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Abstract

We explore a suitable generalization of the notion of Galois connection in which their
components are binary relations. Many different approaches are possible depending
both on the (pre-)order relation between subsets in the underlying powerdomain and
the chosen type of relational composition.
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1 Introduction

Galois connections can be identified in lots of situations, and they have shown to be an
interesting tool both for theory and for applications [6, 9]. Recent applications can still
be found in different topics, specially in the realm of Formal Concept Analysis and the
foundations of Fuzzy Set Theory, see for instance [1, 7].

In all the different notions of generalized Galois connection the problem of its construc-
tion is of capital importance: specifically, given a mapping f : A → B how can one obtain
its residual (aka right adjoint). Freyd’s adjoint theorem characterizes when such a residual
exists when both A and B have the same structure. One of our recent research topics has
been to study what happens if A and B are differently structured, and a number of results
have been obtained considering different underlying settings. Namely, in [10] we worked
with crisp functions between a poset (resp. preordered set) and an unstructured set; later,
in [2] we entered in the fuzzy arena, considering the case in which A is a fuzzy preposet;
then, in [3], we extended the previous results by allowing fuzzy equivalence relations as an
adequate substitute to equality. In [4] we introduced the notion of relational fuzzy Galois
connection, in which the components of the connection are not fuzzy functions but fuzzy
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relations satisfying certain properties. Before proceeding to further generalizations, it is
worth to start again from the crisp case and consider a more adequate notion of Galois
connection whose components are crisp relations, and that is the topic of the present paper.

2 Preliminary definitions

A binary relation R between two sets A and B is a subset of the Cartesian product A×B
and it can be also seen as a multivalued function R from the set A to the powerset P(B).
For an element (a, b) ∈ R, it is said that a is related to b and denoted aRb.

Definition 1 Given a binary relation R ⊆ A×B,

• the afterset aR of an element a ∈ A is defined as {b ∈ B : aRb}

• the foreset Rb of an element b ∈ B is defined as {a ∈ A : aRb}

• the domain of R is the set Dom(R) = {a ∈ A : aR 6= ∅}

• the range of R is the set Rng(R) = {b ∈ B : Rb 6= ∅}

Definition 2 Given a binary relation R ⊆ A×B and a subset X ⊆ A,

• the direct image of X under R is

R(X) = XR = {b ∈ B : there exists x ∈ X such that xRb} =
⋃
x∈X

xR

The direct image of a subset X is the set of those elements of B that are related to at
least one element of X.

• the subdirect image of X under R is

R/(X) = X/R = {b ∈ B : xRb for all x ∈ X} =
⋂
x∈X

xR

The subdirect image of a subset X is the set of those elements of B that are related to
all the elements of X.

Observe that if X = {a}, the direct image and the subdirect image of X coincides with
the afterset, thus aR coincides with R(a) should we interpret R as a multivalued mapping.

In the realm of ordered structures, Ore [12] introduced in 1944 the so-called Galois
connections as a pair of antitone mappings for which both possible compositions are in-
flationary. In order to extend this concept to binary relations it is necessary to fix the
meaning of antitone and inflationary relation. One possibility is to consider the relation as
a multivalued function and extend it naturally, but both the preordered structure in the
powerset and the composition of relations admit different approaches.
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Definition 3 Given P an arbitrary set and ≤ a preorder (reflexive and transitive relation)
defined over P , it is possible to lift the preorder structure to the powerset P(P ) by defining

X � Y ⇐⇒ for all x ∈ X there exists y ∈ Y such that x ≤ y (1)

X b Y ⇐⇒ for all y ∈ Y there exists x ∈ X such that x ≤ y (2)

X n Y ⇐⇒ for all x ∈ X there exists y ∈ Y such that x ≤ y and (3)

for all y ∈ Y there exists x ∈ X such that x ≤ y

Note that the relations defined above are the preorder relations used in the construction of
the, respectively, Hoare, Smyth, and Plotkin powerdomains.

The concept of antitone multivalued function between two preordered sets depends on
the preorder relation considered over the powerset. We explore three possibilities, being
one approach more restrictive than the others:

Definition 4 Let A = (A,≤A),B = (B,≤B) be two preordered sets and R ⊆ A×B a binary
relation between A and B.

• R is said to be h-antitone if a1 ≤A a2 implies a2R� a1R, for all a1, a2 ∈ A.

• R is said to be s-antitone if a1 ≤A a2 implies a2R b a1R, for all a1, a2 ∈ A.

