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Abstract

In this work we introduce the notion of fuzzy congruence relation on an nd-
groupoid and study conditions on the nd-groupoid which guarantee a complete
lattice structure on the set of fuzzy congruence relations. The study of these
conditions allowed to construct a counterexample to the statement that the set of
fuzzy congruences on a hypergroupoid is a complete lattice.
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1 Introduction

The systematic generalization of crisp concepts to the fuzzy case has proven to be
an important theoretical tool for the development of new methods of reasoning under
uncertainty, imprecision and lack of information.

Regarding the generalization level, it is important to note that the definition of
fuzzy sets originally presented as mappings with codomain [0, 1], was soon replaced
by more general structures, for instance a complete lattice, as in the L-fuzzy sets
introduced by Goguen [8]. This paper continues previous work [4, 5] which is aimed
at investigating L-fuzzy sets where L has the structure of a multilattice, a structure
introduced in [2] and later recovered for use in other contexts, both theoretical and
applied [10,13].

Roughly speaking, a multilattice is an algebraic structure in which the restrictions
imposed on a lattice, namely, the “existence of least elements in the sets of upper
bounds and greatest in the sets of lower bounds” are relaxed to the “existence of
minimals and maximals, respectively, in the corresponding sets of bounds”. Attending
to this informal description, the main difference that one notices when working with
multilattices is that the operators which compute suprema and infima are no longer
single-valued, since there may be several multi-suprema or multi-infima, or may be
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none. This immediately leads to the theory of hyperstructures, that is, algebras whose
operations are set-valued.

If A is a non-empty set and H is a family of set-valued operations on A, the ordered
pair (A,H) is called a hyperalgebra (or multialgebra, or polyalgebra). The study of hy-
peralgebras originated in 1934 when Marty introduced the so-called hypergroups in [12].
Since then, a number of papers have been published on this topic, focussing essentially
on special types of hyperalgebras (such as hypergroups, hyperrings, hyperfields, vector
hyperspaces, boolean hyperalgebras, . . . ) and guided, sometimes by purely theoretical
motivations and sometimes because of their applications in other areas.

In this paper, we will focus on the most general hyperstructures, namely hyper-
groupoids and nd-groupoids. Our interest in these structures arises from the fact that,
in a multilattice, the operators which compute the multi-suprema and multi-infima are
precisely nd-groupoids or, if we have for granted that at least a multi-supremum always
exists, a hypergroupoid. Actually, some of the results will be stated just in terms of
multisemilattices.

Several papers have investigated the structure of the set of fuzzy congruences on
different algebraic structures [1,6,7,15,17]; and in [4,5] we initiated our research in this
direction. Specifically, we focused on the theory of (crisp) congruences on a multilattice
and on an nd-groupoid, as a necessary step prior studying the fuzzy congruences on
multilattices and the multilattice-based generalization of the concept of L-fuzzy congru-
ence. In this paper, we study the notion of fuzzy congruence relation on nd-groupoids.

The fact that the structure of nd-groupoid is simpler than that of a multilattice
does not necessarily mean that the theory is simpler as well. We will show that, in
general, the set of fuzzy congruences on an nd-groupoid is not a lattice unless we assume
some extra properties. This problem led us to review some related literature and, as a
result, we found one counter-example in the context of congruences on a hypergroupoid.

2 Preliminaries

We can find in the literature we find the definition of a hypergroupoid as a nonempty
set endowed with a hyperoperation ∗ : H × H → 2H r {∅}. However, we are inter-
ested in a generalization of hypergroupoid that we will call non-deterministic groupoid
(nd-groupoid, for short) which also considers the empty set as possible image of the
hyperoperation.

Definition 2.1 An nd-groupoid (A, ∗) is defined by an nd-operation ∗ : A × A → 2A

on a nonempty set A. The induced power groupoid is defined as (2A, ∗) where the
operation is given by X ∗ Y = {x ∗ y | x ∈ X, y ∈ Y } for all X,Y ⊆ A.

