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We continue studying the connections between the Chu construction on the category
ChuCors of formal contexts and Chu correspondences, and generalizations of Formal
Concept Analysis (FCA). All the required constructions like categorical product, tensor
product, together with its bifunctor properties are introduced and proved. The final
section focuses on how the second-order generalization of FCA can be built up in terms
of the Chu construction.

Keywords: formal concept analysis, category theory, Chu construction

1. Introduction

This paper focuses on categorical developments of Formal Concept Analysis (FCA):
on the one hand, the importance of category theory as a foundational tool was dis-
covered soon after its very introduction by Eilenberg and MacLane about seventy
years ago; on the other hand, FCA has largely shown both its practical applications
and its capability to be generalized to more abstract frameworks, and this is why it
has become a very active research topic in the recent years. Just to name a few ex-
amples, in (Stell 2014) one can see a framework for FCA in which the sets of objects
and attributes are no longer unstructured but have a hypergraph structure inter-
preted using certain ideas from mathematical morphology; in (Huang, Li, and Guo
2014) we can see an application of the FCA formalism to other areas, specifically,
a representation of algebraic domains in terms of FCA.

The main theoretical tool in this paper is the Chu construction (Chu 1979). This
notion has interesting applications: on the one hand, it generates *-autonomous
categories (which turn out to give models of linear logic); on the other hand, the Chu
construction together with the closely related notion of Chu space have already been
applied to represent quantum physical systems and their symmetries (Abramsky
2012, 2013).

Roughly speaking, in this work, we continue our study of the categorical founda-
tions of formal concept analysis. It is worth to note that there are other authors also
interested in this research line, for instance, in (Hitzler and Zhang 2004; Zhang and
Shen 2006) it has been proved that certain concept structures can be approximated
using a cartesian closed category; (Krajči 2007) provided a categorical construction
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of certain extensions of FCA; in (Krötzsch, Hitzler, and Zhang 2005) morphisms
have received a categorical treatment as a means for modelling communication; in
(Denniston, Melton, and Rodabaugh 2013), links among topological systems, Chu
systems, and formal contexts are built in terms of the so-called category of formal
context interchanges (studied in their crisp and L-fuzzy versions). The properties
of the tensor product between contexts will enable us to consider the Chu construc-
tion on the category ChuCors of formal contexts and Chu correspondences between
them.

Specifically, we continue the research line of the authors on the categorical founda-
tion of FCA (Kŕıdlo, Krajči, and Ojeda-Aciego 2012; Kŕıdlo and Ojeda-Aciego 2011,
2014). The goal of this paper is to highlight the importance of the Chu construc-
tion in the categorical description of the theory of FCA and its generalisations, in
particular, the second-order formal concept analysis, introduced by Kŕıdlo, Krajči,
and Antoni (2016), can be represented in terms of the arrows of CHU(ChuCors,⊥).
The Chu construction plays here the role of some recipe for constructing a suitable
category that covers the second-order generalisation of FCA.

The structure of this paper is the following: in Section 2 we recall the preliminary
notions required both from category theory and FCA. Then, the various categorical
properties of the input category which are required (like the existence of categorical
and tensor products) are developed in detail in Sections 3 and 4. Finally, we elabo-
rate on one application of the Chu construction, presented in Section 5 where it is
shown how to construct second-order formal contexts starting from the category of
classical formal contexts and Chu correspondences (ChuCors).

2. Preliminaries

In order to make the manuscript self-contained, the fundamental notions and their
main properties are recalled in this section.

Definition 1. A formal context is any triple C = 〈B,A,R〉 where B and A are
finite sets and R ⊆ B × A is a binary relation. It is customary to say that B is a
set of objects, A is a set of attributes and R represents a relation between objects
and attributes.

Given a formal context 〈B,A,R〉, the derivation (or concept-forming) operators
are a pair of mappings ↑ : 2B → 2A and ↓ : 2A → 2B such that if X ⊆ B, then ↑X
is the set of all attributes which are related to every object in X and, similarly, if
Y ⊆ A, then ↓Y is the set of all objects which are related to every attribute in Y .

