A Tabulation Proof Procedure
for Residuated Logic Programming

C.V. Damasid" and J. Medina? and M. Ojeda-Aciegd®

Abstract.
different semantics dealing with uncertainty and vaguenbsthis
work we provide a tabulation goal-oriented query procedarel
show that our tabulation query procedure terminates if amlyl i

the sequence of iterations of the immediate consequenaatop
reaches the least fixpoint after only finitely-many steps.ti@nba-
sis of this result we show that the tabulation procedure iteatas
for important classes of residuated logic programs, iniqagr for

probabilistic deductive databases of Lakshmanan and.Sadri

1 INTRODUCTION

The interest in the development of logics for dealing witfoima-
tion which might be either vague or uncertain has increasdtié
recent years. Several different approaches to the soddakieact or
fuzzy or approximate reasoning have been proposed, imghither
fuzzy or annotated or probabilistic or similarity-basegiéprogram-
ming [1, 2, 4, 8, 9, 10, 11, 12, 19, 20, 21, 23, 24].

We will focus on the framework of residuated logic programani
The semantics of a residuated program is characteriseduas by
the post-fixpoints of the immediate consequence opefiatowhich

is proved to be monotonic and continuous under very gengral h

potheses, see [16]. Following traditional techniques afidgoro-
gramming, a procedural semantics was given in [17], in which-
determinism was discarded by using reductants.

Residuated Logic Programs allow to capture a spate oterminate, namely residuated logic programs whose bodiasist

of a repeated application of commutative conjunctors alzeyo the
boundary conditionn ® T < v. Conditions for extending the termi-
nation property for cartesian products of lattices are g, and
applied to obtain the termination results for probabitisteductive
databases of Lakshmanan and Sadri [13].

The structure of the paper is as follows: in Section 2, théasyn
and semantics of residuated logic programs are summar&scd;
tion 3 introduces a non-deterministic procedure for tatoha The
soundness and completeness of the tabling procedure app&ee-
tion 4, as well as independence of the selection orderingtand
mination properties. Next, we illustrate the proof proaedwith an
example from Probabilistic Deductive Databases. The pfapishes
with some conclusions and pointers to future work. For lddpace,
proofs are omitted.

2 PRELIMINARY DEFINITIONS

In this section the essentials of residuated logic prograngrare re-
viewed [6, 7]. To simplify the presentation, we considerydiihite
propositional programs over an arbitrary residuated cetegattice.
Due to space restrictions we do not introduce the formal iefim
of a residuated lattice, just let us recall that is an abstrexthemati-
cal structurg®R, «—, ®) based on a lattic and endowed with two
operations (an adjoint paj—, ®)) generalizing the usual conjunc-

In this paper we aim at the use of tabulation (tabling, or memo tion and implication and the modus ponens inference rutegtjoint

izing) methods to increase the efficiency of the previousbppsed
proof procedures. Tabulation is a technique which is réogiin-
creasing attention in the logic programming and deductatalthse
communities [3, 5, 21, 22]. The underlying idea is, ess#ntithat

conditionz @ y X ziff y < z «— x).
Definition: A residuated progranover a residuated complete lattice
(R, —, ®) is afinite set of weighted rule L B satisfying:

atoms of selected tabled predicates as well as their ananeestored 1. Theheadof the rule A is a propositional symbol.

in a table. When an identical atom is recursively called shlected 2. ThebodyformulaB is a formula built from propositional symbols

atom is not resolved against program clauses; insteadyratispond- B, ..., By (n > 0) by the use of arbitrary monotonic operators,
ing answers computed so far are looked up in the table andsthe a also denoted by3[B;, ..., Bx].

sociated answer substitutions are applied to the atom. Téeps 3. The weight) is an element ofR, interpreted as a truth-value.

is repeated for all subsequent computed answer substisutiorre-
sponding to the atom.

