
A termination theorem for sorted multi-adjoint logic programming

C.V. Damásio
Centro Inteligência Artificial
Universidade Nova de Lisboa

cd@di.fct.unl.pt

J. Medina
Dept. Matemática Aplicada

Universidad de Málaga
jmedina@ctima.uma.es

M. Ojeda-Aciego
Dept. Matemática Aplicada

Universidad de Málaga
aciego@ctima.uma.es

Resumen

In this paper we present a general framework
of logic programming allowing for the com-
bination of several adjoint lattices of truth-
values. The main contribution is a new suffi-
cient condition which guarantees termination
of all queries for the fixpoint semantics for an
interesting class of programs.

Keywords: Fuzzy Logic Programming, Ter-
mination Results.

1 Introduction

A number of approaches have been developed for the
so-called inexact or fuzzy or approximate reasoning
have been proposed, involving either fuzzy or annot-
ated or probabilistic or similarity-based logic program-
ming, e.g. [7, 11, 6, 5, 12, 8] as a result of the increasing
interest in models of reasoning under “imperfect” in-
formation.

In this work we propose a sorted version of the multi-
adjoint paradigm of logic programming, where each
sort identifies an underlying lattice of truth-values
(weights) which must satisfy adjoint conditions. We
restrict to the ground case but allow infinite programs,
and thus do not loose generality.

The semantics of sorted multi-adjoint logic program is
characterised, as usual, by the post-fixpoints of the im-
mediate consequence operator TP, which is proved to
be monotonic and continuous under very general hy-
potheses, see [9]. The current proposal is an important
enhancement of our previous works [1, 4, 9].

The major contribution of this paper is a termina-
tion result for a classes of sorted multi-adjoint logic
programs complementing results in [6, 5]. In particu-
lar, the case of programs obtained by arbitrary com-
position of operators obeying the boundary condition

ϑ⊗ 1 = 1⊗ ϑ ≤ ϑ over the unit interval are shown to
be terminating.

The structure of the paper is as follows. In Section
2, we introduce the preliminary concepts necessary for
the definition of the syntax and semantics of sorted
multi-adjoint logic programs, presented in Section 3.
In Section 4, we state the basic results regarding the
termination properties of our semantics, which are ex-
tended later in Section 5. The paper finishes with some
conclusions and pointers to future work.

2 Preliminary Definitions

We will make extensive use of the constructions and
terminology of universal algebra, in order to define
formally the syntax and the semantics of the languages
we will deal with. A minimal set of concepts from uni-
versal algebra, which will be used in the sequel in the
style of [4], is introduced below.

2.1 Some Definitions from Universal Algebra

The notions of signature and Σ-algebra will allow the
interpretation of the function and constant symbols in
the language, as well as for specifying the syntax.

Definition 1 A signature is a pair Σ = 〈S, F 〉 where
S is a set of elements, designated sorts, and F is a col-
lection F of pairs 〈f, s1 × · · · × sk → s〉 denoting func-
tions, such that s, s1, . . . , sk are sorts and no symbol
f occurs in two different pairs. The number k is the
arity of f . If k is 0 then f is a constant symbol.

To simplify notation, we write f : τ to denote a pair
〈f, τ〉 belonging to F .

Definition 2 Given a signature Σ = 〈S, F 〉, a Σ-
algebra A is a pair

〈
{As}s∈S , I

〉
where:

1. Each As is a nonempty set called the carrier of
sort s,

2. and I is a function which assigns a map

I(f) : As1 × · · · ×Ask → As

to each f : s1 × · · · × sk → s ∈ F , where k > 0,
and an element I(c) ∈ As to each constant symbol
c : s in F.

2.2 Multi-Adjoint Lattices and
Multi-Adjoint Algebras

The main concept we will need in this section is that
of adjoint pair.

Definition 3 Let 〈P,�〉 be a partially ordered set and
let (←, &) be a pair of binary operations in P such
that:

(a1) Operation & is increasing in both arguments

(a2) Operation ← is increasing in the first argument
and decreasing in the second argument.