In order to simplify the description of subsequent computations, and specially in
the L-fuzzy case, it is convenient to describe the concept forming operators in terms
of characteristic functions, namely, considering the subsets as functions on the set
of Boolean values. Specifically, given X ⊆ B and Y ⊆ A, we can consider the sets
↑X and ↓Y as mappings ↑X : A→ {0, 1} and ↓Y : B → {0, 1} defined by

(1) ↑X(a) =
∧
b∈B

(
(b ∈ X)⇒ ((b, a) ∈ R)

)
for any a ∈ A

(2) ↓Y (b) =
∧
a∈A

(
(a ∈ Y )⇒ ((b, a) ∈ R)

)
for any b ∈ B

where the infimum
∧

is considered in the set of Boolean values and ⇒ is the truth-
function of the implication of classical logic.

Definition 2. A formal concept of a formal context C = 〈B,A,R〉 is a pair of
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sets 〈X,Y 〉 ∈ 2B × 2A which is a fixpoint of the pair of concept-forming operators,
namely, ↑X = Y and ↓Y = X. The object part X is called the extent and the
attribute part Y is called the intent. The set of all formal concepts of a context C
will be denoted by CL(C).

Two main constructions have been traditionally considered in order to relate two
formal contexts: the bonds and the Chu correspondences.

Definition 3. Let C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 be two formal contexts.
A bond between C1 and C2 is any relation β ∈ 2B1×A2 such that, when interpreted
as a table, its columns are extents of C1 and its rows are intents of C2. All bonds
between such contexts will be denoted by Bonds(C1, C2).

The notion of Chu correspondence between contexts can be seen as an alternative
inter-contextual structure which, instead, links intents of C1 and extents of C2.

Definition 4. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two formal con-
texts. A Chu correspondence between C1 and C2 is any pair ϕ = 〈ϕL, ϕR〉 of map-
pings ϕL : B1 → Ext(C2) and ϕR : A2 → Int(C1) such that for all (b1, a2) ∈ B1 ×A2

it holds that ↑2
(
ϕL(b1)

)
(a2) = ↓1

(
ϕR(a2)

)
(b1).

All Chu correspondences between such contexts will be denoted by Chu(C1, C2).

The notions of bond and Chu correspondence are interchangeable; specifically,
we can consider the bond βϕ associated to a Chu correspondence ϕ from C1 to C2

defined for b1 ∈ B1, a2 ∈ A2 as follows

βϕ(b1, a2) = ↑2
(
ϕL(b1)

)
(a2) = ↓1

(
ϕR(a2)

)
(b1)

Similarly, we can consider the Chu correspondence ϕβ associated to a bond ϕ defined
by the following pair of mappings:

ϕβL(b1) = ↓2
(
β(b1)

)
for all o1 ∈ B1

ϕβR(a2) = ↑1
(
βt(a2)

)
for all a2 ∈ A2

The set of all bonds (resp. Chu correspondences) between any two formal contexts
endowed with the ordering given by set inclusion has a complete lattice structure.
Moreover, both complete lattices are dually isomorphic.

In order to formally define the composition of two Chu correspondences, we need
to introduce the extension principle below:

Definition 5. Given a mapping ϕ : X → 2Y we define its extended mapping
ϕ+ : 2X → 2Y defined by ϕ+(M) =

⋃
x∈M ϕ(x), for all M ∈ 2X .

The set of formal contexts together with Chu correspondences as morphisms forms
a category denoted by ChuCors. Specifically:

• objects formal contexts
• arrows Chu correspondences
• identity arrow ι : C → C of context C = 〈B,A,R〉

◦ ιL(o) = ↓↑({b}), for all b ∈ B
◦ ιR(a) = ↑↓({a}), for all a ∈ A

• composition ϕ2 ◦ ϕ1 : C1 → C3 of arrows ϕ1 : C1 → C2, ϕ2 : C2 → C3 (where
Ci = 〈Bi, Ai, Ri〉, i ∈ {1, 2, 3})
◦ (ϕ2 ◦ ϕ1)L : B1 → 2B3 and (ϕ2 ◦ ϕ1)R : A3 → 2A1

◦ (ϕ2 ◦ ϕ1)L(b1) = ↓3↑3 (ϕ2L+(ϕ1L(b1)))
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◦ (ϕ2 ◦ ϕ1)R(a3) = ↑1↓1 (ϕ1R+(ϕ2R(a3)))

Recall that the category ChuCors is *-autonomous and equivalent to the category
of complete lattices and isotone Galois connections, more results on this category
and its L-fuzzy extensions can be found in (Kŕıdlo and Ojeda-Aciego 2011; Kŕıdlo,
Krajči, and Ojeda-Aciego 2012; Kŕıdlo and Ojeda-Aciego 2014; Mori 2008).