In this work, we provide a tabulation goal-oriented quergqger-
dure and show that it is terminating for all queries if andyoifl
the sequence of iterations of the immediate consequenaatop
reaches the least fixpoint after only finitely-many steps.ti@nba-
sis of this property, we show that the tabulation procedteesi-
nates for a significant class of residuated logic programgaltic-
ular, several fuzzy logic programming languages can begordo

Factsare rules with constant body interpreted as the top element
in R (usually not written), and guery (or goal) is a propositional
symbol intended as a questidd prompting the system.

An interpretationis a mappingl from the set of propositional
symbols tdR. Note that each of these interpretations can be uniquely
extended via the adjoint condition to the whole set of formsyin this
case it is denoted. The ordering< on the underlying lattice can also
be easily extended to the set of interpretations, inhergistructure
of complete lattice.

L Centro Inteligéncia Atrtificial, U. Nova de Lisboa (cd@dt.finl.pt)
2 Dept. Matematica Aplicada, U. de Malaga (jmedina@ctimsa.es)
3 Dept. Matematica Aplicada, U. de Malaga (aciego@ctima.es)

Definition:

1. Aninterpretatior/ satisfiesa weighted ruled <2 Bifand only
if 91 (B)<I(A),ied=1(A— B).

2. Aninterpretatiorn/ is amodelof a residuated logic prograihiff
all weighted rules irP are satisfied by.

3. An element\ € R is acorrect answeffor a programP and a
query ? A if for any interpretation/ which is a model ofP we
have) < I(A).

having the formA 2B together with a query A. The purpose
of the computational procedure is to give (if possible) theatest
truth-value for A that can be inferred from the information in the
programP.

3.1 Operations for Tabulation

For the sake of clarity in the presentation, we will introduhbe fol-
lowing notation: Given a propositional symhdl we will denote by

The immediate consequences operator, given by van Emden ang{ 4) the set of rules if® which have headt. The tabulation proce-

Kowalski, can be easily generalised to the framework oftestied
logic programs.

Definition: Let P be a residuated program over a complete lafice
The immediate consequences operafgf maps interpretations to
interpretations, and is defined by

TI)(A) =| [(ve(B)]| A BeP}

The semantics of a residuated logic program can be chaiseder
as usual, by the post-fixpoints 8*; that is, an interpretatiofi is a
model of a residuated logic prografniff T (I)(A) < I(A) for all
propositional symbol. TheT;2* operator is proved to be monotonic
and continuous under very general hypotheses, see [16add]it
is remarkable that these results are true even for non-caative!
and non-associative conjunctors. In particular, by cavitynthe least
model can be reached in at most countably many iteratiofiy ‘obn
the least interpretation, which maps every propositional symbol to
the least element éR.

3 DESCRIPTION OF THE PROCEDURE

The issue now relies in the definition of an appropriate qpeoge-
dure for residuated logic programs, although it can be hgadapted
for the general case of multi-adjoint lattices [16]. Theretavo major
problems to address: termination and efficiency. On the and the
T operator is bottom-up but not goal-oriented. Furthermiorey-
ery step the bodies of rules are all recomputed. On the otiret, the
usual SLD based implementations of Fuzzy Logic Programiaing
guages (e.g. [25]) are goal-oriented, but inherit the gnatsl of non-
termination and recomputation of goals. For tackling thesees, the
tabulation implementation technique has been proposérbideduc-
tive databases and logic programming communities [3, 5,M2fe
recently, it is proposed in [12, 21] an extension of SLD foplex
menting generalized annotated logic programs [12] thdtheiused
to implement the here defined tabling procedure. Other imptaa-
tion techniques have been proposed for dealing with uriogytan
logic programming, for instance translation into DisjunetStable
Models [14], but rely on the properties of specific truthuealdo-
mains.