Notice that the definition allows the assignment of the empty set to a pair of
elements, that is a ∗ b = ∅, this mere fact, albeit simple, represents an important
difference with hypergroupoids, as it will be explained later.

The following notational conventions will be used hereafter:
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• We will use multiplicative notation and, thus, the symbol of the nd-operation will
be omitted.

• If a ∈ A and X ⊆ A, we will denote aX = {ax | x ∈ X} and Xa = {xa | x ∈ X}.
In particular, a∅ = ∅a = ∅.

• When the result of the nd-operation is a singleton, we will often omit the braces.

As stated in the introduction, our interest in extending the concept of hyper-
groupoid is justified by the algebraic characterization of multilattices and multisemi-
lattices, since the operators for multi-suprema and multi-infima are both examples of
nd-operators.

With this idea in mind, we introduce below the extension to the framework of
nd-groupoids of some well-known properties. Assume that (A, ·) is an nd-groupoid:

• Idempotency: aa = a for all a ∈ A.

• Commutativity: ab = ba for all a, b ∈ A.

• Left m-associativity: (ab)c ⊆ a(bc) when ab = b, for all a, b, c ∈ A.

• Right m-associativity: a(bc) ⊆ (ab)c when bc = c, for all a, b, c ∈ A.

• m-associativity: if it is left and right m-associative.

Note that the prefix ‘m-’ has its origin in the concept of multilattice.
We will focus our interest on the binary relation usually named natural ordering,

which is defined by
a ≤ b if and only if ab = b

Although, in general, this relation is not an ordering, the properties above guarantee
that the relation just defined is an ordering. Specifically, it is reflexive if the nd-groupoid
is idempotent, the relation is antisymmetric if the nd-groupoid is commutative and,
finally, it is transitive if the nd-groupoid is m-associative.

The two following properties of nd-groupoids have an important role in multilattice
theory:

• C1: c ∈ ab implies that a ≤ c and b ≤ c.

• C2: c, d ∈ ab and c ≤ d imply that c = d.

These two properties are named comparability. Similarly to lattice theory, we
can define algebraically the concept of multisemilattice as an nd-groupoid that satisfies
idempotency, commutativity, m-associativity and comparability laws. The ordered and
the algebraic definitions of multisemilattice can be proved to be equivalent simply by
considering a · b = multisup{a, b} and ≤ being the natural ordering (see [11, Theo-
rem 2.11]).
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Definition 2.2 (Zadeh, [18]) Let A be a nonempty set. A fuzzy relation ρ on A is a
fuzzy subset of A × A (i.e. ρ is a function from A × A to [0, 1]). ρ is reflexive in A
if ρ(x, x) = 1 for all x ∈ A, ρ is symmetric in A if ρ(x, y) = ρ(y, x) for all x, y ∈ A,
finally, ρ is transitive if

sup
z∈A

min {ρ(x, z), ρ(z, y)} ≤ ρ(x, y) for all x, y ∈ A

A fuzzy equivalence relation is a reflexive, symmetric and transitive fuzzy relation.

Since a fuzzy relation in a nonempty set A is a fuzzy subset of A × A, we can
define the inclusion, intersection and union of fuzzy relations as follows: ρ ⊆ σ if
ρ(x, y) ≤ σ(x, y) for all x, y ∈ A.

⋂
i∈Λ ρi(x, y) = infi∈Λ ρi(x, y) and

⋃
i∈Λ ρi(x, y) =

supi∈Λ ρi(x, y) for all x, y ∈ A.
Let FEq(A) be the set of fuzzy equivalence relations on a non empty set A. Murali

proved in [14] that (FEq(A),⊆) is a complete lattice where the meet is the intersection
and the join is the transitive closure of the union.

The following property is used to provide characterizations of some universal prop-
erties in terms of elements; similar definitions are used in other works about fuzzy
relations.

Definition 2.3 Let A be a nonempty set and ρ a fuzzy relation on A. We say that
ρ satisfies the left (resp. right) sup property if for all nonempty X ⊆ A, there exist
x0(resp.y0) ∈ X such that sup

x∈X
ρ(x, a) = ρ(x0, a) (resp. sup

y∈X
ρ(a, y) = ρ(a, y0)).