(a3) For any x, y, z ∈ P , we have that

x � (y ← z) iff (x & z) � y

Then (←, &) forms an adjoint pair in 〈P,�〉.

Extending the results in [4, 3, 12] to a more general
setting, in which different implications (Lukasiewicz,
Gödel, product) and thus, several modus ponens-like
inference rules are used, naturally leads to considering
several adjoint pairs in the lattice. More formally,

Definition 4 Let 〈L,�〉 be a lattice. A multi-adjoint
lattice L is a tuple (L,�,←1, &1, . . . ,←n, &n) satisfy-
ing the following items:

(l1) 〈L,�〉 is bounded, i.e. it has bottom (⊥) and top
(>) elements;

(l2) (←i, &i) is an adjoint pair in 〈L,�〉 for all i;

(l3) >&i ϑ = ϑ &i> = ϑ for all ϑ ∈ L for all i.

Remark: Note that residuated lattices are a special
case of multi-adjoint lattice, in which the underlying
poset has a lattice structure, has monoidal structure
wrt & and >, and only one adjoint pair is present.

From the point of view of expressiveness, it is inter-
esting to allow extra operators to be involved with
the operators in the multi-adjoint lattice. The struc-
ture which captures this possibility is that of a multi-
adjoint algebra.

Definition 5 A Σ-Algebra L is a Multi-Adjoint Σ-
Algebra whenever:

• The carrier Ls of each sort is a lattice under a
partial order �s.

• Each sort s contains operators ←s
i : s× s→ s and

&s
i : s×s→ s for i = 1, . . . , ns (and possibly some

extra operators) such that the tuple Ls

(Ls,�s, I(←s
1), I(&s

1), . . . , I(←s
n), I(&s

n))

is a multi-adjoint lattice.

Multi-Adjoint Σ-Algebras can be found underlying
the probabilistic deductive databases framework of [8]
where our sorts correspond to disjunctive modes and
the adjoint operators to different conjunctive modes
for combining probabilistic knowledge. Our framework
is richer since we do not restrain ourselves to a single
and particular carrier set and allow more operators.

In practice, we will usually have to assume some prop-
erties on the extra operators considered. These extra
operators will be assumed to be either aggregators, or
conjunctors or disjunctors, all of which are monotone
functions (the latter, in addition, are required to gen-
eralize their Boolean counterparts).

3 Syntax and Semantics of Sorted
Multi-Adjoint Logic Programs

Sorted multi-adjoint logic programs will be construc-
ted from the abstract syntax induced by a multi-
adjoint Σ-algebra on a set of sorted propositional sym-
bols (or variables). Specifically, we will consider a
multi-adjoint Σ-algebra L whose extra operators can
be arbitrary monotone operators. This algebra will
host the manipulation the truth-values of the formu-
las in our programs.

In addition, let Π be an infinite set of sorted proposi-
tional symbols, disjoint from the set of function sym-
bols in L, and the corresponding term Σ-algebra1 of
formulas F = Terms(Σ, Π). To denote that a symbol
A ∈ Π has sort s we will often write A ∈ Πs.

Remark: As we are working with two Σ-algebras, and
to discharge the notation, we introduce a special nota-
tion to clarify which algebra a function symbols be-
longs to, instead of continuously using either σL or
σF. Let σ be a function symbol in Σ, its interpret-
ation under L is denoted σ (a dot on the operator),
whereas σ itself will denote σF when there is no risk
of confusion.

1Shortly, this corresponds to the algebra freely gener-
ated from Π and the set of function symbols in L, respect-
ing sort assignments.