In this section we present a general tabulation proceduig épo-
sitional residuated logic programs. The datatype we wil fos the
description of the method is that of@rest that is, a finite set of trees.
Each one of these trees has a root labeled with a propodisgna
bol together with a truth-value from the underlying latt{called the
current valuefor thetabulatedsymbol); the rest of the nodes of each
of these trees are labeled with an “extended” formula in tvisieme
of the propositional symbols have been substituted by it®spond-
ing value. For the description of the adaptation of the tafboh pro-
cedure to the framework of residuated logic programming wile
assume a prograif consisting of a finite number of weighted rules

dure requires four basic operations: Create New Tree, Néwg@al,

Value Update, and Answer Return. The first operation createse
for the firstinvocation of a given goal. New Subgoal is applienen-

ever a propositional variable in the body of rule is foundheiit a
corresponding tree in the forest, and resorts to the previpera-
tion. Value update is used to propagate the truth-valueasfears to
the root of the corresponding tree. Finally, answer retubsstutes a
propositional variable by the current truth-value in theresponding
tree. We now describe formally the operations:

3.1.1 Rule 1: Create New Tree.

Given a propositional symbol, assumé?(A) = {A n Bi|j=
1,...,m} and construct the tree below, and append it to the current
forest. If the forest did not exist, then generate a singléitt with

the tree.

A: L

ﬂ\

V1B 92082 ... U Q@ Bm

3.1.2 Rule 2: New Subgoal.

Select a non-tabulated propositional symbbbccurring in a leaf of
some tree (this means that there is no tree in the forest hétindot
node labeled with”), then create a new tree as indicated in Rule 1,
and append it to the forest.

3.1.3 Rule 3: Value Update.

If there are no propositional symbols in a leaf, then evaltla¢ cor-
responding arithmetic formula (assume that its value i3, Saand
then update the current value (sgyof the propositional symbol at
the root of the tree by the value of lylfr, s).

3.1.4 Rule 4: Answer Return.

Select in any non-root node a propositional symbakhich is tabu-
lated, and consider that the current valugoof .

e If the propositional symbol has been selected in a leaf

B[...,C,...], then extend the branch with the node shown in the
figure below.
Bl...,C,...]
I
Bl...,r...]

Figure 1. Answer Return operation

e Otherwise, if the propositional symbol has been selectedion-

Definition: Given a residuated logic prografhand a query A. We
say that the tabling procedure has constructaédraninatedforest
for P and ? A when no rules of the tabling proof procedure can be
applied.

Proposition 1 1. The current values of a terminated forest generate
a model ofP. That is, the current values are greater or equal than
those given by the least fixpoint of the immediate conseggenc
operatorTy®.

2. Given a forest (terminated or not), then for all roat§: r; we
have that there exists an iteratidnof theT3* operator such that
ry < TR (C).

As an easy consequence of the previous proposition we otftain

leaf nodeB]. .., C,...] such as that in the left of Fig. 1 then, if following result:

s =s 1, then update the whole branch substituting the constant

by r, as in the right of Fig. 1.

It is worth to interpret the execution of each of the previaules in
terms of the better known fixpoint semantics.

For instance, the only rule which changes the values of thies iaf
the trees in the forest is Rule 3. Note that, the only nodes sétveral
immediate successors are the root nodes, these successespond
to the different rules with head identical the label of thetrnode.
From there downwards, the extension is done by Rule 4, wtiilcbre
updates the nodes of an existing branch or extends the brgitich
one new node.

Theorem 1

1. Every terminated forest calculates exactly the minimadieh for
the program.

2. The tabulation procedure terminates for all queries iflamly if
the minimal model is reached by iterating th& operator a finite
number of times.

Residuated Logic Programs can be built from arbitrary momiat
operators. A sufficient condition to guarantee terminati®rde-
scribed in the following theorem:

Remark: Itis convenient to note that in the leaf of each branch thereTheorem 2 Let P be a residuated logic program over a totally or-

is a conjunction of the truth value of the rule which deteredirihe
branch with an instantiation of the body of the rule.

3.2 A non-deterministic procedure for tabulation

Now, we can state the general non-deterministic procedureaicu-
lating the answer to a given query by using a tabulation tieckenin
terms of the previous rules.

Initial step Create the initial forest with thereate new treeule,
applied to the query.

dered complete latticg®, in which all the operatorg butimplication
in the language obey to the boundary condition:

f,T,....T)
F(T,0, T, T)

v
v

IATA

f(T,...,T,’U) j v

whereT is the top element dft, and v an arbitrary element ofR.
In particular, if f is a unary function symbol thefi(v) < v. If A
is a propositional symbol an@iy* 1" (A)(A) > Tt 1™ (a)(A),

Next steps Non-deterministically select a propositional symbol and then at least» + 1 different rules were used on the calculation of

apply one of the rules 2, 3, or 4.

