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Abstract— This work is based on the multimodal logicL(MQ),
recently introduced, which formalizes order-of-magnitude quali-
tative reasoning. The aim of this paper is to provide a sound and
complete tableau method for the future fragment ofL(MQ).

I. I NTRODUCTION

Several reasoning methods have been devised in order to
face a problem one often encounters in real world applications,
which is a lack of quantitative (numerical) information among
the observed facts. Among these methods we find those which
allow for reasoning under an incompletely specified environ-
ment, giving rise to reasoning schemes for fuzzy, imprecise
and missing information. A different approach is to apply
ideas from qualitative reasoning and, specifically, from order-
of-magnitude reasoning (OMR), which was introduced in [10]
and later extended in [6], [7], [9], [14], [15].

The basis of OMR systems is computing with a set of coarse
values, usually generated as abstract representations of precise
values. This is of course the same approach taken by any
qualitative reasoning system. The distinctive feature of OMR
is that the coarse values are generally of different order of
magnitude.

Depending on the way the coarse values are defined, differ-
ent OMR calculi can be generated: It is usual to distinguish
between Absolute Order of Magnitude (AOM) and Relative
Order of Magnitude (ROM) models.

There exist attempts to integrate both approaches, so that
an absolute partition is combined with a set of comparison
relations between real numbers [14], [15]. For instance, itis
usual to consider theAOM(5) approach which, by consid-
ering five landmarks, it is customary to divide the real line
in seven equivalence classes and use the following labels to
denote these equivalence classes ofR:
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The labels correspond to “negative large”, “negative medium”,
“negative small”, “zero”, “positive small”, “positive medium”
and “positive large”, respectively. The real numbersα andβ

are the landmarks used to delimit the equivalence classes (the
particular criteria to choose these numbers would depend on
the application in mind). In [14] three binary relations (close

to, comparable, negligible) were defined in the spirit of [10],
but using the labels corresponding to quantitative values,and
preserving coherence between the relative model they define
and the absolute model in which they are defined.

Although the use of qualitative OMR has been an active
research area in AI for some time, the analogous devel-
opment of a logical approach has received little attention.
Various multimodal approaches have been promulgated, for
example, for qualitative spatial and temporal reasoning but,
as far as we know, no such approach has been developed
for OMR. However, non-classical logics do have been used
as a support of qualitative reasoning in several ways: among
the formalisms for qualitative spatial reasoning, the Region
Connection Calculus (RCC) [11], [1] has received particular
attention; in [2], [16], multimodal logics were used to deal
with qualitative spatio-temporal representations, and in[13]
branching temporal logics have been used to describe the
possible solutions of ordinary differential equations when we
have limited information about a system.

Recently, in [4], the logicL(MQ) for qualitative order-of-
magnitude reasoning was introduced to handle, in some sense,
the notion of comparability. Then, the same authors extended
the logic to introduce also modalities for the negligibility
relation [5] but without considering any attempt to mechanise
its deduction. The purpose of this paper is to develop a non-
classical logic for handling qualitative reasoning with orders
of magnitude.

As a first approach to the logics of qualitative order-of-
magnitude reasoning, we have based our minimal languages
on the systemAOM(2), which is both simple enough to keep
under control the complexity of the system and rich enough
so as to permit the representation of a subset of the usual
language of qualitative order-of-magnitude reasoning.

The intuitive representation of the underlying set of values
(usually considered to be subsets of the real numbers, although
this is not essential) is given below, in which two landmarks
−α and+α are considered
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In the picture,−α and+α represent respectively the greatest
negative observable and the least positive observable. This
choice makes sense, in particular, when considering physical



metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least
or greatest non-observable number.

Once we have the equivalence classes in the real line, we can
make comparisons between numbers by using binary relations
such as

• x is less thany, in symbolsx < y

• x is less than and comparable toy, in symbolsx < y.

where< is a restriction of the usual order of the real numbers
(<) to numbers belonging to the same equivalence class.

Our aim in this paper is to provide tableau system for the
future fragment ofL(MQ). It is worth to remark that the need
of considering the landmarks−α and+α as part of the frames
makes more difficult the proof of completeness inL(MQ).

The rest of the paper is organized as follows: In Sec-
tion II the syntax and the semantics of the proposed logic
is introduced; in Section III, a tableau system is presented
for the future fragment ofL(MQ); then, in Section IV the
completeness proof for the tableau system is given. Finally,
some conclusions are drawn and prospects for future work are
presented.