3. Categorical product on ChuCors

In this section, the category ChuCors is proved to contain all finite categorical
products, that is, it is a Cartesian category. To begin with, it is convenient to recall
the notion of categorical product.

Definition 6. Let C1 and C2 be two objects in a category. A product of C1 and C2 is
an object P with arrows πi : P → Ci for i ∈ {1, 2} satisfying the following condition:
For any object D and arrows δi : D → Ci for i ∈ {1, 2}, there exists a unique arrow
γ : D → P such that γ ◦ πi = δi for all i ∈ {1, 2}.

The construction will use the notion of disjoint union of two sets S1 ] S2 which
can be formally described as ({1} × S1) ∪ ({2} × S2) and, therefore, their elements
will be denoted as ordered pairs (i, s) where i ∈ {1, 2} and s ∈ Si. Now, we can
proceed with the construction:

Definition 7. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two for-
mal contexts. The product of such contexts is a new formal context C1 × C2 =
〈B1 ]B2, A1 ]A2, R1×2〉 where the relation R1×2 is given by

((i, b), (j, a)) ∈ R1×2 if and only if
(
(i = j)⇒ (b, a) ∈ Ri

)
for any (b, a) ∈ Bi ×Aj and (i, j) ∈ {1, 2} × {1, 2}.

Lemma 1. Given C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two formal contexts, the
product context C1 × C2 fulfills the property of the categorical product on ChuCors.

Proof. We just have to define the projection arrows 〈πiL, πiR〉 ∈ Chu(C1×C2, Ci) for
i ∈ {1, 2} as follows

• πiL : B1 ]B2 → Ext(Ci) ⊆ 2Bi

• πiR : Ai → Int(C1 × C2) ⊆ 2A1∪A2

• satisfying that for any (k, x) ∈ B1 ]B2 and ai ∈ Ai it holds that

↑i (πiL(k, x))(ai) = ↓1×2 (πiR(ai))(k, x)

The definition of the projections is given below

πiL(k, x)(bi) =

{
↓i↑i (χx)(bi) for k = i

↓i↑i
(
0
)

(bi) for k 6= i
for any (k, x) ∈ B1 ]B2 and bi ∈ Bi

πiR(ai)(k, y) =

{
↑i↓i (χai

)(y) for k = i

↑k↓k
(
0
)

(y) for k 6= i
for any (k, y) ∈ A1 ]A2 and ai ∈ Ai.

The proof that the definitions above actually provide a Chu correspondence is
just a long, although straightforward, computation and it is omitted.

Now, we have to show that for any formal context D = 〈E,F,G〉, where G ⊆ E×F
and any pair of arrows (δ1, δ2) with δi : D → Ci for all i ∈ {1, 2}, there exists a unique
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morphism γ : D → C1 × C2 such that the following diagram commutes:

C1 <
π1 C1 × C2

π2
> C2

D

γ
∧......... δ2

>

δ1

<

We give just the definition of γ as a pair of mappings γL : E → 2B1]B2 and γR : A1]
A2 → 2F

• γL(e)(k, x) = δkL(e)(x) for any e ∈ E and (k, x) ∈ B1 ]B2.
• γR(k, y)(f) = δkR(y)(f) for any f ∈ F and (k, y) ∈ A1 ]A2.

Checking the condition of categorical product is again straightforward.

We have just proved that binary products exist, but a Cartesian category requires
the existence of all finite products. If we recall the well-known categorical theorem
which states that if a category has a terminal object and binary product, then it has
all finite products, we need to prove just the existence of a terminal object (namely,
the nullary product) in order to prove the category ChuCors to be Cartesian.

Any formal context of the form 〈B,A,B × A〉 where the incidence relation is
the full Cartesian product of the sets of objects and attributes is (isomorphic to)
the terminal object of ChuCors. Such a formal context has just one formal concept
〈B,A〉; hence, from any other formal context there is just one Chu correspondence
to 〈B,A,B ×A〉.

The explicit construction of a general product (not necessarily either binary or
nullary) is given below:

Definition 8. Let {Ci}i∈I be an indexed family of formal contexts Ci = 〈Bi, Ai, Ri〉,
the product of the family is the formal context

∏
i∈I Ci defined by

∏
i∈I
Ci =

〈⊎
i∈I

Bi,
⊎
i∈I

Ai, R×I

〉

where
(
(k, b), (m, a)

)
∈ R×I ⇔

(
(k = m)⇒ (b, a) ∈ Rk

)
.