As we shall show, the order of application of the rules isl@vant.

T (8)(A).

Several proposals in the literature use as underlying cetadttice

There are other improvements that can be made to the basic tabthe closed unit interval0, 1] with operators obeying to the condi-

lation proof procedure. In particular, all nodes whose @abfi the

body cannot surpass the current value of the root node caafély s

removed. A sound rule for determining the maximum value tiayb
can achieve consists in substituting all the propositioralables

occurring in the node by. This rule can reduce the search space

further more. This pruning rule can be further enhanceckifetis in-
formation available about completed tables in the forestthe ones
which reached the fixpoint.

4 SOUNDNESS AND COMPLETENESS

As in any non-deterministic procedure, it is necessary tastiat
the obtained result is independent from the different atmimade
during the execution of the algorithm. With this aim, we statio
propositions, which will provide, as a consequence, theped-
dence of the ordering of applications of steps in the tatarigiroof
procedure as well as soundness and completeness.

tions of Theorem 2. These include van Emden’s Quantitatizeuo-
tion [23], Possibilistic Logic Programming [9], Non-cléss SLD
resolution [25], and Ordinary Probabilistic Logic Progsafh5].

Corollary 1 LetP be aresiduated logic program containing exactly
n different rules over the unit interval in which the operat@atisfy
the conditions of Theorem 2. Th&h reaches the least fixpoint in at
mostn iterations.

We conclude immediately from Theorem 1 and Corollary 1 that t
tabulation procedure also terminates for the importargsctd resid-
uated logic programs, whenever the operators obeys to theeab
boundary condition in totally ordered complete lattice8.cdntin-
uous t-norms satisfy, in particular, the boundary conditiberefore
the presented results generalize those in [18]. Furthexnibthe
usual ordering in the unit interval is reversed then dualdit@mns
can be specified for t-conorms and the termination result$etd
(in this case l.u.b. corresponds to minimum, not maximum).

The limitation to totally ordered lattices in Theorem 2 isather
strong one, preventing the immediate application to moraptex
truth-value spaces. However, the following result allowsallift the
previous results to important partially ordered domains:

Theorem 3 Consider a fixed language (signatu® and several in-

terpretations E-algebras) of the language over complete residuated

latticesfRy, ..., R,. Assume thaTD,?‘i terminates for every residu-
ated logic program ovefi;, with 1 < i < n. Then,T3* terminates
for the complete product residuated lattige = %, x ... X R,
where the partial ordering and interpretation of functioage the
usual coordinate-wise ones.

An application of the previous theorem is the proof of teratiion
of the immediate consequences operator of Probabilistaubté/e
Databases (PDDs) [13], whenever it is used positive cdioslas
disjunctive mode for combining several rules in the progrand ar-
bitrary conjunctive modes. The truth-values of PDDs ardidence
levels of the form{[«, 3], [, 6]), wherea, 3, ~, and§ are real num-
bers in the unit intervél The valuesy andg are, respectively, the ex-
pert’s lower and upper bounds of belief, whilandd are the bounds
for the expert’s doubt. The fixpoint semantics of PDDs rebes
truth-ordering of confidence levels. Suppese= ([a1, 1], [v1, 01])
andcs = {[az, B2], [12, d2]) are confidence levels, then we say that:

c1 <t epiff an < a2, 81 < Beandyr > 2,61 > 02,
with corresponding least upper bound operatiorp: co defined as

([max{al, a2}7 maX{ﬁlv B2 }]7 [min{’y1) 72}7 min{(51, 52}]>

and greatest lower bound ®: c2 as:

([min{a1, a2}, min{S1, B2}], [max{vy1,v2}, max{d1, d2}])

