
Proceedings of the International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2008
13–17 June 2008.

Implementing a relational system for order of magnitude
reasoning∗

A. Burrieza1, A. Mora2, M. Ojeda-Aciego2 and E. Or lowska3

1 Dept. Filosof́ıa. , Univ. Málaga, (Spain)
2 Dept. Matemática Aplicada., Univ. Málaga, (Spain)

3 National Institute of Telecommunications, Warsaw, (Poland)

emails: burrieza@uma.es, amora@ctima.uma.es, aciego@ctima.uma.es,
orlowska@itl.waw.pl

Abstract

This work concentrates on the automated deduction of logics of order-of-magnitude
reasoning. Specifically, a Prolog implementation is presented for the Rasiowa-
Sikorski proof system associated to the relational translation Re(OM) of the mul-
timodal logic of qualitative order-of-magnitude reasoning OM .

Key words: Relational theorem proving, Rasiowa-Sikorski procedure.

1 Introduction

This paper concentrates on the logic approach to order-of-magnitude qualitative rea-
soning firstly introduced in [1], and further developed in [2]. Roughly speaking, the
approach is based on a system with two landmarks, −α and +α, which is both sim-
ple enough to keep under control the complexity of the system and rich enough so as
to permit the representation of a subset of the usual language of qualitative order-of-
magnitude reasoning.

The intuitive representation of the underlying frames is given in the picture below,
where −α and +α represent respectively the greatest negative observable and the least
positive observable, partitioning the real line in classes of positive observable Obs+,
negative observable Obs− and non-observable numbers Inf:

OBS INF OBS

a a+

+

-

-

∗Partially supported by TIC06-15455-C03-01 and P06-FQM-02049

Template for the CMMSE 2008 proceedings

In [3], the paradigm ‘formulas are relations’ formulated in [9] was applied to the
modal logic for order-of-magnitude (OM) reasoning introduced in [2], obtaining a rela-
tional logic Re(OM) based on algebras of relations generated by some relations specific
to the frames of OM -logics; after a translation from the language of OM -logics to the
language of Re(OM), a deduction system for Re(OM) in the Rasiowa-Sikorski style [10]
was presented, paving the way for applicative research on the implementation of the
proof procedure. The main contribution of this work consists in the development of
a Prolog implementation of the Rasiowa-Sikorski proof procedure introduced in [3]; it
is worth to note that our proof system is modular, in that adding new semantic con-
strainsts to the logic implies adding new deduction rules or axiomatic sets, and not
implementing a new system from scratch.

The structure of the paper is the following: in Section 2, the language Re(OM) is
introduced, together with the relational proof system; then, the main contribution of
the paper, is presented in Section 3, which contains the implementation in Prolog of
the relational procedure in Section 4, some executions of the Prolog engine are shown,
the input formulas are taken from the axiom system for the logic as presented in [2];
Section 5, finally, concludes and presents prospects for future work.

2 The language Re(OM): the RS proof system

As stated in the introduction, the language OM was translated in [3] into a relational
one in order to take benefit from the RS proof procedure. As usual, the main idea of
the relational formalisation is to interpret formulas of nonclassical logics as relations
which are the elements of algebras of relations from a suitable class. For limitation of
the length of the paper, we reveal only the language Re(OM).

We recall here the definition of The syntax of Re(OM) 1.

The alphabet of Re(OM) consists of the disjoint sets listed below:

• A (nonempty) set OV = {x, y, z, . . . } of object variables.

• A set OC = {α−, α+} of object constants.

• A (nonempty) set RV = {P,Q,R, . . . } of binary relation variables.

• A set RC = {1, 1′,ℵ−,ℵ+, <, @,≺} of relation constants denoting, respectively,
the universal relation, the identity relation, the constant relations for −α and
+α, and the three ordering relations related to the three modalities of the OM
language.

• A set OP = {−,∪,∩, ; ,−1} of relational operation symbols which are interpreted
as the opposite, the union, the intersection, the composition and the inverse of a
relation.