It is worth to note that the arbitrary product of contexts commutes with both
the concept lattice construction and the bonds between contexts. These two results
are explicitly proved below.

Lemma 2. Let Ci = 〈Bi, Ai, Ri〉 be a formal context for i ∈ I. It holds that
CL(

∏
i∈I Ci) is isomorphic to

∏
i∈I CL(Ci).

Proof (Sketch). We only prove that the intents of both concept lattices coincide;
the rest of the proof is straightforward.

Consider an arbitrary subset X of
⊎
i∈I Bi, and let us write Xj to refer to the

subset of elements of X belonging to Bj , namely, Xj = X ∩ ({j}×Bj) for all j ∈ I.
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It holds that

(j, a) ∈ ↑(X)⇔
∧

(k,b)∈
U

i∈I Bi

(
(k, b) ∈ X ⇒

(
(k, b), (j, a)

)
∈ R

)
⇔

∧
(k,b)∈

U
i∈I Bi

(
(k, b) ∈ X ⇒

(
(k = j)⇒ (b, a) ∈ Rj

))
⇔ 1 ∧

∧
b∈Bj

(
(b ∈ Xj)⇒ (b, a) ∈ Rj

)
⇔ a ∈ ↑j(Xj) for any j ∈ I and a ∈ Aj

Hence ↑(X) =
∏
i∈I ↑i(Xi).

Lemma 3. Let I and J be two index sets, and consider the two sets of formal
contexts {Ci}i∈I and {Dj}j∈J . The following isomorphism holds

Bonds
(∏
i∈I
Ci,
∏
j∈J
Dj
)
∼=

∏
(i,j)∈I×J

Bonds(Ci,Dj) .

Proof. Consider β ∈ Bonds(
∏
i∈I Ci,

∏
j∈J Dj), by the definition of bonds and the

previous lemma, every row is from
∏
j∈J Int(Dj). Similarly every column of β is from∏

i∈I Ext(Ci). Hence there exists a set of bonds {βij ∈ Bonds(Ci,Dj) | (i, j) ∈ I×J}
such that β =

∏
(i,j)∈I×J βij .

Corollary 1. Let I and J be two index sets, and consider the two sets of formal
contexts {Ci}i∈I and {Dj}j∈J . The following isomorphism holds

ChuCors
(∏
i∈I
Ci,
∏
j∈J
Dj
)
∼=

∏
(i,j)∈I×J

ChuCors(Ci,Dj) .

Proof. From the previous lemma and the dual isomorphism between Chu correspon-
dences and bonds.

4. Tensor product and its bifunctor property

Apart from the categorical product, another product-like construction can be given
in the category ChuCors, for which the notion of transposed context C∗ is needed.

Given a formal context C = 〈B,A,R〉, its transposed context is C∗ = 〈A,B,Rt〉,
where Rt(a, b) holds iff R(b, a) holds. Note that if ϕ ∈ Chu(C1, C2), then we can
consider ϕ∗ ∈ Chu(C∗2 , C

∗
1 ) defined by ϕ∗L = ϕR and ϕ∗R = ϕL.

Definition 9. The tensor product of formal contexts Ci = 〈Bi, Ai, Ri〉 for i ∈ {1, 2}
is defined as the formal context C1 � C2 = 〈B1 ×B2,Chu(C1, C∗2), R�〉 where

R�
(
(b1, b2), ϕ

)
= ↓2

(
ϕL(b1)

)
(b2).

In (Mori 2008) one can find the properties of the tensor product above, together
with the result that ChuCors with � is a symmetric and monoidal category. Those
results were later extended to the L-fuzzy case in (Kŕıdlo, Krajči, and Ojeda-Aciego
2012). In both papers, the structure of the formal concepts of a tensor product
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context was established as an ordered pair formed by a bond and a set of Chu
correspondences. In this respect, it is worth to cite the work by Deiters and Erné
(2009), which also studied the categorical and the tensor product of contexts.

Lemma 4. Given an arbitrary formal concept (β,X) of the tensor product C1�C2,
it holds that β =

∧
ψ∈X βψ and X = {ψ ∈ Chu(C1, C∗2) | β ≤ βψ}.