The least upper bound of truth-ordering corresponds to igjarct-
tive mode designated “positive correlation”, which is usedom-
bine the contributions from several rules for a given prajmsal
symbol. We restrict attention to this disjunctive modegsithe ter-
mination results presented in [13] assume all the rules tathop
mode. Conjunctive modes are used to combine propositigmat s
bols in the body, andv; corresponds to th@ositive correlation
conjunctive mode. Another conjunctive moddridependencavith
c1 Ning c2 defined as

([on x az, B1 x (],
[1—(1=m)x(1=22),1—=(1—=061)x(1=252)])

The attentive reader will surely notice that all these opena work
independently in each component of the confidence levethErr
more, theindependenceonjunctive mode combines thés and5’s
with a t-norm (product), and the andé parts are combined with a
t-conorm. This is a property enjoyed by all conjunctive nodpeci-
fied in [13]. The confidence levels can be seen as a pair of, j@aids
by application of Theorems 1 and 3, and Corollary 1 we imntetlia
conclude that the least fixpoint of residuated logic prograwer the
language containing as operators the conjunctive modesiifapli-
cation) always finitely terminates. This is a result showseabsolely
on general properties of the underlying lattices, not raspto spe-
cific procedural concepts as in [13]. Furthermore, sincegtioeind-
ing of PDDs results in a finite program, there is no lack of gelity
by assuming finite propositional residuated logic programs

4 Even though the authors say that they usually assumeathat 3 and
~v < 4, this cannot be enforced otherwise they cannot specifygslpphe
notion of trilattice. So, we also will not assume these carists.

5 EXEMPLIFICATION OF THE PROCEDURE

We now illustrate the tabulation procedure at work, shovtiag our
tabulation proof procedure handles mutual recursions.

Example: Consider the following residuated logic program:

a < ([0.8,0.9],[0.0,0.1]) Aina b Ainda
a < ([0.1,0.3], 0.4, 0.6])

b <~ ([0.9,1.0], 0.0, 0.0])

¢ <t {[0.7,0.8], [0.0, 1.0]) Aing @

¢ < ([0.3,0.6],[0.2,0.7])

The underlying complete lattice is the lattice of confidenee
els of Probabilistic Deductive Databases, under the posvitauth-
ordering. Notice that all rules have confidence level
([1,1], [0, 0]), meaning that the rule is satisfied iff the value of the
body is <; than the head. Furthermore, the conjunctor associated
with the implication symbol is the greatest lower bound inthe
ordering, i.e. positive correlation conjunctive mode, ad A;yq.
Since it is not essential to provide an explicit definitioniroplica-
tion, we leave the details to the reader. Mark that the abovgram
corresponds to the following probabilistic program of Lake&nan
and Sadri:

a ([0.8,0.9],[0.0,0.1]) b,c; ind,pe
a ([0.1,0.3],[0.4,0.6]) - ind, pc
b ([0.9,1.0],[0.0,0.0]) . ind, pe
¢ {07081 [0.01.0) . ind, pe
c ([0.3,0.6],[0.2,0.7]) . ind, pe

Suppose it is intended to determine the truth-degree ofgsitipn
a. The computation is started by applying rule latand a possible
forest generated by the algorithm is presented in Figureli2tha
nodes are annotated by a possible order of creation, aneléneted
nodes by rule 2 are underlined. Sinde, ®: v = v, we omit these
expressions in the Figure (introduced by rule 1). Other atxeas
exist, but the computations will terminate in any case amkggte
the same truth-degrees for all propositional symbols.

The first nodes(¢) (i7) and (ii7) were created by theCre-
ate New Treeoperation (rule 1). Applying rule 3 to nod&q)
we update the truth-degree far from ([0.0,0.0], [1.0,1.0]) to
([0.1,0.3], [0.4,0.6]). The New SubGoaselects propositional vari-
able b at node (ii:) and creates the new tree with ro(iv).
The computation proceeds and we get forthe truth-degree
([0.9,1.0], [0.0,0.0]), by a simple application o¥/alue Updateto
node(v). TheAnswer Returapplied to nodéiii) generates the new
node(vi). The procedure now determines the truth-degree ahd
the reader can easily follow the steps. Notice thiew Subgoabp-
eration at nodgix) does not create a new tree. The truth-value of
is back propagated to node:) and originating a new answer update
for a. Notice that nodézi) evaluates tq[0.216, 0.54], [0.2, 0.73]),
and thus the value fo#i is a mixture of the previous tabled value
with the new one. This value is then consumed by n@gidut the
truth-value obtained at node:) is smaller than the current root node