• R is said to be p-antitone if a1 ≤A a2 implies a2R n a1R, for all a1, a2 ∈ A, equiva-
lently, if it is h-antitone and s-antitone.

Analogously, the definition of inflationary multivalued function also admits three pos-
sibilities.

Definition 5 Let A = (A,≤A) be a preordered set and R ⊆ A×A a binary relation on A.

• R is said to be h-inflationary if {a} � aR, for all a ∈ A, that is, there exists (at least)
x ∈ aR such that a ≤ x.

• R is said to be s-inflationary if {a} b aR, for all a ∈ A, that is, a ≤ x for all x ∈ aR.

• R is said to be p-inflationary if it is h-inflationary and s-inflationary.

Remark 1 Notice that if a relation is s-inflationary, then it is also h-inflationary, therefore
p-inflationary and s-inflationary are equivalent notions.

The condition of the composition of two multivalued mappings being inflationary in
some sense requires also to fix which definition of composition will be used.

Definition 6 Let R be a binary relation between A and B and S be a binary relation
between B and C.
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• The classical composition of R and S is defined as follows

R ◦ S = {(x, z) ∈ A× C : there exists b ∈ B such that xRb and bSz}
= {(x, z) ∈ A× C : xR ∩ Sz 6= ∅}

• The / composition of R and S is defined as follows

R / S = {(x, z) ∈ A× C : for all b ∈ B such that xRb it holds that bSz}
= {(x, z) ∈ A× C : xR ⊆ Sz}

Observe that for an element a ∈ A, the afterset a[R ◦S] coincides with the direct image
of the afterset aR under S, that is

a[R ◦ S] = (aR)S =
⋃

b∈aR
bS

Analogously, for an element a ∈ A, the afterset a[R / S] coincides with the subdirect
image of the afterset aR under S, that is

a[R / S] = (aR)/S =
⋂

b∈aR
bS

3 Two types of relational Galois connections

Definition 7 Let A = (A,≤A),B = (B,≤B) be two posets, R ⊆ A × B a binary relation
between A and B and S ⊆ B ×A a binary relation between B and A.

The pair (R,S) is said to be an s-Galois connection between A and B if

i) R and S are s-antitone.

ii) R ◦ S and S ◦R are s-inflationary.

Proposition 1 Let A = (A,≤A),B = (B,≤B) be two posets and (R,S) be an s-Galois
connection between A and B. Then if b ∈ Rng(R) then bS is at most a singleton, so, the
restriction of S to Rng(R) is a (partial) single-valued function.

Proof: If b ∈ Rng(R) r Dom(S), then there is nothing to prove; therefore, let us assume
that b ∈ Rng(R) ∩Dom(S).

1. As b ∈ Rng(R), there exists a ∈ A such that b ∈ aR and, as b ∈ Dom(S), we have
that bS is nonempty. We will now see that, b ∈ xR for all x ∈ bS.

Since {a} b a[R ◦ S], taking into account that b ∈ aR, we have a ≤ x for all x ∈ bS.
Now, as R is s-antitone, there exists b′ ∈ xR such that b′ ≤ b. The other inequality
b ≤ b′ follows because of {b} b b[S ◦R]. As a result, b = b′ ∈ xR.
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2. Consider two elements x, x? ∈ bS, by definition of composition and the previous item,
we have x? ∈ x[R ◦ S]; since, by hypothesis, we have {x} b x[R ◦ S], it turns out
that x ≤ x?. Applying that R is s-antitone, there exists b? ∈ x?R such that b? ≤ b.
Again, the hypothesis {b} b b[S ◦ R] implies b ≤ b?, and we obtain b = b? ∈ x?R.
This, together with x ∈ bS, proves that x ∈ x?[R ◦ S]; finally, applying once again
x? b x?[R ◦ S], we obtain x? ≤ x and, therefore x? = x and bS is a singleton. �

Notice that the previous result shows that the definition of s-Galois connection neces-
sarily collapses the relations R and S to be (partial) functions in the case of posets. If we
drop the antisymmetry and consider the more general case of preordered sets, we obtain a
similar result in that the images of the relations are clusters.

As a result, it seems more convenient to consider alternative approaches either by
changing the ordering between subsets and/or slightly modifying the notions of antitone or
inflationary relation.