II. SYNTAX AND SEMANTICS OF THELANGUAGE L(MQ)

In our syntax we will consider the connectives
−→
� and

←−
� to

deal with the usual ordering<, the connectives
−→
� and

←−
� to

deal with<. The intuitive meanings of each modal connective
is as follows:
−→
�A meansA is true for all number greater than the

current one.
−→
�A is read A is true for all point greater than and

comparable to the current one.
←−
�A meansA is true for all number less than the current

one.
←−
�A means A is true for all number less than and

comparable to the current one.

The alphabet of the languageL(MQ) is defined by using:

• A stock of atoms or propositional variables,V .
• The classical connectives¬,∧,∨ and→ and the constants
⊤ and⊥.

• The unary modal connectives and
−→
� and

←−
� ,
−→
� and

←−
� .

• The constantsα+ andα−

• The auxiliary symbols: (, ).

Formulas are generated fromV ∪ {α+, α−,⊤,⊥} by the
construction rules of classical propositional logic adding the
following rule: If A is a formula, then so are

−→
�A,

←−
�A,

−→
�A

and
←−
�A.

Definition 1: A multimodal qualitative framefor L(MQ)
(or, simply, aframe) is a tupleΣ = (S, +α,−α, <), where

1) S is a nonempty set.1.
2) < is a strict linear order onS.

1This set is usually considered as a subset of the real numbers, but this is
not required.

3) +α and−α are designated points inS (called frame
constants), and allow to form the setsOBS+, INF ,
andOBS− defined below:

OBS− = {x ∈ S | x ≤ −α} INF = {x ∈ S | −
OBS+ = {x ∈ S | +α ≤ x}

We will usex < y as an abbreviation of “x < y and x, y ∈
EQ, whereEQ ∈ {OBS+, INF, OBS−}”.

Definition 2: Let Σ be a multimodal qualitative frame, a
multimodal qualitative model onΣ (or Σ-model, for short)
is an ordered pairM = (Σ, h), where h is a meaning
function (or, interpretation) h : V −→ 2S. Any interpretation
can be uniquely extended to the set of all formulas inL(MQ)
(also denoted byh) by using the usual conditions for the
classical boolean connectives and the constants⊤ and⊥, and
the following conditions for the modal operators and frame
constants:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such thatx < y}

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such thatx < y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such thaty < x}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such thaty < x}

h(α+) = {+α} h(α−) = {−α}
The concepts of truth and validity are defined in a straightfor-
ward manner.

III. A TABLEAU SYSTEM FOR THE FUTURE FRAGMENT OF

L(MQ)

In this section we develop a tableau system for the fu-
ture fragment of the languageL(MQ), denotedL(MQ+).
Although originally inspired on the method presented by
Goré [8], a number of non-trivial modifications have been in-
cluded due to the particularities ofL(MQ+). Firstly, note that
it is possible to semantically prove the following equivalence:
−→
�A↔

(

α− ∨
(−→
♦ α− ∧

−→
�((
−→
♦α− ∨ α−)→ A)

)

∨

∨
(

¬α− ∧
−→
�α− ∧

−→
♦α+ ∧

−→
�((¬α− ∧

−→
�α− ∧

−→
♦α+)→ A

as a result, in the tableau system forL(MQ+), we will
only need to use white connectives. We first introduce some
preliminary definitions about modal tableaux taken from [8].

A. Preliminary definitions about modal tableaux

Definition 3: A tableau ruleρ consists of anumeratorN
and a finite list ofdenominatorsD1,D2, . . . ,Dk separated by
vertical bars:

N
D1 | D2 | . . . | Dk

(ρ)

The numerator of each rule tableau contains one or more
distinguished formulae called theprincipal formulae. Each
denominator contains one or more distinguished formulae
called theside formulae.

A tableau systemis a finite collection of tableau rules
ρ1, ρ2, . . . , ρn. A tableau for a finite set of formulasΓ is
a finite tree with rootΓ, whose nodes carry finite sets of
formulas which have been built by applications of the rules.



Recall that a tableau rule with numeratorN is applicable to
a node containing a set of formulas∆, precisely if∆ is an
instance ofN .