value ofc, and the computation terminates since no more operations

are applicable. This is expected from the discussion ini@edt

6 CONCLUSIONS AND FURTHER WORK

This paper specifies a general non-deterministic tabulagioal-
oriented query procedure for residuated logic programs ogen-

(i) a: ([0.0,0.0],[1.0,1.0]) —

([0.1,0.3], [0.4, 0.6]) —

([0.216,0.54], [0.2, 0.6])

////\

(i) ([0.1,0.3],[0.4,0.6])
(vi) (]0.8,0.9],[0.0,0.1])

(z) ([0.8,0.9],[0.0,0.1])

(iv) b: ([0.0,0.0],[1.0,1.0]) —

|
(v) ([0.9,1.0],[0.0,0.0])

([0.9,1.0],[0.0,0.0]) (vii) c:

(#i1) ([0.8,0.9],[0.0,0.1]) A
Aina {[0.9,1.0],[0.0,0.0]) A

Aina ([0.9,1.0],[0.0,0.0])

([0.0,0.0], [1.0, 1.0]) —

(viii) ([0.3,0.6],[0.2,0.7])

ind B Nind €

|

ind C
|

([0.3,0.6],[0.2,0.7])

(iz) ([0.7,0.8],[0.0,1.0]) A

|
Aina {[0.216,0.54], [0.2,0.6])

ind &

(zi) ([0.7,0.8],[0.0,1.0])

Figure 2. Example forest for query

plete lattices. We present soundness and completenedss riesu [5]
finite propositional residuated logic programs, as wellratepen-
dence of the selection ordering. The class of proven tertmiparo- (6]
grams is general enough to include van Emden’s QuantitBitakic-
tion [23], Possibilistic Logic Programming [9], Non-cléss SLD
resolution [25], and Ordinary Probabilistic Logic Progsafh5]. We [7]
also present a lifting termination theorem for productsesiduated (8]
lattices, and use it to obtain the known termination resafiSroba-
bilistic Deductive Databases [13]. For all these situajorasoning [9]

is polynomial in the size of the ground program.

As future work, on the one hand, a first goal is the attempt to ex
tend this technique to the case of first order residuatecd Ipgp-
grams; on the other hand, we are also interested in gainingt-a b

[10]

ter understanding of Fuzzy Rule Systems to be translatedtit [11]
framework of residuated logic programs. An implementatbthe
tabulation procedure is underway using the GAP package @& XS (12]
Prolog [21]. Last but not the least, theoretical and/or expental
comparison with existent approaches to the computationiifmal [13]
models for fuzzy logic programs [1, 2, 9, 12, 19, 20, 21, 23, 24
are needed. However, a major distinguishing feature of apula- [14]
tion proof-procedure is that it is defined for arbitrary conattions

of operators in the body of programs. [15]
ACKNOWLEDGMENTS [16]
C. V. Damasio has been partially supported by Accao In-[17]

tegrada Luso-Espanhola E-42/02, by FSE/FEDER project TRRD
(POSI/EEI/12097/2001), by European Commission and by the
Swiss Federal Office for Education and Science within the 6tH18]
Framework Programme project REWERSE number 506779 (cf
http://rewerse.net). J. Medina and M. Ojeda-Aciego hawenhgar- 19]
tially supported by Accion Integrada HP2001-0078, and nBja

projects BFM2000-1054- C02-02 and TIC2003-09001-C02-01. [20]
21
REFERENCES (2]
[1] T. Alsinet and L. Godo. Towards an automated deducticstesy for (22]
first-order possibilistic logic programming with fuzzy ciants.Inter- 23
national Journal of Intelligent Systemk7(9), 2002. (23]
[2] J.F. Baldwin, T. P. Martin, and B. W. Pilswortliril - Fuzzy and Evi- 24
dential Reasoning in Artificial IntelligencdRes. Studies Press, 1995. (24]
[3] R. Bol and L. Degerstedt. The underlying search for magmplates o5
and tabulation. IfProc. of ICLP93 pages 793-811, 1993. (25]

[4] T. Cao. Annotated fuzzy logic programskuzzy Sets and Systems

113(2):277-298, 2000.

