
A Tabulation Proof Procedure
for Residuated Logic Programming

C.V. Damásio1 and J. Medina2 and M. Ojeda-Aciego3

Abstract. Residuated Logic Programs allow to capture a spate of
different semantics dealing with uncertainty and vagueness. In this
work we provide a tabulation goal-oriented query procedure, and
show that our tabulation query procedure terminates if and only if
the sequence of iterations of the immediate consequences operator
reaches the least fixpoint after only finitely-many steps. Onthe ba-
sis of this result we show that the tabulation procedure terminates
for important classes of residuated logic programs, in particular for
probabilistic deductive databases of Lakshmanan and Sadri.

1 INTRODUCTION

The interest in the development of logics for dealing with informa-
tion which might be either vague or uncertain has increased in the
recent years. Several different approaches to the so-called inexact or
fuzzy or approximate reasoning have been proposed, involving either
fuzzy or annotated or probabilistic or similarity-based logic program-
ming [1, 2, 4, 8, 9, 10, 11, 12, 19, 20, 21, 23, 24].

We will focus on the framework of residuated logic programming.
The semantics of a residuated program is characterised, as usual, by
the post-fixpoints of the immediate consequence operatorTP, which
is proved to be monotonic and continuous under very general hy-
potheses, see [16]. Following traditional techniques of logic pro-
gramming, a procedural semantics was given in [17], in whichnon-
determinism was discarded by using reductants.

In this paper we aim at the use of tabulation (tabling, or memo-
izing) methods to increase the efficiency of the previously proposed
proof procedures. Tabulation is a technique which is receiving in-
creasing attention in the logic programming and deductive database
communities [3, 5, 21, 22]. The underlying idea is, essentially, that
atoms of selected tabled predicates as well as their answersare stored
in a table. When an identical atom is recursively called, theselected
atom is not resolved against program clauses; instead, all correspond-
ing answers computed so far are looked up in the table and the as-
sociated answer substitutions are applied to the atom. The process
is repeated for all subsequent computed answer substitutions corre-
sponding to the atom.

In this work, we provide a tabulation goal-oriented query proce-
dure and show that it is terminating for all queries if and only if
the sequence of iterations of the immediate consequences operator
reaches the least fixpoint after only finitely-many steps. Onthe ba-
sis of this property, we show that the tabulation procedurestermi-
nates for a significant class of residuated logic programs. In partic-
ular, several fuzzy logic programming languages can be proven to

1 Centro Inteligência Artificial, U. Nova de Lisboa (cd@di.fct.unl.pt)
2 Dept. Matemática Aplicada, U. de Málaga (jmedina@ctima.uma.es)
3 Dept. Matemática Aplicada, U. de Málaga (aciego@ctima.uma.es)

terminate, namely residuated logic programs whose bodies consist
of a repeated application of commutative conjunctors obeying to the
boundary conditionv ⊗⊤ � v. Conditions for extending the termi-
nation property for cartesian products of lattices are presented, and
applied to obtain the termination results for probabilistic deductive
databases of Lakshmanan and Sadri [13].

The structure of the paper is as follows: in Section 2, the syntax
and semantics of residuated logic programs are summarized;Sec-
tion 3 introduces a non-deterministic procedure for tabulation. The
soundness and completeness of the tabling procedure appearin Sec-
tion 4, as well as independence of the selection ordering andter-
mination properties. Next, we illustrate the proof procedure with an
example from Probabilistic Deductive Databases. The paperfinishes
with some conclusions and pointers to future work. For lack of space,
proofs are omitted.

2 PRELIMINARY DEFINITIONS

In this section the essentials of residuated logic programming are re-
viewed [6, 7]. To simplify the presentation, we consider only finite
propositional programs over an arbitrary residuated complete lattice.
Due to space restrictions we do not introduce the formal definition
of a residuated lattice, just let us recall that is an abstract mathemati-
cal structure〈R,←−,⊗〉 based on a latticeR and endowed with two
operations (an adjoint pair〈←−,⊗〉) generalizing the usual conjunc-
tion and implication and the modus ponens inference rule (the adjoint
conditionx⊗ y � z iff y � z ←− x).