3.1 Syntax of Sorted Multi-Adjoint Logic
Programs

The definition of sorted multi-adjoint logic program is
given, as usual, as a set of rules and facts. The partic-
ular syntax of these rules and facts is given below:

Definition 6 A sorted multi-adjoint logic program is
a set P of rules of the form 〈A←s

i B, ϑ〉 such that:

1. The rule (A ←s
i B) is a formula (an algebraic

term) of F;

2. The weight ϑ is an element (a truth-value) of Ls;

3. The head of the rule A is a propositional symbol
of Π of sort s.

4. The body B is a formula of F with sort s,
built from sorted propositional symbols B1, . . . , Bn

(n ≥ 0) by the use of function symbols in Σ.

5. Facts are rules with body >s, the top element of
lattice Ls.

6. A query (or goal) is a propositional symbol inten-
ded as a question ?A prompting the system.

Sometimes, we will represent bodies of formulas as
@[B1, . . . , Bn], where2 B1, . . . , Bn are the proposi-
tional variables occurring in the body and @ is the
aggregator obtained as a composition.

3.2 Semantics of Sorted Multi-Adjoint Logic
Programs

Definition 7 An interpretation is a mapping I : Π→⋃
s Ls such that for every propositional symbol p of sort

s then I(p) ∈ Ls. The set of all interpretations of the
sorted propositions defined by the Σ-algebra F in the
Σ-algebra L is denoted IL.

Note that by the unique homomorphic extension the-
orem, each of these interpretations can be uniquely
extended to the whole set of formulas F.

The orderings �s of the truth-values Ls can be easily
extended to the set of interpretations as follows:

Definition 8 Consider I1, I2 ∈ IL. Then, 〈IL,v〉
is a lattice where I1 v I2 iff I1(p) �s I2(p) for all
p ∈ Πs. The least interpretation M maps every propos-
itional symbol of sort s to the least element ⊥s ∈ Ls.

A rule of a sorted multi-adjoint logic program is satis-
fied whenever the truth-value of the rule is greater or
equal than the weight associated with the rule. Form-
ally:

2Note the use of square brackets in this context.

Definition 9 Given an interpretation I ∈ IL, a
weighted rule 〈A ←s

i B, ϑ〉 is satisfied by I iff ϑ �s

Î (A←s
i B). An interpretation I ∈ IL is a model of

a sorted multi-adjoint logic program P iff all weighted
rules in P are satisfied by I.

Definition 10 An element λ ∈ Ls is a correct answer
for a program P and a query ?A of sort s if for an
arbitrary interpretation I which is a model of P we
have λ �s I(A).

The immediate consequences operator, given by van
Emden and Kowalski, can be easily generalised to the
framework of sorted multi-adjoint logic programs.

Definition 11 Let P be a sorted multi-adjoint logic
program. The immediate consequences operator TP
maps interpretations to interpretations, and is defined
by

TP(I)(A) =
⊔
s

{ϑ &s
i Î(B) | 〈A←s

i B, ϑ〉 ∈ P}

where A is an arbitrary propositional symbol of sort s,
and

⊔
s is the least upper bound in the lattice Ls.

The semantics of a sorted multi-adjoint logic program
can be characterised, as usual, by the post-fixpoints
of TP; that is, an interpretation I is a model of a sor-
ted multi-adjoint logic program P iff TP(I) v I. The
single-sorted TP operator is proved to be monotonic
and continuous under very general hypotheses, see [9],
and it is remarkable that these results are true even
for non-commutative and non-associative conjunctors.
In particular, by continuity, the least model can be
reached in at most countably many iterations of TP
on the least interpretation. These results immediately
extend to the sorted case.

4 Termination Results

In this section we recall the termination properties
of the TP operator. In what follows we assume that
every operator is computable. If only monotone and
continuous operators are present in the underlying sor-
ted multi-adjoint Σ-algebra L then the immediate con-
sequences operator reaches the least fixpoint at most
after ω iterations. It is not difficult to show examples
in which exactly ω iterations may be necessary to reach
the least fixpoint.

The termination property we investigate is stated in
the following definition:

Definition 12 Let P be a sorted multi-adjoint logic
program with respect to a multi-adjoint Σ-algebra L
and a sorted set of propositional symbols Π. We say

that TP terminates for every query iff for every propos-
itional symbol A there is a finite n such that TP

n(M)(A)
is identical to lfp(TP)(A).