Proof. Recall that 〈β,X〉 ∈ Bonds(C1, C∗2) × 2Chu(C1,C∗2 ), and let X be an arbitrary
subset of Chu(C1, C∗2). Then, for all (b1, b2) ∈ B1 ×B2, we have

↓C1�C2 (X)(b1, b2) =
∧

ψ∈Chu(C1,C∗2 )

(
(ψ ∈ X)⇒ ↓2 (ψL(b1))(b2)

)
=
∧
ψ∈X

↓2 (ψL(b1))(b2) =
∧
ψ∈X

βψ(b1, b2)

Let β be an arbitrary subset of B1 ×B2. Then, for all ψ ∈ Chu(C1, C∗2)

↑C1�C2 (β)(ψ) =
∧

(b1,b2)∈B1×B2

(
β(b1, b2)⇒ ↓2 (ψL(b1))(b2)

)
=

∧
(b1,b2)∈B1×B2

(
β(b1, b2)⇒ βψ(b1, b2)

)

Hence ↑C1�C2 (β) = {ψ ∈ Chu(C1, C∗2) | β ≤ βψ}.

The notion of product of a context with a Chu correspondence is introduced
below.

Definition 10. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {0, 1, 2} be formal contexts, and con-
sider ϕ ∈ Chu(C1, C2). The product (C0 � ϕ) is defined as the pair of mappings

(C0 � ϕ)L : B0 ×B1 → 2B0×B2 (C0 � ϕ)R : Chu(C0, C2)→ 2Chu(C0,C1)

defined as follows:

• (C0 � ϕ)L(b, b1)(o, b2) = ↓C0�C2↑C0�C2 (γb,b1ϕ )(o, b2) where
γb,b1ϕ (o, b2) =

(
(b = o)∧ϕL(b1)(b2)

)
for any b, o ∈ B0, bi ∈ Bi with i ∈ {1, 2}

• (C0 � ϕ)R(ψ2)(ψ1) =
(
ψ1 ≥ (ψ2 ◦ ϕ∗)

)
for any ψi ∈ Chu(C0, Ci)

As one could expect, the result is a Chu correspondence. Specifically:

Lemma 5. C0 � ϕ is a Chu correspondence between the products of the contexts
C0 � C1 and C0 � C2.

Proof. By definition, it holds that (C0 � ϕ)L(b, b1) ∈ Ext(C0 � C2) for all (b, b1) ∈
B0 × B1; moreover, by Lemma 4 we also have (C0 � ϕ)R(ψ) ∈ Int(C0 � C1) for all
ψ ∈ Chu(C0, C1).
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Now, consider arbitrary b ∈ B0, b1 ∈ B1 and ψ2 ∈ Chu(C0, C∗2):

↑C0�C2
(
(C0 � ϕ)L(b, b1)

)
(ψ2)

= ↑C0�C2↓C0�C2↑C0�C2 (γb,b1ϕ )(ψ2)

= ↑C0�C2 (γb,b1ϕ )(ψ2)

=
∧

(o,b2)∈B0×B2

(
γb,b1ϕ (o, b2)⇒ ↓(ψ2R(b2))(o)

)
=

∧
(o,b2)∈B0×B2

((
(o = b) ∧ ϕL(b1)(b2)

)
⇒ ↓(ψ2R(b2))(o)

)
=
∧
o∈B0

∧
b2∈B2

(
(o = b)⇒

(
ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(o)

))
=
∧
o∈B0

(
(o = b)⇒

∧
b2∈B2

(ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(o))
)

=
∧

b2∈B2

(
ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(b)

)
=
∧

b2∈B2

(
ϕL(b1)(b2)⇒

∧
a∈A

(ψ2R(b2)(a)⇒ R(b, a))
)

=
∧
a∈A

( ∨
b2∈B2

(ϕL(b1)(b2) ∧ ψ2R(b2)(a))⇒ R(b, a)
)

=
∧
a∈A

((
ψ2R+(ϕL(b1))(a)

)
⇒ R(b, a)

)
= ↓(ψ2R+(ϕL(b1))(b) = ↓↑↓(ψ2R+(ϕL(b1))(b) = ↓((ϕ ◦ ψ2)R(b1))(b)

Note the use above of the extended mapping as given in Definition 5 in relation to
the composition of Chu correspondences.