Definition: A residuated programover a residuated complete lattice

〈R,←−,⊗〉 is a finite set of weighted rulesA
ϑ
←− B satisfying:

1. Theheadof the ruleA is a propositional symbol.
2. ThebodyformulaB is a formula built from propositional symbols

B1, . . . , Bn (n ≥ 0) by the use of arbitrary monotonic operators,
also denoted byB[B1, . . . , Bn].

3. The weightϑ is an element ofR, interpreted as a truth-value.

Factsare rules with constant body⊤ interpreted as the top element
in R (usually not written), and aquery (or goal) is a propositional
symbol intended as a question?A prompting the system.

An interpretation is a mappingI from the set of propositional
symbols toR. Note that each of these interpretations can be uniquely
extended via the adjoint condition to the whole set of formulas, in this
case it is denoted̂I . The ordering� on the underlying lattice can also
be easily extended to the set of interpretations, inheriting a structure
of complete lattice.



Definition:

1. An interpretationI satisfiesa weighted ruleA
ϑ
←− B if and only

if ϑ⊗ Î (B) � I(A), i.e.ϑ � Î (A←− B).
2. An interpretationI is amodelof a residuated logic programP iff

all weighted rules inP are satisfied byI .
3. An elementλ ∈ R is a correct answerfor a programP and a

query ?A if for any interpretationI which is a model ofP we
haveλ � I(A).

The immediate consequences operator, given by van Emden and
Kowalski, can be easily generalised to the framework of residuated
logic programs.

Definition: Let P be a residuated program over a complete latticeR.
The immediate consequences operatorT R

P maps interpretations to
interpretations, and is defined by

T
R

P (I)(A) =
G

R

{ϑ⊗ Î(B) | A
ϑ
←− B ∈ P}

The semantics of a residuated logic program can be characterised,
as usual, by the post-fixpoints ofT R

P ; that is, an interpretationI is a
model of a residuated logic programP iff T R

P (I)(A) � I(A) for all
propositional symbolA. TheT R

P operator is proved to be monotonic
and continuous under very general hypotheses, see [16, 17],and it
is remarkable that these results are true even for non-commutative
and non-associative conjunctors. In particular, by continuity, the least
model can be reached in at most countably many iterations ofT R

P on
the least interpretation△, which maps every propositional symbol to
the least element ofR.

3 DESCRIPTION OF THE PROCEDURE

The issue now relies in the definition of an appropriate queryproce-
dure for residuated logic programs, although it can be readily adapted
for the general case of multi-adjoint lattices [16]. There are two major
problems to address: termination and efficiency. On the one hand, the
T R

P operator is bottom-up but not goal-oriented. Furthermore,in ev-
ery step the bodies of rules are all recomputed. On the other hand, the
usual SLD based implementations of Fuzzy Logic Programminglan-
guages (e.g. [25]) are goal-oriented, but inherit the problems of non-
termination and recomputation of goals. For tackling theseissues, the
tabulation implementation technique has been proposed in the deduc-
tive databases and logic programming communities [3, 5, 22]. More
recently, it is proposed in [12, 21] an extension of SLD for imple-
menting generalized annotated logic programs [12] that will be used
to implement the here defined tabling procedure. Other implementa-
tion techniques have been proposed for dealing with uncertainty in
logic programming, for instance translation into Disjunctive Stable
Models [14], but rely on the properties of specific truth-value do-
mains.

In this section we present a general tabulation procedure for propo-
sitional residuated logic programs. The datatype we will use for the
description of the method is that of aforest, that is, a finite set of trees.
Each one of these trees has a root labeled with a propositional sym-
bol together with a truth-value from the underlying lattice(called the
current valuefor thetabulatedsymbol); the rest of the nodes of each
of these trees are labeled with an “extended” formula in which some
of the propositional symbols have been substituted by its correspond-
ing value. For the description of the adaptation of the tabulation pro-
cedure to the framework of residuated logic programming, wewill
assume a programP consisting of a finite number of weighted rules

having the formA
ϑ
←− B together with a query?A. The purpose

of the computational procedure is to give (if possible) the greatest
truth-value forA that can be inferred from the information in the
programP.