Now, the set of relation terms and formulas of Re(OM) is given as follows:
1We show the syntax and for more details the reader is suggested to consult [3].

Regino Criado, J. Vigo Aguiar

• The set of relation terms RT is the smallest set of expressions that includes all
the relational variables and relational constants and is closed with respect to the
operation symbols from OP.

• The set FR of formulas, consists of expressions of the form xRy where x, y denote
individual (or object) variables or constants and R is a relational term built from
the relational variables and the relational operators.

We will now concentrate on the presentation of the RS proof system for Re(OM).
Let us recall that, given a relational formula xAy, where A may be a compound rela-
tional expression, we successively apply decomposition or specific rules. In this way a
tree is formed whose root consists of xAy and each node (except the root) is obtained
by an application of a rule to its predecessor node. The application of rules is stopped
on a node when an axiomatic set (which denotes a tautological formula) has been ob-
tained, or when none of the rules is applicable to the formulas in this node. Such a
tree is referred to as a proof tree for the formula xAy. A branch of a proof tree is said
to be closed whenever it contains a node with an axiomatic set of formulas. A tree is
closed iff all of its branches are closed.

Our system considers the usual rules for the calculus of binary relations with equal-
ity (these rules are not shown explicitly here due to length restrictions, see for in-
stance [6]). New specific rules are included in order to handle the specific object and
relation constants of the language Re(OM). These rules are shown in Fig. 1, in which
the new variables occurring in the denominator of some rules denote any variable oc-
curring in the branch.

The axiomatic sets of Re(OM) shown below state valid formulas of the system
which allows for stopping the procedure on a given branch.

{x1y} {x1′x} {x−Ry, xRy} {α− < α+}

where x, y ∈ OS and R ∈ RT.

3 Prolog implementation of the relational system

In this section, we introduce the Prolog implementation2 of the relational system given
above.

Once the system receives as input the relational formula to be checked, it generates
a proof tree, whose leaves contain sets of relational terms to be proved. The input
formula gets proved when Prolog closes all the leaves in the proof tree.

To begin with, the relations have to be encoded as predicates. This is done as
follows: A relational formula xRy, where x, y are object variables and R is a relational
term represented as the Prolog fact:

rel(address,R, x, y)
2The full implementation (developed in SWI-Prolog Version 5.6.33 for Windows platform) is avail-

able from the address http://homepage.mac.com/alicauchy/.

Template for the CMMSE 2008 proceedings

xℵ−y

x1′α−, xℵ−y
(c1a)

x−ℵ−y

x−1′α−, x−ℵ−y
(c1b)

xℵ+y

x1′α+, xℵ+y
(c2a)

x−ℵ+y

x−1′α+, x−ℵ+y
(c2b)

x < α+

x1′α−, x < α+
(c3)

x−@y

x1′α−, x−@y
(c4)

x−@y

y1′α+, x−@y
(c5)

x ≤ α−, α+ ≤ x, x− @y

x ≤ α−, α+ ≤ x, x− @y, y ≤ α−
(c6)

x ≤ α−, α+ ≤ x, x− @y

x ≤ α−, α+ ≤ x, x− @y, α+ ≤ y
(c7)

α− ≤ x, x− @ y

α− ≤ x, x− @ y, α− < y
(c8)

x− < y, α− < y

x− < y, α− < y, x− @y
(c9)

x− < y, x < α+

x− < y, x < α+, x− @y
(c10)

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y, x < y
(c11)

x−@y

x−@y, x−<y
(c12)

x < x
(Iref)

y−<x | x−<y | x−1′y
(Lin)

x @ y | x−@ y
(cut- @)

xRy

xRy, xRz, | xRy, zRy
(Tran)

x < y

x ≺ y, x < y
(n-0)

x ≺ z

x ≺ y, x ≺ z | y < z, x ≺ z
(n-i)

x ≺ z

x < y, x ≺ z | y ≺ z, x ≺ z
(n-ii)

α+ ≤ y

α− < x, α+ ≤ y | x < α+, α+ ≤ y | x ≺ y, α+ ≤ y
(n-iii)

y ≤ α−

α− < x, y ≤ α− | x < α+, y ≤ α− | y ≺ x, y ≤ α−
(n-iv)

Figure 1: Specific rules for Re(OM)

The first argument contains a list of integers which define the position of the node in
the proof tree, as it has been generated during the proof process.