Definition 2.4 Let ρ be a fuzzy relation on a groupoid (G, ·); we say that ρ is right
compatible with · if ρ(ac, bc) ≥ ρ(a, b) for all a, b, c ∈ G; similarly, ρ is said to be
left compatible if ρ(ca, cb) ≥ ρ(a, b) for all a, b, c,∈ G. A congruence on G is a fuzzy
equivalence relation left and right compatible.

3 Fuzzy congruence relations on nd-groupoids

Regarding the extension of the definition of congruence to the non-deterministic case,
the following definition was introduced by Bakhshi and Borzooei in [1].

Definition 3.1 Let (A, ·) be an nd-groupoid. Then a fuzzy relation ρ on A is said to
be left (right) compatible if for all u ∈ ax (u ∈ xa) there exists v ∈ ay (v ∈ ya) and
for all v ∈ ay (v ∈ ya) there exists u ∈ ax (u ∈ xa) such that ρ(u, v) ≥ ρ(x, y), for all
x, y, a ∈ A and compatible if it is both fuzzy left and right compatible.

This definition explicitly uses the fact that the images of the hyperoperator are
nonempty. Thus, we propose an alternative definition which generalizes the previous
one and adequately handles the empty images.

As a previous step to the consideration of fuzzy congruence relations on a nd-
groupoid, let us note that it is possible to extend any fuzzy relation on a set A to
its powerset 2A; this construction leads to the definition of an operator ̂ from the set
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FR(A) of fuzzy relations on A to the set FR(2A) of fuzzy relations on 2A. Namely,
given a fuzzy relation ρ : A × A → [0, 1], its power extension is a fuzzy relation
ρ̂ : 2A × 2A → [0, 1] defined by

ρ̂(X,Y ) =
( ∧

x∈X

∨
y∈Y

ρ(x, y)
)
∧
( ∧

y∈Y

∨
x∈X

ρ(x, y)
)

Notice that ρ̂(∅, X) = ρ̂(X,∅) = 0, for all nonempty X ⊆ A, ρ̂(∅,∅) = 1 and
ρ̂({a}, {b}) = ρ(a, b), for all a, b ∈ A.

With this power extension of a fuzzy relation, the definition of fuzzy congruence
relation on an nd-groupoid (A, ·) follows exactly the one for the deterministic case:
ρ̂(ac, bc) ≥ ρ(a, b), for all a, b, c ∈ A. It is easy to check that a fuzzy relation that is
compatible with · satisfies this condition but, in general, they are not equivalent as the
following example shows:

Example 3.1 Let A = [0, 1] be the hypergroupoid endowed with the hyperoperation
a ∗ b := (0, 1) and consider the fuzzy equivalence relation ρ(a, b) = 1− ab. Observe that

ρ̂(a ∗ c, b ∗ c) =
( ∧

x∈(0,1)

∨
y∈(0,1)

(1− xy)
)
∧
( ∧

y∈(0,1)

∨
x∈(0,1)

(1− xy)
)

=

=
( ∧

x∈(0,1)

1
)
∧
( ∧

y∈(0,1)

1
)

= 1 ≥ ρ(a, b)

for all a, b, c ∈ A. However, for all x ∈ 0 ∗ c and y ∈ b ∗ c, we have ρ(x, y) < ρ(0, b) = 1
because otherwise, we would have either x = 0 or y = 0 contradicting that x, y ∈ (0, 1).
Thus, ρ is not compatible with the hyperoperation ∗.

Once we have introduced the power extension of a fuzzy relation, in order to use
the above condition to define the concept of fuzzy congruence relation, we study the
behaviour of the operator ̂wrt the properties of reflexivity, simmetry and transitivity.

Proposition 3.2 Let ρ be a fuzzy relation in a non-empty set A and let ρ̂ be its power
extension as defined above. If ρ is a fuzzy equivalence relation then so is ρ̂.