On the other hand, we have

↓C0�C1((C0 � ϕ)R(ψ2))(b, b1)

=
∧

ψ1∈Chu(C0,C1)

((C0 � ϕ)R(ψ2)(ψ1)⇒ ↓(ψ1R(b1))(b))

=
∧

ψ1∈Chu(C0,C1)

((ψ1 ≥ ϕ ◦ ψ2)⇒ ↓(ψ1R(b1))(b))

=
∧

ψ1∈Chu(C0,C1)
ψ1≥ϕ◦ψ2

↓ (ψ1R(b1))(b) = ↓((ϕ ◦ ψ2)R(b1))(b)

Hence ↑C0�C2 ((C0 � ϕ)L(b, b1))(ψ2) = ↓C0�C1 ((C0 � ϕ)R(ψ2))(b, b1). Therefore, if
ϕ ∈ Chu(C1, C2), then C0 � ϕ ∈ Chu(C0 � C1, C0 � C2).

Given a formal context C, the tensor product C � − forms a mapping between
objects of ChuCors assigning to any formal context D the formal context C � D.
Moreover, given any arrow ϕ ∈ Chu(C1, C2) we have C � ϕ ∈ Chu(C � C1, C � C2).
We will show that this mapping preserves the unit arrows and the composition of
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Chu correspondences. Hence the mapping forms an endofunctor on ChuCors, that
is, a covariant functor from the category ChuCors into itself.

To begin with, let us recall the definition of functor between two categories:

Definition 11 (See (Barr and Wells 1995)). A covariant functor F : C→ D between
categories C and D is a mapping of objects to objects and arrows to arrows, in such
a way that:

• For any morphism f : A→ B, one has F (f) : F (A)→ F (B)
• F (g ◦ f) = F (g) ◦ F (f)
• F (1A) = 1F (A).

Lemma 6. Given a formal context C, it holds that C � − is an endofunctor on
ChuCors.

Proof. Consider the unit morphism ιC1 of a formal context C1 = 〈B1, A1, R1〉, and
let us show that (C�ιC1) = ιC�C1 . In other words, C�− respects the identity arrows
in ChuCors.

↑C�C1
(
(C � ιC1)(b, b1)

)
(ψ)

=
∧

(o,o1)∈B×B1

((
(o = b) ∧ ιC1L(b1)(o1)

)
⇒ ↓1 (ψL(o))(o1)

)
=

∧
o1∈B1

(
↓1↑1 (χb1)(o1)⇒ ↓1 (ψL(b))(o1)

)
=

∧
o1∈B1

(
↓1↑1 (χb1)(o1)⇒

∧
a1∈A1

(
ψL(b)(a1)⇒ R(o1, a1)

))
=

∧
o1∈B1

∧
a1∈A1

(
↓1↑1 (χb1)(o1)⇒

(
ψL(b)(a1)⇒ R(o1, a1)

))
=

∧
o1∈B1

∧
a1∈A1

(
ψL(b)(a1)⇒

(
↓1↑1 (χb1)(o1)⇒ R(o1, a1)

))
=

∧
a1∈A1

(
ψL(b)(a1)⇒

∧
o1∈B1

(
↓1↑1 (χb1)(o1)⇒ R(o1, a1)

))
=

∧
a1∈A1

(
ψL(b)(a1)⇒ ↑1↓1↑1 (χb1)(a1)

)
=

∧
a1∈A1

(
ψL(b)(a1)⇒ R1(b1, a1)

)
= ↓1 (ψL(b))(b1)

and, on the other hand, we have

↑C�C1(ιC�C1(b, b1))(ψ)

= ↑C�C1 (χ(b,b1))(ψ)

=
∧

(o,o1)∈B×B1

(
χ(b,b1)(o, o1)⇒ ↓1 (ψL(o))(o1)

)
= ↓1 (ψL(b))(b1)

As a result, we obtain ↑C�C1 ((C � ιC1)(b, b1))(ψ) = ↑C�C1 (ιC�C1(b, b1))(ψ) for all
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(b, b1) ∈ B ×B1 and and ψ ∈ Chu(C, C1); hence, ιC�C1 = (C � ιC1).
We will show now that C � − preserves the composition of arrows. Specifically,

this means that for any two arrows ϕi ∈ Chu(Ci, Ci+1) for i ∈ {1, 2} it holds that
C � (ϕ1 ◦ ϕ2) = (C � ϕ1) ◦ (C � ϕ2).