Example 1 The formulas contained in a leaf of a proof tree are read disjunctively,
hence an expression as xRy∪xSy∪xℵ−y∪x(@; (a; 1)−)−y is translated into the following
four facts in Prolog:3

rel([1],r,x,y).

rel([1],opp(alephm),x,y).

rel([1],s,x,y).

rel([1],opp(comp(sqsub,opp(comp(a,univ)))),x,y).

The (addresses of the) open leaves are stored in a list, which is handled by the
predicate open leaves. For instance, the predicate open_leaves([n]) states that it
is necessary to prove the validity of the set of relations stored in node [n].

As expected, the initial relational terms are valid if and only if all the leaves in the
tree can be closed.

Expressing axiomatic sets and rules

When Prolog detects a relation representing an axiomatic set, the corresponding leaf
is deleted and the user informed by means of the remove leaf predicate. For instance,

3As Prolog only manipulates text, some symbols are renamed accordingly to its reading. For in-
stance, ℵ− is translated into alephm; the composition operator ; is translated into comp, the operator
@ is translated into sqsub, etc.

Regino Criado, J. Vigo Aguiar

if either x1′x (rel(Leaf,equal,X,X)) occurs in the set of relations of the leaf Leaf, it
is removed because of the occurrence of an axiomatic set.

axiomatic_set:- rel(Leaf,equal,X,X),

remove_leaf(Leaf,[rel(Leaf,equal,X,X)]),!.

axiomatic_set:- rel(Leaf,univ,X,Y),

remove_leaf(Leaf,[rel(Leaf,univ,X,Y)]),!.

axiomatic_set:- rel(Leaf,<,alpham,alphap),

remove_leaf(Leaf,[rel(Leaf,univ,X,Y)]),!.

A rule in Re(OM) has the following general form: Φ
Φ1|...|Φn

where Φ1, . . . , Φn are
non-empty sets of formulas and Φ is a finite (possibly empty) set of formulas.

The application of a rule like the previous one to a leaf assumes it is labelled by a
set X of formulas satisfying Φ ⊆ X, then the leaf branches into n new branches, each
one with the set of formulas (X \ Φ) ∪ Φi, i = 1 . . . , n.

In general, due to the particular nature of the rules of Re(OM), whenever a rule is
applicable, it can be applied again on the resulting leaves, but this kind of behaviour
is obviously undesirable. In order to avoid repeated applications of rules against the
same formulas each application of a rule is stored in a list.

The implementation of a rule can be roughly stated as follows: firstly, the precon-
ditions (contained in the numerator of the rule) are checked, in order to know whether
the rule is applicable; if affirmative, and provided that the rule has not been previously
applied against the same arguments, the rule is displayed on the screen and stored as
used; finally, the leaf is branched and new labels are attached to each new leaf as stated
above.

In order to obtain a rough idea of how a rule is encoded, let us consider the standard
rule for the union of relations x(R ∪ S)y

xRy, xSy
(uni), its encoding is:

uni(Leaf):- rel(Leaf,uni(R,S),X,Y),

new_deduced_rels([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]),

\+rule_used(Leaf,uni,[rel(uni(R,S),X,Y)]),

write_rule(’Union’, [rel(Leaf,uni(R,S),X,Y)],

[rel(Leaf,R,X,Y), rel(Leaf,S,X,Y)]),

update_leaf([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]).