3.1 Operations for Tabulation

For the sake of clarity in the presentation, we will introduce the fol-
lowing notation: Given a propositional symbolA, we will denote by
P(A) the set of rules inP which have headA. The tabulation proce-
dure requires four basic operations: Create New Tree, New Subgoal,
Value Update, and Answer Return. The first operation createsa tree
for the first invocation of a given goal. New Subgoal is applied when-
ever a propositional variable in the body of rule is found without a
corresponding tree in the forest, and resorts to the previous opera-
tion. Value update is used to propagate the truth-values of answers to
the root of the corresponding tree. Finally, answer return substitutes a
propositional variable by the current truth-value in the corresponding
tree. We now describe formally the operations:

3.1.1 Rule 1: Create New Tree.

Given a propositional symbolA, assumeP(A) = {A
ϑj
←− Bj | j =

1, . . . , m} and construct the tree below, and append it to the current
forest. If the forest did not exist, then generate a singleton list with
the tree.

A : ⊥

ϑ1 ⊗B1 ϑ2 ⊗ B2 . . . ϑm ⊗Bm

3.1.2 Rule 2: New Subgoal.

Select a non-tabulated propositional symbolC occurring in a leaf of
some tree (this means that there is no tree in the forest with the root
node labeled withC), then create a new tree as indicated in Rule 1,
and append it to the forest.

3.1.3 Rule 3: Value Update.

If there are no propositional symbols in a leaf, then evaluate the cor-
responding arithmetic formula (assume that its value is, say, s) and
then update the current value (sayr) of the propositional symbol at
the root of the tree by the value of lubR(r, s).

3.1.4 Rule 4: Answer Return.

Select in any non-root node a propositional symbolC which is tabu-
lated, and consider that the current value ofC is r.

• If the propositional symbol has been selected in a leaf
B[. . . , C, . . . ], then extend the branch with the node shown in the
figure below.

B[. . . , C, . . . ]

B[. . . , r, . . . ]



...

B[. . . , C, . . . ]

B[. . . , s, . . . ]

...

...

B[. . . , C, . . . ]

B[. . . , r, . . . ]

...

Figure 1. Answer Return operation

• Otherwise, if the propositional symbol has been selected ina non-
leaf nodeB[. . . , C, . . . ] such as that in the left of Fig. 1 then, if
s �R r, then update the whole branch substituting the constants

by r, as in the right of Fig. 1.

It is worth to interpret the execution of each of the previousrules in
terms of the better known fixpoint semantics.

For instance, the only rule which changes the values of the roots of
the trees in the forest is Rule 3. Note that, the only nodes with several
immediate successors are the root nodes, these successors correspond
to the different rules with head identical the label of the root node.
From there downwards, the extension is done by Rule 4, which either
updates the nodes of an existing branch or extends the branchwith
one new node.

Remark: It is convenient to note that in the leaf of each branch there
is a conjunction of the truth value of the rule which determined the
branch with an instantiation of the body of the rule.

3.2 A non-deterministic procedure for tabulation

Now, we can state the general non-deterministic procedure for calcu-
lating the answer to a given query by using a tabulation technique in
terms of the previous rules.

Initial step Create the initial forest with thecreate new treerule,
applied to the query.

Next steps Non-deterministically select a propositional symbol and
apply one of the rules 2, 3, or 4.

As we shall show, the order of application of the rules is irrelevant.
There are other improvements that can be made to the basic tabu-
lation proof procedure. In particular, all nodes whose value of the
body cannot surpass the current value of the root node can be safely
removed. A sound rule for determining the maximum value the body
can achieve consists in substituting all the propositionalvariables
occurring in the node by⊤. This rule can reduce the search space
further more. This pruning rule can be further enhanced if there is in-
formation available about completed tables in the forest, i.e. the ones
which reached the fixpoint.

4 SOUNDNESS AND COMPLETENESS

As in any non-deterministic procedure, it is necessary to show that
the obtained result is independent from the different choices made
during the execution of the algorithm. With this aim, we state two
propositions, which will provide, as a consequence, the indepen-
dence of the ordering of applications of steps in the tabulation proof
procedure as well as soundness and completeness.

Definition: Given a residuated logic programP and a query?A. We
say that the tabling procedure has constructed aterminatedforest
for P and?A when no rules of the tabling proof procedure can be
applied.