We define below a tableau systemT (MQ+) for the system
L(MQ+).

1) Rules ofT (MQ+): Our tableau method is built in the
style of that for linear time logic K4L and adding extra tableau
rules for handling frame constants. The proposed tableau
system contains the following rules:

• The classical rules from classical propositional logic:

Γ; A ∧B

Γ, A; B
(∧)

Γ; A;¬A

⊥
(⊥)

Γ;¬(A ∧B)

Γ;¬A | Γ;¬B
(¬∧)

Γ;¬¬A

Γ; A
(¬)

Γ; ∆

Γ
(θ)

• The modal rules

Γ;¬
−→
�A

Γ;
−→
♦¬A

(¬
−→
�)

Γ;¬
−→
♦ A

Γ;
−→
�¬A

(¬
−→
♦ )

• The modal rule(K4L):
−→
�Γ;
−→
♦∆

S1 | S2 | . . . | Sm

(K4L)

where m = 2n − 1, and n is the cardinal of∆. The
Si’s are defined asSi = (Γ;

−→
�Γ;
−→
♦∆i

c; ∆i), where
∆1, . . . , ∆m is an enumeration of the non-empty subsets
of ∆ and∆i

c = ∆ r ∆i.
• The following rules, which allow us the handling of frame

constants:

Γ; α−

Γ;
−→
�¬α−

(uniq−)
Γ; α+

Γ;
−→
�¬α+

(uniq+)
Γ; α−

Γ;
−→
♦α+

(ord)

Note that in all of these cases, the order of the formulas in
the sets is immaterial. Moreover, the static rules ofT (MQ+)

are the classical rules together with(¬
−→
� ), (¬

−→
♦ ), (uniq−),

(uniq+) and (ord) whereas(K4L) is the only transitional
rule.

Procedure to construct a tableau

1) The root node contains the formulas inΓ. Choose a rule
ρ which is applicable to this root node.

2) If ρ hask denominators then createk successor nodes,
with successori carrying an appropriate instance of
denominatorDi.

3) Rules are applied non-deterministically to any node
which is different from{⊥} and whose label has not
appeared before in the branch (to avoid loops).
If after the application of some rule to a noden, a
successors of a noden is labelled with a setΩ which
already appeared in the branch from the root tox, then
we erase nodes and put a link fromn to the ancestor
which is labelled withΩ.

Definition 4: A branch in a tableau isclosed if its leaf is
{⊥}, otherwise it isopen. A tableau isclosedif all its branches
are closed, otherwise it isopen.

A set Γ is T (MQ+)-consistent(in the following we will
use simplyconsistent) if no tableau forΓ is closed. We say

that a formulaA is a theoremof T (MQ+) if there is a closed
tableau for{¬A}.

We finish this section with an example of application of the
tableaux method.

Example 1:A closed tableau is presented in Fig. 1 which
proves the validity ofα+ → (

−→
�¬α− ∧ ¬α−)

IV. SOUNDNESS ANDCOMPLETENESS

For soundness all we have to prove is that if the numerator
of a given rule is satisfiable, then so is at least one of
its denominators. The proof is straightforward. Consider,for
example, the rule(ord), and assume that its numerator, that is,
Γ; α− is satisfiable, then it is easy to show thatΓ; α−;

−→
♦α+

is satisfiable as well. The proof for the other rules is similar.
Regarding termination of the tableaux systemT (MQ+), it

is not difficult to show
Lemma 1:For every finite setΓ we can assign, a priori,

a finite setΓ∗ such thatΓ∗ contains all formulae that may
appear in any tableau forΓ. As a result, there are only a finite
number of tableaux forΓ.

For the proof of completeness we shall show that ifΓ is a
finite set of formulas for which no tableau closes, then there
exists a model forΓ on a frame. Indeed, our method has the
following peculiarity: it needs not to guarantee the existence of
a model forΓ on a frame forΓ but on a pre-frame(depending
on the information inΓ about frame constants), because it is
always possible to build a frame from the given pre-frame.

The previous comments justify the introduction of the
concept of pre-model (that is, a “model” on a pre-frame).