In order to start explaining the most interesting features of the implementation,
let ys consider a specific (non-standard) rule (n-i) below:

x ≺ z
x ≺ y, x ≺ z | y < z, x ≺ z

(n-i) y any variable

This rule is implemented by using the following code:

ni(Leaf):- rel(Leaf,prec,X,Z),

new_deduced_rels([rel(Leaf,prec,X,Y), rel(Leaf,<,Y,Z)]),

\+rule_used(Leaf,ni,[rel(prec,X,Z)]),

Template for the CMMSE 2008 proceedings

any_variable(’ni (prec) ’,Leaf,[rel(Leaf,prec,X,Z)],Y),!,

write_rule(’ni (prec) ’, [rel(Leaf,prec,X,Z)],

[rel(Leaf,prec,X,Y),rel(Leaf,<,Y,Z)]),

branch(Leaf,2),

update_leaf(Leaf,2,[[rel(Leaf,prec,X,Y)]

,[rel(Leaf,<,Y,Z)]]),!.

In the three first lines, the rule checks that x ≺ z is in the set of relations, that
the relations introduced by the rule are new (new deduced rels) and that the rule has
not been previously applied (rule used). Then, note that, as stated in the rule, the
variable y in the denominator has to be any of the variables or constant object occurring
in the branch (this situation is similar to that of the free tableaux systems, in which the
γ rule instantiates a variable by any of the constants occurring in the branch, whereas
the δ rule always introduces a new constant). The predicate any variable chooses
some constant or variable occurring in the branch (an optimized version of this task is
given in Section 3). The predicate branch(Leaf,2) branches the current leaf into two
new leaves, and copies all the formulas of the current leaf to the two new leaves. The
predicate copyToLeaves appends x ≺ y to the first leaf and y < z to the second leaf.

The proof procedure

The implementation of a full and automated proof procedure is roughly sketched here.
The inference engine examines the first leaf of the tree that the proof system needs
to check and tries to apply the rules to the relations containing this leaf. As stated
previously, the predicate open leaves stores the leaves which has not been closed so
far. The inference engine tries to apply some rule to the given leaf, while the tree has
open leaves.

The order in which the engine tries to apply the rules is crucial. Clearly, the
rules which do not generate new branches are at the beginning; among these rules we
have some primitive rules (either standard or specific), then some selected derived rules
have been implemented directly as primitive, in order to avoid excessively long proofs.
Finally, the system tries to apply the rules that generate new branches.

Whenever a non-closed leaf does not admit any of the rules in the list, then the
system asks the user about considering some cut-like rule (a rule without relations in
the numerator).

After an application of the procedure, and provided that a closed tree has been
obtained, the system provides a list of the rules used in the proof; this is done by the
predicate table of used rules. As an example, consider the output obtained from
the following relational formula (which corresponds to the Axiom c4 of the system for
the logic OM, the formula α− → −→�A, see [2]):

rel([1], uni(opp(alephm),opp(comp(sqsub,opp(comp(p,univ))))),x,y).

The system traces, in reverse ordering, the rules applied in order to close the tree for
the input term:

Regino Criado, J. Vigo Aguiar

OK. No more open leaves. VALID.

table_of_used_rules([1], c5, [rel(opp(sqsub), z, x)]).

table_of_used_rules([1], c4, [rel(opp(sqsub), z, x)]).

table_of_used_rules([1], c2b, [rel(opp(alephp), x, y)]).

table_of_used_rules([1], notinverse,[rel(opp(inv(sqsub)), x, z)]).

table_of_used_rules([1], not2, [rel(opp(opp(comp(p, univ))), z, y)]).

table_of_used_rules([1], notcomp,[rel(opp(comp(inv(sqsub), opp(comp(p, univ)))), x, y)]).

table_of_used_rules([1], uni, [rel(uni(opp(alephp), opp(comp(inv(sqsub),

opp(comp(p, univ))))), x, y)]).