Proposition 1 1. The current values of a terminated forest generate
a model ofP. That is, the current values are greater or equal than
those given by the least fixpoint of the immediate consequences
operatorT R

P .
2. Given a forest (terminated or not), then for all rootsCj : rj we

have that there exists an iterationk of theT R

P operator such that
rj ≤ T R

P ↑
k (Cj).

As an easy consequence of the previous proposition we obtainthe
following result:

Theorem 1

1. Every terminated forest calculates exactly the minimal model for
the program.

2. The tabulation procedure terminates for all queries if and only if
the minimal model is reached by iterating theT R

P operator a finite
number of times.

Residuated Logic Programs can be built from arbitrary monotonic
operators. A sufficient condition to guarantee terminationis de-
scribed in the following theorem:

Theorem 2 Let P be a residuated logic program over a totally or-
dered complete latticeR, in which all the operatorsf but implication
in the language obey to the boundary condition:

f(v,⊤, . . . ,⊤) � v

f(⊤, v,⊤, . . . ,⊤) � v
...

f(⊤, . . . ,⊤, v) � v

where⊤ is the top element ofR, andv an arbitrary element ofR.
In particular, if f is a unary function symbol thenf(v) � v. If A

is a propositional symbol andT R

P ↑
n+1 (△)(A) > T R

P ↑
n (△)(A),

then at leastn + 1 different rules were used on the calculation of
T R

P ↑
n+1 (△)(A).

Several proposals in the literature use as underlying complete lattice
the closed unit interval[0, 1] with operators obeying to the condi-
tions of Theorem 2. These include van Emden’s Quantitative Deduc-
tion [23], Possibilistic Logic Programming [9], Non-classical SLD
resolution [25], and Ordinary Probabilistic Logic Programs [15].

Corollary 1 LetP be a residuated logic program containing exactly
n different rules over the unit interval in which the operators satisfy
the conditions of Theorem 2. ThenTP reaches the least fixpoint in at
mostn iterations.

We conclude immediately from Theorem 1 and Corollary 1 that the
tabulation procedure also terminates for the important class of resid-
uated logic programs, whenever the operators obeys to the above
boundary condition in totally ordered complete lattices. All contin-
uous t-norms satisfy, in particular, the boundary condition; therefore
the presented results generalize those in [18]. Furthermore, if the
usual ordering in the unit interval is reversed then dual conditions
can be specified for t-conorms and the termination results still hold
(in this case l.u.b. corresponds to minimum, not maximum).



The limitation to totally ordered lattices in Theorem 2 is a rather
strong one, preventing the immediate application to more complex
truth-value spaces. However, the following result allows us to lift the
previous results to important partially ordered domains:

Theorem 3 Consider a fixed language (signatureΣ) and several in-
terpretations (Σ-algebras) of the language over complete residuated
latticesR1, . . . , Rn. Assume thatT Ri

P
terminates for every residu-

ated logic program overRi, with 1 ≤ i ≤ n. Then,T R

P terminates
for the complete product residuated latticeR = R1 × . . . × Rn

where the partial ordering and interpretation of functionsare the
usual coordinate-wise ones.

An application of the previous theorem is the proof of termination
of the immediate consequences operator of Probabilistic Deductive
Databases (PDDs) [13], whenever it is used positive correlation as
disjunctive mode for combining several rules in the program, and ar-
bitrary conjunctive modes. The truth-values of PDDs are confidence
levels of the form〈[α, β], [γ, δ]〉, whereα, β, γ, andδ are real num-
bers in the unit interval4. The valuesα andβ are, respectively, the ex-
pert’s lower and upper bounds of belief, whileγ andδ are the bounds
for the expert’s doubt. The fixpoint semantics of PDDs relieson
truth-ordering of confidence levels. Supposec1 = 〈[α1, β1], [γ1, δ1]〉
andc2 = 〈[α2, β2], [γ2, δ2]〉 are confidence levels, then we say that:

c1 ≤t c2 iff α1 ≤ α2, β1 ≤ β2 andγ1 ≥ γ2, δ1 ≥ δ2,

with corresponding least upper bound operationc1 ⊕t c2 defined as

〈[max{α1, α2}, max{β1, β2}], [min{γ1, γ2}, min{δ1, δ2}]〉

and greatest lower boundc1 ⊗t c2 as:

〈[min{α1, α2}, min{β1, β2}], [max{γ1, γ2}, max{δ1, δ2}]〉

The least upper bound of truth-ordering corresponds to the disjunc-
tive mode designated “positive correlation”, which is usedto com-
bine the contributions from several rules for a given propositional
symbol. We restrict attention to this disjunctive mode, since the ter-
mination results presented in [13] assume all the rules adopt this
mode. Conjunctive modes are used to combine propositional sym-
bols in the body, and⊗t corresponds to thepositive correlation
conjunctive mode. Another conjunctive mode isindependencewith
c1 ∧ind c2 defined as

〈 [α1 × α2, β1 × β2],
[1− (1− γ1)× (1− γ2), 1− (1− δ1)× (1− δ2)]〉

The attentive reader will surely notice that all these operations work
independently in each component of the confidence level. Further-
more, theindependenceconjunctive mode combines theα’s andβ’s
with a t-norm (product), and theγ andδ parts are combined with a
t-conorm. This is a property enjoyed by all conjunctive modes speci-
fied in [13]. The confidence levels can be seen as a pair of pairs, and
by application of Theorems 1 and 3, and Corollary 1 we immediately
conclude that the least fixpoint of residuated logic programs over the
language containing as operators the conjunctive modes (and impli-
cation) always finitely terminates. This is a result shown based solely
on general properties of the underlying lattices, not resorting to spe-
cific procedural concepts as in [13]. Furthermore, since theground-
ing of PDDs results in a finite program, there is no lack of generality
by assuming finite propositional residuated logic programs.

4 Even though the authors say that they usually assume thatα ≤ β and
γ ≤ δ, this cannot be enforced otherwise they cannot specify properly the
notion of trilattice. So, we also will not assume these constraints.

5 EXEMPLIFICATION OF THE PROCEDURE

We now illustrate the tabulation procedure at work, showinghow our
tabulation proof procedure handles mutual recursions.

Example: Consider the following residuated logic program:

a
⊤t←− 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind b ∧ind c

a
⊤t←− 〈[0.1, 0.3], [0.4, 0.6]〉

b
⊤t←− 〈[0.9, 1.0], [0.0, 0.0]〉

c
⊤t←− 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind a

c
⊤t←− 〈[0.3, 0.6], [0.2, 0.7]〉

The underlying complete lattice is the lattice of confidencelev-
els of Probabilistic Deductive Databases, under the previous truth-
ordering. Notice that all rules have confidence level⊤t =
〈[1, 1], [0, 0]〉, meaning that the rule is satisfied iff the value of the
body is≤t than the head. Furthermore, the conjunctor associated
with the implication symbol is the greatest lower bound in truth-
ordering, i.e. positive correlation conjunctive mode, andnot ∧ind.
Since it is not essential to provide an explicit definition ofimplica-
tion, we leave the details to the reader. Mark that the above program
corresponds to the following probabilistic program of Lakshmanan
and Sadri:

“

a
〈[0.8,0.9],[0.0,0.1]〉
←−−−−−−−−−−−−−− b, c ; ind, pc

”

“

a
〈[0.1,0.3],[0.4,0.6]〉
←−−−−−−−−−−−−−− ; ind, pc

”

“

b
〈[0.9,1.0],[0.0,0.0]〉
←−−−−−−−−−−−−−− ; ind, pc

”

“

c
〈[0.7,0.8],[0.0,1.0]〉
←−−−−−−−−−−−−−− a ; ind, pc

”

“

c
〈[0.3,0.6],[0.2,0.7]〉
←−−−−−−−−−−−−−− ; ind, pc

”

Suppose it is intended to determine the truth-degree of proposition
a. The computation is started by applying rule 1 toa and a possible
forest generated by the algorithm is presented in Figure 2. All the
nodes are annotated by a possible order of creation, and the selected
nodes by rule 2 are underlined. Since,⊤t ⊗t v = v, we omit these
expressions in the Figure (introduced by rule 1). Other executions
exist, but the computations will terminate in any case and generate
the same truth-degrees for all propositional symbols.