↑C�C3
((
C � (ϕ1 ◦ ϕ2)

)
L

(b, b1)
)
(ψ3)

=
∧

(o,b3)∈B×B3

((
(o = b) ∧ (ϕ1 ◦ ϕ2)L(b1)(b3)

)
⇒ ↓(ψ3R(b3))(o)

)
=
∧

b3∈B3

(
(ϕ1 ◦ ϕ2)L(b1)(b3)⇒ ↓(ψ3R(b3))(b)

)
(by similar operations to those in the first part of the proof)

= ↓
((

(ϕ1 ◦ ϕ2

)
◦ ψ3)L(b1)

)
(b)

On the other hand, and writing F for C � − in order to simplify the resulting
expressions, we have

↑FC3((Fϕ1 ◦ Fϕ2)L(b, b1))(ψ3)

= ↑FC3↓FC3↑FC3
(
(Fϕ2)L+

(
(Fϕ1)L(b, b1)

))
(ψ3)

=
∧

(o,b3)∈B×B3

(
∨

(j,b2)∈B×B2

(
(Fϕ1)L(b, b1)(j, b2) ∧ (Fϕ2)L(j, b2)(o, b3)

)
⇒ ↓(ψ3R(b3))(o)

)

=
∧

b3∈B3

∧
b2∈B2

((
ϕ1L(b1)(b2) ∧ ϕ2L(b2)(b3)

)
⇒ ↓(ψ3R(b3))(b)

)
=
∧

b3∈B3

( ∨
b2∈B2

(
ϕ1L(b1)(b2) ∧ ϕ2L(b2)(b3)

)
⇒ ↓(ψ3R(b3))(b)

)
=
∧

b3∈B3

(
ϕ2L+(ϕ1L(b1))(b3)⇒ ↓(ψ3R(b3))(b)

)
=
∧

b3∈B3

(
(ϕ1 ◦ ϕ2)L(b1)(b3)⇒ ↓(ψ3R(b3))(b)

)

From the previous equalities we see that C� (ϕ1 ◦ϕ2) = (C�ϕ1) ◦ (C�ϕ2). Hence,
composition is preserved.

As a result, the mapping C �− forms a functor from ChuCors into itself.

All the previous computations can be applied to the first argument without any
problems, hence we can directly state the following proposition.

Proposition 1. The tensor product forms a bifunctor − � − from ChuCors ×
ChuCors to ChuCors.

10
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5. The Chu construction on ChuCors and second-order FCA

The Chu construction (Chu 1979) is a theoretical process that, starting from a
symmetric monoidal closed (autonomous) category and a dualizing object, generates
a *-autonomous category. The basic theory of *-autonomous categories and their
properties are given in (Barr 1979; Barr and Wells 1995).

In the following, the construction will be applied on ChuCors and the dualizing
object ⊥ = 〈{�}, {�}, 6=〉 as inputs. In this section it is shown how second order
FCA (Kŕıdlo, Krajči, and Antoni 2016) is connected to the output of such a con-
struction.

The category generated by the Chu construction and ChuCors and ⊥ will be
denoted by CHU(ChuCors,⊥):

• Its objects are triplets of the form 〈C,D, ρ〉 where
◦ C and D are objects of the input category ChuCors (i.e. formal contexts)
◦ ρ is an arrow in ChuCors(C �D,⊥).

• Its morphisms are pairs of the form 〈ϕ,ψ〉 : 〈C1, C2, ρ1〉 → 〈D1,D2, ρ2〉 where
Ci and Di are formal contexts for i ∈ {1, 2} and
◦ ϕ and ψ are elements from ChuCors(C1,D1) and ChuCors(D2, C2), re-

spectively, such that the following diagram commutes

C1 �D2
C1 � ψ

> C1 � C2

D1 �D2

ϕ�D2
∨

ρ2
> ⊥

ρ1
∨

or, equivalently, the following equality holds

(C1 � ψ) ◦ ρ1 = (ϕ�D2) ◦ ρ2

Connection to second-order FCA

A second-order formal context (Kŕıdlo, Krajči, and Antoni 2016) focuses on external
information represented by the formal contexts, and it serves a bridge between the
L-fuzzy (Bělohlávek 2004) and heterogeneous (Antoni, Krajči, Kŕıdlo, Macek, and
Pisková 2014) frameworks.

The notion of second-order formal context was originally introduced in the L-fuzzy
framework, but here we will work just with the crisp version introduced below.