Phantom variables: postponing the choice

There are several rules in the relational system for Re(OM) which exhibit the same
behavior that Rule (n-i) regarding the new variables introduced. We saw that the rule
branches the leaf into two new leaves, and appends x ≺ y to the first leaf and y < z
to the second leaf, where y is “any variable” occurring in the branch. In principle, we
have as many different instantiations of the rule as values can be chosen for y. If we
do not take this into account, the proof tree might grow in an uncontrolled manner.

We introduce a non-instantiated variable (so-called “phantom variable”) and delay
its actual instantiation until we have some guarantees, by a unification process, that it
will generate axiomatic sets. Thus, a phantom variable is a special case of variable whose
possible instantiations are constrained to belong to the set of variables or constants
occurring in the leaf.

The use of phantom variables is crucial for an adequate performance of the imple-
mentation, although it initially implied the need to rewrite the code for the axiomatic
sets in order to make them parameterized. For instance, recall that if the axiomatic
set α− < α+ is present in a leaf, then the leaf will be closed; as a result, X < α+ will
be an axiomatic set provided that X is a phantom variable which can be instantiated
by α−.

4 Experimental results and examples

As the relational proof procedure was proved to be complete in [3], the first choice of
formulas to prove with the implementation has been the set of axioms of the system
given in [2]. The implementation has been tested against all the axioms in the system4

with the result that every axiom has been automatically proved. This is an important
matter, since so far no result about the decidability of Re(OM) has been obtained.

In this section we comment in detail the performance of the implementation on the
relational translation of two specific axioms of OM .

Example 2 Let us consider the formula α− → −→�A, corresponding to Axiom c4 from [2].
Its relational translation is

x(−ℵ− ∪ −(@;−(A; 1)))y

which, in turn, is translated into Prolog as:
4The full trace of execution of the procedure applied on all the axioms of [2] can be obtained from

the address http://homepage.mac.com/alicauchy/.

Template for the CMMSE 2008 proceedings

rel(1,opp(alephm),x,y).

rel(1,opp(comp(sqsub,opp(comp(a,univ)))),x,y).

Now, the program is called to satisfy the predicate:

?engine(’reomAxiomc4.pl’,’logc4.txt’).

The following report in logc4.txt file is returned:

------>Input file: reomAxiomc4.pl

THE ENGINE IS RUNNING

--->opp composition Rule

[rel(1, opp(comp(sqsub, opp(comp(a, univ)))), x,y)]

__

[rel(1, opp(sqsub), x, z), rel(1,opp(opp(comp(a, univ))), z, y)]

---->c1b (opp aleph-) Rule

[rel(1, alephm, x, y)]

__

[rel(1, equal, x, alpham), rel(1, alephm, x, y)]

---->c4 (notsqsubset) Rule

[rel(1, opp(sqsub), x, z)]

__

[rel(1, equal, x, alpham), rel(1, opp(sqsub), x,z)]

Found axiomatic set. Branch: 1

- Axiomatic set: [rel(1, opp(equal), x, alpham),

rel(1, equal, x, alpham)]

- Deleted relations in branch 1

OK. No more open leaves.

�

The following example is more complete than the previous one, as it branches the
proof tree and, in addition, uses phantom variables.

Example 3 Let us consider the formula
←−
♦α− ∨ α− ∨

−→
♦α−, corresponding to Axiom

c1 from [2]. Its relational translation is

x((>;ℵ+) ∪ ℵ+ ∪ (<;ℵ+))y

which in Prolog has the following form:

rel([1], comp(>, alephp), x, y).
rel([1], alephp, x, y).
rel([1], comp(<, alephp), x, y).

Now, the program is called to satisfy the predicate:

?engine(’reomAxiomc1.pl’,’logc1.txt’).

After applying some rules, the system detects the possibility of using one phantom
variable, the following information is displayed on the screen:

Regino Criado, J. Vigo Aguiar

We can apply the following rules:

---->comp Rule

[rel([1], comp(>, alephp), x, y)]

rel(new_leaf1, >, x, var) | rel(new_leaf2, alephp, var, y)

where var can be either:

- any variable from: [x, y]

- or alpham or alphap.

We can use a non-instantiated variable (phantom).