We presented in [2] several results in order to guar-
antee that every query can be answered after a finite
number of iterations. In particular, this means that
for finite programs the least fixpoint of TP can also
be reached after a finite number of iterations, ensur-
ing computability of the semantics. Nevertheless, the
results are applicable to a special class of infinite sor-
ted multi-adjoint logic programs, designated programs
with finite dependencies.

The dependency graph of P has a vertex for each pro-
positional symbol in Π, and there is an arc from a
propositional symbol A to a propositional symbol B
iff A is the head of a rule with body containing an
occurrence of B. The dependency graph for a propos-
itional symbol A is the subgraph of the dependency
graph containing all nodes accessible from A and cor-
responding edges.

Definition 13 A sorted multi-adjoint logic program
P has finite dependencies iff for every propositional
symbol A the number of edges in the dependency graph
for A is finite.

We proceed by presenting our new major termination
result valid for an important class of sorted multi-
adjoint logic programs, where neither acyclicity nor
finiteness properties are required. To begin with, the
following definition is needed:

Definition 14 A multi-adjoint Σ-algebra is said to be
local when the following conditions are satisfied:

• For every pair of sorts s1 and s2 there is a unary
monotone casting function symbol cs1s2 : s2 → s1

in Σ.

• All other function symbols have types of the form
f : s × · · · × s → s, i.e. are closed operations in
each sort, satisfying the following boundary con-
ditions for every v ∈ Ls:

I(f)(v, 1s, . . . , 1s) �s v
I(f)(1s, v, 1s, . . . , 1s) �s v

...
I(f)(1s, . . . , 1s, v) �s v

where 1s is the top element of Ls. In particular,
if f is a unary function symbol then I(f)(v) �s v.

• The following property is obeyed:

(css1 ◦ cs1s2 ◦ . . . ◦ csns) (v) �s v

for every v ∈ Ls and finite composition of casting
functions with overall sort s→ s.

In local sorted multi-adjoint Σ-algebras the non-
casting function symbols are restricted to operations
in a unique sort. In order to combine values from dif-
ferent sorts, one is deemed to use explicitly the casting
functions in the appropriate places.

Definition 15 Let P be a multi-adjoint program, and
A ∈ Πs.

• The set RI
P(A) of relevant values for A with re-

spect to interpretation I is the set of maximal val-
ues of the set {ϑ &s

i Î(B) | 〈A←s
i B, ϑ〉 ∈ P}

• The culprit set for A with respect to I is the set
of rules 〈A←s

i B, ϑ〉 of P such that ϑ &s
i Î(B) be-

longs to RI
P(A). Rules in a culprit set are called

culprits.

• The culprit collection for TP
n(M)(A) is defined as

the set of culprits used in the tree of recursive calls
of TP in the computation.

The rationale is to use the set of relevant values for a
propositional symbol A to collect the maximal values
contributing to the computation of A in an iteration
of the TP operator. The non-maximal values are irrel-
evant for determining the new value for A by TP.

Theorem 1 ([2]) Let P be a sorted multi-adjoint lo-
gic program with respect to a local multi-adjoint Σ-
algebra L and the set of sorted propositional symbols
Π, and having finite dependencies.

If for every iteration n and propositional symbol A
of sort s the set of relevant values for A with respect
to Tn

P (M) is a singleton, then TP terminates for every
query.

The proof is based on the bounded growth of the cul-
prit collection for TP

n(M)(A) . By induction on n, it
can be proved that if Tn+1

P (M)(A) �s Tn
P (M)(A) for

A ∈ Π, then the culprit collection for Tn+1
P (M)(A) has

cardinality at least n+ 1. Since the number of rules in
the dependency graph for A is finite then the TP oper-
ator must terminate after a finite number of steps, by
using all the rules relevant for the computation of A.