The first nodes(i) (ii) and (iii) were created by theCre-
ate New Treeoperation (rule 1). Applying rule 3 to node(ii)
we update the truth-degree fora from 〈[0.0, 0.0], [1.0, 1.0]〉 to
〈[0.1, 0.3], [0.4, 0.6]〉. TheNew SubGoalselects propositional vari-
able b at node (iii) and creates the new tree with root(iv).
The computation proceeds and we get forb the truth-degree
〈[0.9, 1.0], [0.0, 0.0]〉, by a simple application ofValue Updateto
node(v). TheAnswer Returnapplied to node(iii) generates the new
node(vi). The procedure now determines the truth-degree ofc, and
the reader can easily follow the steps. Notice that,New Subgoalop-
eration at node(ix) does not create a new tree. The truth-value ofc

is back propagated to node(vi) and originating a new answer update
for a. Notice that node(xi) evaluates to〈[0.216, 0.54], [0.2, 0.73]〉,
and thus the value fora is a mixture of the previous tabled value
with the new one. This value is then consumed by node(i) but the
truth-value obtained at node(xi) is smaller than the current root node
value ofc, and the computation terminates since no more operations
are applicable. This is expected from the discussion in Section 4.

6 CONCLUSIONS AND FURTHER WORK

This paper specifies a general non-deterministic tabulation goal-
oriented query procedure for residuated logic programs over com-



(i) a : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.1, 0.3], [0.4, 0.6]〉 → 〈[0.216, 0.54], [0.2, 0.6]〉

(ii) 〈[0.1, 0.3], [0.4, 0.6]〉 (iii) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind b ∧ind c

(vi) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind 〈[0.9, 1.0], [0.0, 0.0]〉 ∧ind c

(x) 〈[0.8, 0.9], [0.0, 0.1]〉 ∧ind 〈[0.9, 1.0], [0.0, 0.0]〉 ∧ind 〈[0.3, 0.6], [0.2, 0.7]〉

(iv) b : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.9, 1.0], [0.0, 0.0]〉

(v) 〈[0.9, 1.0], [0.0, 0.0]〉

(vii) c : 〈[0.0, 0.0], [1.0, 1.0]〉 → 〈[0.3, 0.6], [0.2, 0.7]〉

(viii) 〈[0.3, 0.6], [0.2, 0.7]〉 (ix) 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind a

(xi) 〈[0.7, 0.8], [0.0, 1.0]〉 ∧ind 〈[0.216, 0.54], [0.2, 0.6]〉

Figure 2. Example forest for querya

plete lattices. We present soundness and completeness results for
finite propositional residuated logic programs, as well as indepen-
dence of the selection ordering. The class of proven terminating pro-
grams is general enough to include van Emden’s QuantitativeDeduc-
tion [23], Possibilistic Logic Programming [9], Non-classical SLD
resolution [25], and Ordinary Probabilistic Logic Programs [15]. We
also present a lifting termination theorem for products of residuated
lattices, and use it to obtain the known termination resultsof Proba-
bilistic Deductive Databases [13]. For all these situations, reasoning
is polynomial in the size of the ground program.

As future work, on the one hand, a first goal is the attempt to ex-
tend this technique to the case of first order residuated logic pro-
grams; on the other hand, we are also interested in gaining a bet-
ter understanding of Fuzzy Rule Systems to be translated into the
framework of residuated logic programs. An implementationof the
tabulation procedure is underway using the GAP package of XSB
Prolog [21]. Last but not the least, theoretical and/or experimental
comparison with existent approaches to the computation of minimal
models for fuzzy logic programs [1, 2, 9, 12, 19, 20, 21, 23, 24]
are needed. However, a major distinguishing feature of our tabula-
tion proof-procedure is that it is defined for arbitrary combinations
of operators in the body of programs.

ACKNOWLEDGMENTS

C. V. Damásio has been partially supported by Acção In-
tegrada Luso-Espanhola E-42/02, by FSE/FEDER project TARDE
(POSI/EEI/12097/2001), by European Commission and by the
Swiss Federal Office for Education and Science within the 6th
Framework Programme project REWERSE number 506779 (cf.
http://rewerse.net). J. Medina and M. Ojeda-Aciego have been par-
tially supported by Acción Integrada HP2001-0078, and Spanish
projects BFM2000-1054- C02-02 and TIC2003-09001-C02-01.