W. Chen, T. Swift, and D. S. Warren. Efficient top-down quutation
of queries under the well-founded semanticlournal of Logic Pro-
gramming 24(3):161-199, 1995.

C. V. Damasio and L. M. Pereira. Monotonic and residddegic pro-
grams. InSymbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU-200pages 748-759. LNAI 2143, 2001.

C. V. Damasio and L. M. Pereira. Hybrid probabilistiglo programs
as residuated logic programStudia Logica72(1):113-138, 2002.

A. Dekhtyar and V. S. Subrahmanian. Hybrid probabitigtrograms.
J. of Logic Programming43:187-250, 2000.

D. Dubois, J. Lang, and H. Prade. Towards possibiligigid program-
ming. InInt. Conf. on Logic Progr. 1991pages 581-598. MIT Press,
1991.

S. Guadarrama, S. Mufioz, and C. Vaucheret. Fuzzy grdlonew
approach using soft constraints propagatiéfuzzy Sets and Systems
144(1):127-150, 2004.

M. Jaeger. Automatic derivation of probabilistic inface rulesinter-
national Journal of Approximate Reasonjr&8(1):1-22, 2001.

M. Kifer and V. S. Subrahmanian. Theory of generalizeshatated
logic programming and its applicationsJ. of Logic Programming
12:335-367, 1992.

L. V. S. Lakshmanan and F. Sadri. On a theory of probstislideduc-
tive databasesTheory and Practice of Logic Progi(1):5-42, 2001.
T. Lukasiewicz. Fixpoint Characterizations for Mawglued Disjunc-
tive Logic Programs with Probabilistic Semantics Logic Progr. and
Non-Monotonic Reasoning, LPNMR’QINAI 2173:336-350, 2001.

T. Lukasiewicz. Probabilistic logic programming witbnditional con-
straints.ACM Trans. Comput. Logi@(3):289—-339, 2001.

J. Medina, M. Ojeda-Aciego, and P. \ojtaS. Multi-aidit logic pro-
gramming with continuous semantics.Llaogic Programming and Non-
Monotonic Reasoning, LPNMR’'Qpages 351-364. LNAI 2173, 2001.
J. Medina, M. Ojeda-Aciego, and P. Vojtas. A procedsemantics for
multi-adjoint logic programming. lfProgress in Artificial Intelligence,
EPIA'01, pages 290-297. LNAI 2258, 2001.

L. Paulik. Best possible answer is computable for SeBelution.Lec-
ture Notes in Logic6:257—266, 1996.

P. Rhodes and S. Merad-Menani. Towards a fuzzy logignam-
ming system: a clausal form fuzzy logi&nowledge-Based Systems
8(4):174-182, 1995.

M. Sessa. Approximate reasoning by similarity-base® &esolution.
Theoretical Computer Scienc275(1-2):389-426, 2002.

T. Swift. Tabling for non-monotonic programmindinnals of Mathe-
matics and Atrtificial Intelligence25(3-4):201-240, 1999.

H. Tamaki and T. Sato. OLD resolution with tabulatiom Rroc. of
ICLP’86, pages 84-98, 1986.

M. H. van Emden. Quantitative deduction and its fixpairgory. Jour-
nal of Logic Programming3(1):37-53, 1986.

P. Wojta8. Fuzzy logic programming. Fuzzy sets and systems
124(3):361-370, 2001.

P. Vojtas and L. Paulik. Soundness and completenessroclassical
extended SLD-resolution. IRroc. of the Ws. on Extensions of Logic
Programming (ELP’96)LNCS 1050:289-301, 1996.