Summarizing the previous considerations we can state the following definition and
theorem.

Definition 3.3 A fuzzy equivalence relation ρ on an nd-groupoid (A, ·) is said to be a
right (resp. left) congruence relation if ρ̂(ac, bc) ≥ ρ(a, b) (resp. ρ̂(ca, cb) ≥ ρ(a, b)) for
all a, b, c ∈ A. A fuzzy relation is said to be a congruence relation if it is a left and right
congruence relation.

Theorem 3.4 Let ρ be a fuzzy equivalence relation on an nd-groupoid (A, ·). Then,
ρ is a fuzzy congruence relation if and only if ρ̂ is a fuzzy congruence relation in the
induced power groupoid (2A, ·).

The sup property, which was introduced in Definition 2.3, guarantees the equiva-
lence between our definition of fuzzy congruence relation and the one given in [1].
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Lemma 3.5 Let ρ be a fuzzy equivalence relation on an nd-groupoid (A, ·) which sat-
isfies sup property. Then, ρ is a fuzzy congruence relation if and only if ρ is compatible
with the nd-operation.

4 On the lattice structure of fuzzy congruence relations

In the previous section, we introduce the map ̂ defined over the lattices of fuzzy equiv-
alence relations on an nd-groupoid A and powerset 2A. Let us now consider this map
on FCon(A), the subset of FEq(A) given by the fuzzy congruence relations. First,
notice that Theorem 3.4 guarantees that ̂: FCon(A)→ FCon(2A) is well defined.

In the crisp case, Murali proved in [15] that the set of fuzzy congruence relations
on a groupoid X is a complete sublattice of the set of all fuzzy equivalence relations.
This result might suggest that the lattice structure of FCon(2A) can be reproduced on
FCon(A), via the map .̂ However, although ρ̂ is injective , since ρ̂({a}, {b}) = ρ(a, b),
for all a, b ∈ A, it is not surjective. If it were surjective, then for all Θ ∈ FCon(2A) the
following equality would hold

Θ(X,Y ) =
( ∧

x∈X

∨
y∈Y

Θ({x}, {y})
)
∧
( ∧

y∈Y

∨
x∈X

Θ({x}, {y})
)

but, in general, this is not the case.

Example 4.1 Let (A, ·) be the nd-groupoid with A = {a, b} and x·y = {a}, for all x, y ∈
A. Consider Θ the reflexive and symmetric fuzzy relation on 2A given by Θ({a}, {b}) =
1; Θ({a}, A) = Θ({b}, A) = 1/2 and Θ(∅, {a}) = Θ(∅, {b}) = Θ(∅, A) = 0. It is
routine calculation that Θ is a congruence relation, but( ∧

a∈{a}

∨
y∈A

Θ({a}, {y})
)
∧
( ∧

y∈A

∨
a∈{a}

Θ({a}, {y})
)

=

( ∨
y∈A

Θ({a}, {y})
)
∧
( ∧

y∈A

Θ({a}, {y})
)

=
∧
y∈A

Θ({a}, {y}) = 1 6= 1
2

= Θ({a}, A).

Under the additional assumption of commutativity with respect to the usual compo-
sition of binary relations, Bakhshi and Borzooei [1], stated that the set of all fuzzy
congruence relations on a hypergrupoid (H, ·) is a complete lattice. The following ex-
ample proves that this result is not true even in the crisp case and, thus, neither in a
fuzzy framework.

Example 4.2 Let H be the set {a, b, c, u0, u1, v0, v1} provided with a commutative hy-
peroperation ∗ which is defined as follows:

a ∗ a = a ∗ b = b ∗ b = {a, b}; a ∗ c = {u0, u1};

b ∗ c = {v0, v1} and x ∗ y = {c}, elsewhere
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Consider R,S : H ×H → {0, 1} two binary relations, where R is the least equivalence
relation containing {(a, b), (u0, v0), (u1, v1)} and S the least equivalence relation con-
taining {(a, b), (u0, v1), (u1, v0)}. A tedious check shows that R and S commute and
are compatible with the hyperoperation ∗ (they are congruence relations). However, the
intersection R ∩ S is not a congruence relation.