Definition 5: Given a pre-frameΥ, amultimodal qualitative
model onΥ (or pre-model, for short) is an ordered pairM =
(Υ, h), where h is a meaning function(or, interpretation)
h : V −→ 2S. Any interpretation can be uniquely extended
to the set of all formulas inL(MQ+) (also denoted byh) by
using the usual conditions for the classical boolean connectives
and the constants⊤ and⊥, and the following conditions for
the modal operators and frame constants:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such thatx < y}

h(α+) =

{

{+α} if + α ∈ S

∅ otherwise
h(α−) =

{

{−α} if − α

∅ otherwise
Definition 6: A set Γ is closed with respect to a tableau

rule ρ if whenever an instance of the numerator of the rule is
in Γ, so is a corresponding instance of at least one denominator
of the rule. A setΓ is saturatedif Γ is consistent and closed
with respect to the static rules ofT (MQ) excluding(θ).

The following lemma states that consistent sets can be
saturated in an effective way. Its proof is standard and, hence,
omitted.

Lemma 2:

1) The rules(¬), (∧), (¬∧), (uniq−), (uniq+), and (ord)
are invertible, that is, satisfy that if there is a closed
tableau for (an instance of) the numeratorN then there
are closed tableaux for (appropriate instances of) the
denominatorsDi.



{α+ ∧ ¬(
−→
�¬α− ∧ ¬α−)} (∧)

{α+,¬(
−→
�¬α− ∧ ¬α−)} (¬∧)

{α+,¬
−→
�¬α−} (def)

{α+,
−→
♦α−} (uniq+)

{
−→
�¬α+,

−→
♦ α−} (K4L)

{
−→
�¬α+,¬α+, α−} (ord)

{
−→
�¬α+,¬α+,

−→
♦α+} (θ)

{
−→
�¬α+,

−→
♦α+} (K4L)

{
−→
�¬α+,¬α+, α+} (⊥)

⊥

{α+,¬¬α−} (¬)

{α+, α−} (ord)

{α+,
−→
♦α+} (uniq+)

{
−→
�¬α+,

−→
♦α+} (K4L)

{
−→
�¬α+,¬α+, α+} (⊥)

⊥

Fig. 1. Closed tableau for Example 1.

2) For each finite consistent setΓ there is an effective
procedure to build some finite saturated and consistent
setΓs beingΓ ⊆ Γs ⊆ Γ∗.

Now, let us recall the definition ofmodel graphfor a finite
set of formulasΓ together with a lemma inspired in [12].

Definition 7: A model graphfor some finite set of formulas
Γ is a multimodal qualitative frame(S, +α,−α, <) such that
all the elementsx ∈ S are saturated sets satisfyingx ⊆ Γ∗

and
(i) Γ ⊆ x0, for somex0 ∈ S;
(ii) α+ ∈ +α andα− ∈ −α;
(iii) if

−→
♦A ∈ x, then there existsy ∈ S such thatx < y and

A ∈ y;
(iv) if x < y and

−→
�A ∈ x, thenA ∈ y.

Similarly, we define apre-model graphas a multimodal qual-
itative pre-frame as above, in which condition (ii) is suitably
modified (or deleted) depending on which frame constants are
missing.

The following lemma ensures the existence of a multimodal
qualitative model forΓ on the basis of the existence of a model
graph forΓ.

Lemma 3: If Σ is a (pre-)model graph forΓ, then there
exists some multimodal qualitative (pre-)model forΓ.

Proof: The definition ofh for the atoms and the frame
constants in a pre-model is the same than in a model graph;
that is,

h(p) = {x | p ∈ x} h(α+) = {x | α+ ∈ x} h(α−) = {x | α− ∈ x}

By structural induction, we obtainh(A) = {x | A ∈ x} for
any formulaA. QED

The completeness proof will be based on the following
technical result

Proposition 1: Consider a pre-model graphΨ with an ini-
tial point. Let Γ be a set of formulas with no occurrence of
eitherα+ or α−. If there exists a pre-model(Ψ, h) of Γ, then
there exists a model(Ψ′, h′) of Γ.

Proof: To begin with, let us introduce some specific
saturated sets containing the frame constants:

xα− = {α−,
−→
♦α+,

−→
�¬α−}

xα+ = {α+,¬α−,
−→
�¬α−,

−→
�¬α+}

The intuition underlying this is thatxα− represents−α and
xα+ represents+α in a frame.

Depending on what frame constants fail to appear in the pre-
frame, just two possibilities arise (note that it is not possible
that α− appears in some set andα+ does not appear in any
set in the sequence of points of the pre-frame):

1) If α− does not appear in any set in the sequence, then
the setxα− is prepended to the sequence.

