symbols in purely recursive terms.

Proof:

Let M∗ be the minimal model of P∗, and let M denote
its restriction to P. By the Theorem 1 we have that
M is also a model of P, so we have only to prove that
it is minimal.

Once again, only the behaviour of transformation T3
has to be taken into account.

Given a model I of P, consider a rule 〈Ai ←
B1 &∗

i B2, 1〉, where Ai is a propositional variable in
P∗ but not in P. We argued above that there can be
only one such rule headed with Ai, therefore the fol-
lowing extension of I makes sense:

I∗(Ai) = Î(B1 &∗
i B2)

Obviously, by definition this extension I∗ is also a
model of P∗, therefore the minimal model M∗ of P∗
satisfies M∗ v I∗. Now, by restricting the domain
back to the variables in P we obtain M v I. There-
fore, M is the minimal model of P. �

3.2 Complexity issues

In [3] it was shown that the complexity of the al-
gorithm for transforming a multi-adjoint program into
a homogeneous one is linear on the size of the pro-
gram. Specifically, the following theorem was stated
and proved

Theorem 3 ([3]) Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a
rule with n connectives in the body (n ≥ 1), then:

• The number of homogeneous rules obtained after
applying the procedure is n, if either Θ = &i or
Θ = @ with ϑ = 1; and n + 1 otherwise.

• The number of transformations obtained after ap-
plying the procedure is n − 1 if either Θ = &i or
Θ = @ with ϑ = 1; and n otherwise.

It has to be pointed out that the number of rules ob-
tained (or transformations applied) is bounded by the
integer number stated in the theorem. The equality is
obtained when all the associative operators are effect-
ively grouped into one ‘flexible arity’ operator.

Back to the sf-homogenization process, it can also be
shown to be linear on the size of the program. The
following theorem shows a precise calculation of the
complexity of the homogenization procedure.

Theorem 4 Let 〈A ←i Θ(B1, . . . ,Bl), ϑ〉 be a rule
with n connectives in the body (n ≥ 1), out of which
exactly m are constructed as ordinal sums of ki basic
connectives for each i ∈ {1, . . . ,m} then:

• The number of homogeneous rules obtained after
applying the procedure is bounded by n + m +∑m

i=1 ki, if either Θ = &i or Θ = @ with ϑ = 1;
and n + m +

∑m
i=1 ki + 1 otherwise.

• The number of transformations Ti applied by the
procedure is n+2m−1 if either Θ = &i or Θ = @
with ϑ = 1; and n + 2m otherwise.

Proof: Concatenate the thesis of Theorem 3 with the
fact that an application of T3 generates exactly k + 1
rules, provided that the ordinal sum was built out of
k intervals, because in each homogeneous rule there is
only one operator in the body. �

4 Conclusions and future work

It has been shown that the homogenization process for
multi-adjoint logic programs can be adapted so that
it can “decompose” conjunctors defined as an ordinal
sum.

This is a very convenient extension of the previous
procedure, in that the existing neural-like implement-
ation of the fixpoint multi-adjoint semantics only con-
siders product, Gödel, and Lukasiewicz connectives
and weighted sums. Assuming that one knows the
definition of a compound connective as an ordinal sum
of product and Lukasiewicz connectives, then it would
be possible to use the existing neural implementation
to execute the program.

A different approach to this problem would be to
modify directly the neural implementation so that

the ordinal sum constructor can be conveniently rep-
resented by the net. Then, it would be interesting
to make a comparison of the efficiency of the treat-
ment of compound conjunctors via this extended sf-
homogenization an the modified neural approach.

References

[1] C.V. Damásio and L. Moniz Pereira. Monotonic
and residuated logic programs. In Symbolic and
Quantitative Approaches to Reasoning with Un-
certainty, ECSQARU’01, pages 748–759. Lect.
Notes in Artificial Intelligence, 2143, 2001.

[2] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-
Aciego. A neural approach to extended logic pro-
grams. In 7th Intl Work Conference on Artificial
and Natural Neural Networks, IWANN’03, pages
654–661. Lect. Notes in Computer Science 2686,
2003.

[3] J. Medina and M. Ojeda-Aciego. Homogeniz-
ing multi-adjoint logic programs. In Proc. of
Intl Conference on Fuzzy Logic and Technology,
EUSFLAT’03, pages 640–644, 2003.

[4] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Multi-adjoint logic programming with continu-
ous semantics. In Logic Programming and Non-
Monotonic Reasoning, LPNMR’01, pages 351–
364. Lect. Notes in Artificial Intelligence 2173,
2001.

[5] M. H. van Emden and R. Kowalski. The semantics
of predicate logic as a programming language.
Journal of the ACM, 23(4):733–742, 1976.

[6] P. Vojtáš. Fuzzy logic programming. Fuzzy Sets
and Systems, 124(3):361–370, 2001.