As a result of the previous example, the rest of the paper studies conditions that
must be satisfied by the nd-groupoid in order to guarantee that (FCon(A),⊆) is a
lattice.

Theorem 4.1 Let (A, ·) be an nd-groupoid satisfying idempotency and property C1,
and let ρ be a fuzzy equivalence relation satisfying the supremum property. Then ρ is a
congruence relation if and only if the following holds:

For all a, b, c ∈ A with a ≤ b we have that ρ̂(ac, bc) ≥ ρ(a, b).

From now on we focus on the search of properties that ensure the condition of the
previous theorem.

Proposition 4.2 Let (A, ·) be an m-associative nd-groupoid that satisfies C1 and, for
a, b, c ∈ A, consider a ≤ b and z ∈ bc:

1. There exists w ∈ ac such that w ≤ z.

2. Furthermore, if (A, ·) is commutative and C2 holds and ρ is a fuzzy congruence
relation in A, then every element w as in the previous item satisfies that ρ(w, z) ≥
ρ(a, b).

In order to obtain the converse result, we need to introduce the following definition.

Definition 4.3 An nd-operation · in a set A is said to be m-distributive when, for
all a, b, c ∈ A, if a ≤ b and w ∈ ac, then bw ∩ bc 6= ∅.

The justification of this name is that a multilattice (A,∨,∧) in which both opera-
tions are m-distributive satisfies the following property: for all a, b ∈ A with a ≤ b and
c ∈ A:

1. (a ∧ b) ∨ c ⊆ (a ∨ c) ∧ (b ∨ c)

2. (a ∨ b) ∧ c ⊆ (a ∧ c) ∨ (b ∧ c)

Proposition 4.4 Let (M, ·) be an m-distributive nd-groupoid that satisfies C1 and
a, b, c ∈M . If a ≤ b and w ∈ ac then there exists z ∈ bc such that w ≤ z.

Notice that the properties required as hypotheses of Proposition 4.4 and Proposition 4.2
are those of a multisemilattice without idempotency. The following result, stated in
terms of a multisemilattice, is a straightforward consequence of these two propositions.
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Proposition 4.5 Let (M, ·) be an m-distributive multisemilattice, ρ be a fuzzy con-
gruence relation and a, b, c ∈ M . If a ≤ b, w ∈ ac and z ∈ bc with w ≤ z then
ρ(w, z) ≥ ρ(a, b).

Now, we have all the required properties and lemmas needed in order to face the
main goal of this paper, namely, to prove that under certain circumstances the set of
congruences of an nd-groupoid is a complete lattice.

Theorem 4.6 The set of the fuzzy congruence relations in an m-distributive multi-
semilattice M , FCon(M), is a sublattice of FEq(M) and, moreover is a complete
lattice wrt the fuzzy inclusion ordering.

5 Conclusions and future work

Starting with the usual notion of fuzzy congruence relation in a groupoid, we have
introduced the definition of fuzzy congruence relation in an nd-groupoid by means of the
power extension of the relation to the power set of the carrier. Our definition is proved
to be an adequate generalization of that introduced by Bakhshi and Borzooei in [1].
Moreover, contrariwise to their claim, we have proved that, if (A, ·) is a hypergroupoid
(and thus an nd-groupoid), in general, (FCon(A),⊆) is not a lattice.

Finally, we introduce conditions on the nd-groupoid so that we can guarantee the
structure of lattice, moreover, of complete lattice of its set of fuzzy congruences. Such
conditions are those of an m-distributive multisemilattice.

As future work on this research line, our plan is to keep investigating new or ana-
logue results concerning congruences on generalized algebraic structures, specially in a
non-deterministic sense; in this topic, it seems to be important to study the so-called
power structures from a universal standpoint [3, 9]. We will also focus on the corre-
sponding fuzzifications of concepts such as ideal, closure systems and homomorphisms
over nd-structures, in the line of [16].
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