2) If neitherα− nor α+ appear in any set in the sequence,
then the setsxα− andxα+ are prepended to the sequence
in that order.

Once the frame constants have been introduced in the
sequence, some post-processing is needed in order to preserve
coherence. This is done as a consequence of the following
results:

• Given condition (1) above, ifx is a saturated set of the
sequence, then the setx ∪ {¬α−,

−→
�¬α−} is saturated.

• Given condition (2) above, ifx is a saturated set of the
sequence, then the setx∪{¬α−,

−→
�¬α−,¬α+,

−→
�¬α+}

is saturated.

In order to prove the first result above, let us consider
the following embedding fromΨ to Ψ′ defined by x 7→



x ∪ {¬α−,
−→
�¬α−}.

With respect the second result above, let us consider the
following embedding fromΨ to Ψ′ defined byx 7→ x ∪
{¬α−,

−→
�¬α−,¬α+,

−→
�¬α+}.

Then, in any case, by an induction argument, it is possible
to prove thath(A) = h′(A) for all formula A ∈ Γ. QED

We will work with a generalization of the idea of model
graph which permits clusters among the saturated sets, and
we will simply consider agraph as an ordered pair(X, R)
where X is a non-empty set of saturated sets andR is a
transitive relation onX . This way, a model graph a just
a particular instance of this more general concept. Before
stating the theorem, the notion of fulfilled eventuality hasto
be introduced.

Definition 8: Let (X, R) be a graph. Take a pointx ∈ X ,
we say thatx fulfills an eventuality

−→
♦A if x ∈ h(A).

A sequence of pointsx1Rx2Rx3R . . . is said to fulfill an
eventuality

−→
♦A if there are pointsxi, xj in the sequence

(with xiRxj ) such that
−→
♦A ∈ xi andA ∈ xj .

Theorem 1 (Completeness):If Γ is a finite consistent set of
formulas, then there is a model forΓ on a finite multimodal
qualitative frame(S, +α,−α, <).

Proof: By Lemma 3 it is sufficient to build a model
graph for Γ. This model graph will be constructed step by
step by successively fulfilling eventualities, which meansthat
saturated sets are being added to an initial graph in a way
guided by the tableau rules.

There are several novelties in this construction with respect
to other well-known standard methods:

1) First of all, the consideration of frame constants requires
a careful procedure to ensure that they will eventually
be constructed in the model.

2) Moreover, rules do not always provide the constants
α+, α− in the sequence of saturated sets that will be
constructed. However, this is not a handicap, for in that
case we would obtain a pre-frame satisfyingΓ which
can be extended to a frame which still is a model ofΓ.

3) Finally, it is worth mentioning that the generated model
needs not be always finite; nevertheless, the application
of the rules always terminate. More comments on this
will be given when the formal procedure has been
introduced.

STEP 1. Our first task is to obtain a graph in which every
eventuality is fulfilled, mark that such a graph can contain
clusters. For this end, we can follow a pattern similar to that [8]
for CS4.3. Once the construction is terminated, clusters can
be eliminated by applyingbulldozingtechniques.

STEP2. If the graph constructed so far turns out to be a frame,
then by Lemma 3 we obtain thatΓ has a model and the method
stops. Otherwise, we go to Step 3.

STEP 3. In this case, we have just a pre-frame, however
a model based on a frame extending the pre-frame can be
conveniently constructed by Proposition 1. QED

V. CONCLUSIONS AND FUTURE WORK

The use of a logical apparatus in the treatment of qualitative
reasoning has allowed the development of a tableau method for
testing satisfiability inL(MQ+). Although the logicL(MQ)
has just two landmarks, and is considerably simpler than those
stated at the beginning of this section, still it is useful as
a stepping stone for considering more complex systems, for
which the logic has to be enriched by adding new modal
operators capable to treat a bigger number of milestones,
equivalence classes and/or qualitative relations.

As future work in this context, it is planned to extend the
tableau method for the full logicL(MQ) with past and future
operators, as well as to investigate tableau systems for the
extended language with negligibility relations of [5]. Last but
not least, we are also investigating the feasibility of providing
a Rasiowa-Sikorsi proof system for a relational presentation
of the logic.
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