5 Termination of Hybrid Probabilistic
Logic Programs

Hybrid Probabilistic Logic Programs [6] have been
proposed for constructing rule systems which allow
the user to reason with and combine probabilistic in-
formation under different probabilistic strategies. The
conjunctive (disjunctive) probabilistic strategies are
pairwise combinations of t-norms (t-conorms, respect-
ively) over pairs of real numbers in the unit interval

[0, 1], i.e. intervals. The termination results presented
in [5] either only allow constant annotation or (finite)
ground programs. From the analysis of the fixpoint
construction one can see that only a finite number of
different intervals can be generated.

Theorem 1 above can be generalized to a case which
will allow us to prove the termination result for hybrid
probabilistic logic programs in an abstract way. Spe-
cifically, the termination result can also be obtained
if the local multi-adjoint Σ-algebra also contains func-
tion symbols g : s1 × · · · × sl → sk such that their
interpretations are isotonic functions with finite range
(that is, the image of g is a finite set). We call this
kind of algebra a local multi-adjoint Σ-algebra with fi-
nite operators.

The major result in this paper is stated below, as an
extension of Theorem 1.

Theorem 2 Let P be a sorted multi-adjoint logic pro-
gram with respect to a local multi-adjoint Σ-algebra
with finite operators L and the set of sorted propos-
itional symbols Π, and having finite dependencies.

If for every iteration n and propositional symbol A
of sort s the set of relevant values for A with respect
to Tn

P (M) is a singleton, then TP terminates for every
query.

The intuition underlying the proof of this theorem is
simply to apply a cardinality argument. However, the
formal presentation of the proof requires introducing
some technicalities which offer enough control on the
increase of the computation tree for a given query.

On the one hand, one needs to handle the number of
applications of rules; this is done by using the concept
of culprit collection, as in Theorem 1. On the other
hand, one needs to consider the applications of the fi-
nite operators, which are not adequately considered by
the culprit collections. With this aim, given a propos-
itional symbol A, let us consider the subset of rules of
the program associated to its dependence graph, and
denote it by PA. This set is finite, for the program has
finite dependencies, so we can write:

PA = {〈Hi ← Bi, ϑi〉 | i ∈ {1, . . . , s}}

In addition, let us write each body of the rules above
as follows:

Bi = @i[gi
1(Di

1), . . . , gi
ki

(Di
ki

), Ci
1, . . . , C

i
mi

]

where gi
j(Di

j) represents the subtrees corresponding to
the outermost occurrences of finite operators, the Ci

j

are the propositional symbols which are not in the
scope of finite operator, and @i is the operator ob-
tained after composing all the operators in the body
not in the scope of any finite operator.

Now, consider G(PA) = {g1
1 , . . . , g1

k1
, . . . , gs

1, . . . , g
s
ks
},

which is a finite multiset, and let us define the fol-
lowing counting sets for the contribution of the finite
operators to the overall computation.

Definition 16 The counting sets for P and A are
defined for all n ∈ N as follows:

ΞA
n = {k < n | there is gi

j ∈ G(PA) such that

gi
j(TP

n(4)(Di
j)) > gi

j(TP
n−1(4)(Di

j))}

With these definitions we can state the main lemma
needed in the proof of Theorem 2.

Lemma 1 Under the hypotheses of Theorem 2, if
TP

n+1(4)(A) > TP
n(4)(A) then either |ΞA

n+1| > |ΞA
n |

or the culprit collection for TP
n+1(4)(A) is greater

than that for TP
n(4)(A).

Proof: We will proceed by induction on n.

Base case n = 0: for any A it is straightforward that
if TP(4)(A) > 4(A) = ⊥ then a new rule has been
used.

Inductive case: Assume that the result is true for any
propositional symbol and n = k; in order to prove
the result for k + 1, assume that TP

k+1(4)(A) >
TP

k(4)(A).