Introduce the desired var or 0 for phantom variable.

Now, the user can either introduce any of the possible values, or let the system
introduce a phantom variable. In this example, the system is always said to introduce
phantom variables (which are denoted as t1, t2, etc). Thus, the log file of this example
continues as follows:

|: 0

---->comp Rule

[rel([1], comp(>, alephp), x, y)]

__

rel([1, 1], >, x, t1) | rel([1, 2], alephp, t1, y)

The system continues applying rules automatically until a new composition (comp)
rule is applied. Note that, in the leaf (1,1,2) we would obtain an axiomatic set if t2 is
substituted by alphap.

---->comp Rule

[rel([1, 1], comp(<, alephp), x, y)]

__

rel([1, 1, 1], <, x, t2) | rel([1, 1, 2], alephp, t2, y)

Substitute in all relations variable phantom:t2 by alphap

This instantiation provides an extra piece of information which allows eventually
to close all the open branches of the proof tree. More details can be seen in the demos
available in the web. �

5 Conclusions and future work

We have presented a first implementation in Prolog of the relational proof system for
the logic of qualitative order-of-magnitude reasoning. The system has been tested
against the axiom system provided in [2], and all the axioms of the system have been
automatically proved. This is an important matter, since so far no result about the
decidability of Re(OM) has been obtained.

As future work, the implementation will be improved in several directions. On the
one hand, we want to add more interaction with the user during the proof process.
When the system does not close the proof tree, some cut-like rule might be needed and

Template for the CMMSE 2008 proceedings

the user should be asked to provide some clue on this although, in some situations, it
is possible for the system to suggest the use of some of these rules. On the other hand,
the graphical aspect of the interface should be enhanced, allowing the user to specify
directly the requirements by using the standard OM logic, which is more intuitive than
its relational translation into Re(OM).

References

[1] A. Burrieza and M. Ojeda-Aciego. A multimodal logic approach to order of mag-
nitude qualitative reasoning. Lect. Notes in Artificial Intelligence, 3040:431–440,
2004.

[2] A. Burrieza and M. Ojeda-Aciego. A multimodal logic approach to order of mag-
nitude qualitative reasoning with comparability and negligibility relations. Fun-
damenta Informaticae, 68:21–46, 2005.

[3] A. Burrieza, M. Ojeda-Aciego, and E. Or lowska. Relational approach to order-of-
magnitude reasoning. Lect. Notes in Computer Science, 4342:105-124, 2006.

[4] J. Dallien and W. MacCaull. RelDT—a dual tableaux system for relational logics,
2005. Available from http://logic.stfx.ca/reldt/

[5] A.Formisano, E. Omodeo, and E. Or lowska. A PROLOG tool for relational trans-
lation of modal logics: A front-end for relational proof systems. In: B. Beck-
ert (ed) TABLEAUX 2005 Position Papers and Tutorial Descriptions. Universität
Koblenz-Landau, Fachberichte Informatik No 12, 2005, 1-10. System available from
http://www.di.univaq.it/TARSKI/transIt/

[6] J. Golińska-Pilarek and E. Or lowska. Tableaux and dual tableaux: Transformation
of proofs. Studia Logica 85(3):283–302, 2007.

[7] B. Konikowska. Rasiowa-Sikorski deduction systems in computer science applica-
tions. Theoretical Computer Science 286:323–366, 2002

[8] E. Or lowska. Relational interpretation of modal logics. In H. Andreka, D. Monk,
and I. Nemeti, editors, Algebraic Logic, volume 54 of Colloquia Mathematica So-
cietatis Janos Bolyai, pages 443–471. North Holland, 1988.

[9] E. Or lowska. Relational semantics for nonclassical logics: Formulas are relations.
In J. Wolenski, editor, Philosophical Logic in Poland, page 167–186. Kluwer, 1994.

[10] H. Rasiowa and R. Sikorski. Mathematics of Metamathematics. Polish Scientific
Publishers, 1963.