A promising definition seems to be the following:

Definition 8 Let A = (A,≤A),B = (B,≤B) be two preordered sets, R ⊆ A × B a binary
relation between A and B and S ⊆ B × A a binary relation between B and A. The pair
(R,S) is said to be an h-Galois connection between A and B if

i) R and S are h-antitone.

ii) For all a ∈ A and all b ∈ B the following conditions hold:

{a} � yS for all y ∈ aR and {b} � xR for all x ∈ bS. (4)

It is not difficult to check that condition (4) above is a consequence of the property of
R / S and S / R being h-inflationary but, in general, are not equivalent.

The following result shows a necessary condition for a pair (R,S) to be an h-Galois
connection.

Lemma 1 If the pair (R,S) is an h-Galois connection between A and B, then the following
inclusions hold: Rng(R) ⊆ Dom(S) and Rng(S) ⊆ Dom(R).

Proof: Given b ∈ Rng(R), there exists a ∈ A such that b ∈ aR. Now, by condition (4)
above, we obtain that bS 6= ∅ and, therefore, b ∈ Dom(S).

The other inclusion can be proved similarly. �

Notice that, in fact, the proof of the previous lemma does not use the antitonicity of
either R or S.

With the condition of Lemma 1 in mind, we obtain an equivalence with the usual notion
of Galois connection, as stated below:
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Theorem 1 Let A = (A,≤A),B = (B,≤B) be two preordered sets, R ⊆ A × B a binary
relation between A and B and S ⊆ B × A a binary relation between B and A. The pair
(R,S) is an h-Galois connection between A and B if and only if the following holds:

Rng(R) ⊆ Dom(S) and Rng(S) ⊆ Dom(R) (5)

{a} � bS ⇐⇒ {b} � aR (6)

Proof: Given (R,S) an h-Galois connection between A and B, condition (5) follows by
Lemma 1. Now, for condition (6), assume that {a} � bS. Then, there exists x ∈ bS such
that a ≤ x and, by R h-antitone, we obtain xR� aR. On the other hand, by condition (4)
we have {b} � xR. Now, by transitivity of �, we obtain that {b} � aR. The proof that
{b} � aR implies {a} � bS is similar.

Conversely, assume that equivalence (6) holds, and let us prove that (R,S) is an h-Galois
connection.

Firstly, we will show condition (4): Given a ∈ A and y ∈ aR, since y ≤ y, then
{y} � aR which by (6) implies that {a} � yS for all y ∈ aR. The other part is similar.

Now, consider a1 ≤ a2 in A. Then, since {a2} � yS for all y ∈ a2R, it also holds that
{a1} � yS for all y ∈ a2R. Hence, by (6), we have {y} � a1R, for all y ∈ a2R which means
that a2R� a1R. The antitonicity of S follows analogously. �

4 Conclusions and further work

The problem of considering relations within the notion of Galois connection is not new,
since it can be dated back to [8], nor outdated, since one can still find recent references
dealing with different aspects of the integration of relations and Galois connections, see for
instance [5, 11,13].

We have obtained some prospective results on the notion of relational-based Galois
connection, in which the components of the connection are relations between posets. There
are several possibilities depending both on the (pre-)order relation between subsets in the
underlying powerdomain and the chosen type of relational composition. We have just
scratched the surface of the problem, and shown that one of the most reasonable approaches
collapses in that the involved relations R and S should actually be functions. The second
proposed definition uses a different approach in that, apart from considering an alternative
ordering in the underlying powerdomain for the definition of antitonicity, it also generalizes
the notion of being inflationary. This way, we have obtained a promising result in the form
of Theorem 1.

As future work, we are planning to continue the line initiated in [2, 3] and attempt
the construction of the residual, in the sense of relation-based (fuzzy) Galois connections,
to a given mapping between differently structured domain and codomain, as stated in the
introduction.
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[2] I.P. Cabrera, P. Cordero, F. Garćıa-Pardo, M. Ojeda-Aciego, and B. De Baets. On the
construction of adjunctions between a fuzzy preposet and an unstructured set, Fuzzy
Sets and Systems 2017. To appear. http://dx.doi.org/10.1016/j.fss.2016.09.013

[3] ——, Adjunctions between a fuzzy preposet and an unstructured set with underlying
fuzzy equivalence relations, 2017, submitted.

[4] I.P. Cabrera, P. Cordero, and M. Ojeda-Aciego. Relational fuzzy Galois connections. In
Proc. of the 17th World Congress of Intl Fuzzy Systems Association (IFSA-SCIS’17),
2017. To appear.

[5] M. Couceiro. Galois connections for generalized functions and relational constraints.
In Contributions to General Algebra, volume 16, pages 35–54. Verlag Johannes Heyn,
2005.
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