By the singleton hypothesis, there exists a rule labeled
by an index i ∈ {1, . . . , s} such that

TP
k+1(4)(A) =

ϑi & TP
k(4)(@i[gi

1(Di
1), . . . , gi

ri
(Di

ri
), Ci

1, . . . , C
i
mi

])

now, for that rule indexed by i, by definition of TP as
a least upper bound, we have

TP
k(4)(A) ≥

ϑi & TP
k−1(4)(@i[gi

1(Di
1), . . . , gi

ri
(Di

ri
), Ci

1, . . . , C
i
mi

])

then, by the monotonicity of the connectives in the
body, either there exists j ∈ {1, . . . , ri} such that

gi
j(TP

k(4)(Di
j)) > gi

j(TP
k−1(4)(Di

j))

or there exists j ∈ {1, . . . ,mi} such that

TP
k(4)(Ci

j) > TP
k−1(4)(Ci

j)

In the former case, it is obvious that |ΞA
n+1| > |ΞA

n |; in
the latter case, then the induction hypothesis on the
propositional variable Ci

j applies. �

Proof of the Theorem: The previous lemma is the key
of the proof of the main theorem of this section:

• Firstly, since the program has finite dependencies
there cannot be infinitely many rules in the culprit
collections for A.

• On the other hand, the sequence of cardinals |ΞA
n |

is upper bounded (since the range of each function
gi

j is finite and G(P(A)) is also finite).

As a result we obtain that TP terminates for every
query. �

6 Conclusions

We have presented a sorted multi-adjoint logic pro-
gramming language, capable of capturing and combin-
ing several reasoning paradigms dealing with impreci-
sion and uncertainty. A termination result motivated
by the hybrid probabilistic logic programs has been
presented, the consequences of this theoretical result
and some of its possible modifications will be studied
in the particular framework of HPLP. The embedding
of other proposals in the literature into our framework
will be explored in subsequent work.

References

[1] C.V. Damásio and M. Ojeda-Aciego. On termina-
tion of a tabulation procedure for residuated logic
programming. 6th Intl Workshop on Termination,
pp. 40-43, 2003

[2] C.V. Damásio, J. Medina and M. Ojeda-Aciego.
Termination results for sorted multi-adjoint lo-
gic programming. In Information Processing and
Management of Uncertainty for Knowledge-Based
Systems, IPMU’04. Accepted.

[3] C. V. Damásio and L. M. Pereira. Monotonic and
residuated logic programs. Lect. Notes in Artifi-
cial Intelligence 2143, pp. 748–759, 2001.

[4] C. V. Damásio and L. M. Pereira. Hybrid prob-
abilistic logic programs as residuated logic pro-
grams. Studia Logica, 72(1):113–138, 2002.

[5] M. Dekhtyar, A. Dekhtyar and V.S. Subrah-
manian. Hybrid Probabilistic Programs: Al-
gorithms and Complexity. Proc. of Uncertainty
in AI’99 conference, 1999

[6] A. Dekhtyar and V.S. Subrahmanian. Hybrid
Probabilistic Programs, Journal of Logic Pro-
gramming 43(3):187–250, 2000

[7] M. Kifer and V. S. Subrahmanian, Theory of gen-
eralized annotated logic programming and its ap-
plications. J. of Logic Programming 12(4):335–
367, 1992

[8] L. Lakhsmanan and F. Sadri, On a theory of prob-
abilistic deductive databases. Theory and Prac-
tice of Logic Programming 1(1):5–42, 2001

[9] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Multi-adjoint logic programming with continuous
semantics. Lect. Notes in Artificial Intelligence
2173, pp. 351–364, 2001.

[10] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A
procedural semantics for multi-adjoint logic pro-
gramming. Lect. Notes in Artificial Intelligence
2258, pp. 290–297, 2001.

[11] M. H. van Emden. Quantitative deduction and its
fixpoint theory. Journal of Logic Programming,
4(1):37–53, 1986.

[12] P. Vojtáš. Fuzzy logic programming. Fuzzy Sets
and Systems, 124(3):361–370, 2001.