REFERENCES
[1] T. Alsinet and L. Godo. Towards an automated deduction system for

first-order possibilistic logic programming with fuzzy constants.Inter-
national Journal of Intelligent Systems, 17(9), 2002.

[2] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth.Fril - Fuzzy and Evi-
dential Reasoning in Artificial Intelligence. Res. Studies Press, 1995.

[3] R. Bol and L. Degerstedt. The underlying search for magictemplates
and tabulation. InProc. of ICLP93, pages 793–811, 1993.

[4] T. Cao. Annotated fuzzy logic programs.Fuzzy Sets and Systems,
113(2):277–298, 2000.

[5] W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation
of queries under the well-founded semantics.Journal of Logic Pro-
gramming, 24(3):161–199, 1995.

[6] C. V. Damásio and L. M. Pereira. Monotonic and residuated logic pro-
grams. InSymbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU-2001, pages 748–759. LNAI 2143, 2001.

[7] C. V. Damásio and L. M. Pereira. Hybrid probabilistic logic programs
as residuated logic programs.Studia Logica, 72(1):113–138, 2002.

[8] A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs.
J. of Logic Programming, 43:187–250, 2000.

[9] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic program-
ming. In Int. Conf. on Logic Progr. 1991, pages 581–598. MIT Press,
1991.

[10] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy prolog: A new
approach using soft constraints propagation.Fuzzy Sets and Systems
144(1):127–150, 2004.

[11] M. Jaeger. Automatic derivation of probabilistic inference rules.Inter-
national Journal of Approximate Reasoning, 28(1):1–22, 2001.

[12] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated
logic programming and its applications.J. of Logic Programming,
12:335–367, 1992.

[13] L. V. S. Lakshmanan and F. Sadri. On a theory of probabilistic deduc-
tive databases.Theory and Practice of Logic Progr., 1(1):5–42, 2001.

[14] T. Lukasiewicz. Fixpoint Characterizations for Many-valued Disjunc-
tive Logic Programs with Probabilistic Semantics InLogic Progr. and
Non-Monotonic Reasoning, LPNMR’01, LNAI 2173:336–350, 2001.

[15] T. Lukasiewicz. Probabilistic logic programming withconditional con-
straints.ACM Trans. Comput. Logic, 2(3):289–339, 2001.

[16] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic pro-
gramming with continuous semantics. InLogic Programming and Non-
Monotonic Reasoning, LPNMR’01, pages 351–364. LNAI 2173, 2001.

[17] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for
multi-adjoint logic programming. InProgress in Artificial Intelligence,
EPIA’01, pages 290–297. LNAI 2258, 2001.

[18] L. Pauĺık. Best possible answer is computable for SLD-resolution.Lec-
ture Notes in Logic, 6:257–266, 1996.

[19] P. Rhodes and S. Merad-Menani. Towards a fuzzy logic program-
ming system: a clausal form fuzzy logic.Knowledge-Based Systems,
8(4):174–182, 1995.

[20] M. Sessa. Approximate reasoning by similarity-based SLD resolution.
Theoretical Computer Science, 275(1–2):389–426, 2002.

[21] T. Swift. Tabling for non-monotonic programming.Annals of Mathe-
matics and Artificial Intelligence, 25(3-4):201–240, 1999.

[22] H. Tamaki and T. Sato. OLD resolution with tabulation. In Proc. of
ICLP’86, pages 84–98, 1986.

[23] M. H. van Emden. Quantitative deduction and its fixpointtheory.Jour-
nal of Logic Programming, 3(1):37–53, 1986.

[24] P. Vojtáš. Fuzzy logic programming. Fuzzy sets and systems,
124(3):361–370, 2001.

[25] P. Vojtás and L. Pauĺık. Soundness and completeness of non-classical
extended SLD-resolution. InProc. of the Ws. on Extensions of Logic
Programming (ELP’96). LNCS 1050:289–301, 1996.