Definition 12. Consider two (nonempty) indexed sets {Ci}i∈I and {Dj}j∈J of
formal contexts, so-called external formal contexts, where Ci = 〈Bi, Ti, Pi〉 and
Dj = 〈Oj , Aj , Qj〉. A second-order formal context is a tuple〈⊎

i∈I
Bi, {Ci}i∈I ,

⊎
j∈J

Aj , {Dj}j∈J , R
〉

where R ⊆
⊎
i∈I Bi ×

⊎
j∈J Aj.

Proposition 2. Objects of CHU(ChuCors,⊥) are representable as second-order
formal contexts.

11
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Proof. Every object in CHU(ChuCors,⊥) has the form 〈C,D, ρ〉 where C,D are
formal contexts and ρ ∈ Chu(C�D,⊥). As ChuCors is a closed monoidal category1

we have that for every three formal contexts C, D, E the following isomorphism
holds Chu(C � D, E) ∼= ChuCors(C,D ( E), and recall that D ( ⊥ ∼= D∗ because
ChuCors is *-autonomous. Thus, we obtain Chu(C � D,⊥) ∼= Chu(C,D (⊥) ∼=
Chu(C,D∗).

Therefore, given ρ ∈ Chu(C�D,⊥), if we write C = 〈B, T, P 〉 and D = 〈O,A,Q〉,
then we have a pair of mappings

ρL : B ×O → 2{�} ρR : {�} → Int(C �D) ⊆ 2Chu(C,D∗)

satisfying that ↑⊥ (ρL(b, o))(�) = ¬ρL(b, o)(�) =↓C�D (ρR(�))(b, o). From Lemma 4,
it follows that ↓C�D (ρR(�)) is equal to some bond β ∈ Bonds(C,D∗) and then ρL
is its negation defined as ρL(b, o)(�) = ¬β(b)(o)

As a result, any object 〈C,D, ρ〉 of CHU(ChuCors,⊥) can be represented as a
second-order formal context 〈B, {C}, O, {D∗}, {¬ρL}〉.

Proposition 3. Any second-order formal context is representable as an object of
CHU(ChuCors,⊥).

Proof. Let
〈⊎

i∈I Bi, {Ci}i∈I ,
⊎
j∈J Aj , {Dj}j∈J , R

〉
be an arbitrary second-order

formal context. For all (i, j) ∈ I × J , consider its closest covering bond given by

ρij =
∧
{β ∈ Bonds(Ci,Dj) | β(oi)(aj) ≥ R(oi, aj) for all (oi, aj) ∈ Bi ×Aj)} .

Corollary 1 states a property of categorical product on ChuCors which allows us
to use just one external formal context

∏
i∈I Ci instead of {Ci}i∈I and similarly for

{Dj}j∈J . In this case, we need to consider just one covering bond ρ =
∏

(i,j)∈I×J ρij
as guaranteed by Lemma 3. Hence, the original second-order formal context can be
expressed in a rather simplified form.

Now we can define ϕρ ∈ Chu
(∏
i∈I
Ci�

∏
j∈J
D∗j ,⊥

)
as the following pair of mappings

• ϕρL :
⊎
i∈I

Bi ×
⊎
j∈J

Aj → 2{�} defined as ϕρL((i, bi), (j, aj))(�) = ¬ρij(bi)(aj).

• ϕρR : {�} → 2Chu(
Q

i∈I Ci,
Q

j∈J Dj) defined as
ϕρR(�) = {ϕ ∈ Chu(

∏
i∈I Ci,

∏
j∈J Dj) | βϕ ≤ ρ}

Hence any second-order formal context of
〈⊎

i∈I Bi, {Ci}i∈I ,
⊎
j∈J Aj , {Dj}j∈J , R

〉
is representable in CHU(ChuCors,⊥) as its object 〈

∏
i∈I Ci,

∏
j∈J Dj , ϕρ〉.

The propositions above show a one-to-one connection between objects of
CHU(ChuCors,⊥) and second-order formal contexts. Hence it seems that the Chu
construction applied on ChuCors is a good way to categorically describe a highly
abstract extension of FCA like the second-order extension.

The following lemma confirms the correctness of the categorical description pro-
posal. Its meaning is based on the well known fact about *-autonomous categories
which states that for any object X of such a category it holds that X ∼= > ( X.
In the case of ChuCors and the Chu-based extension, the isomorphism ∼= relies on
the isomorphism between their concept lattices.

1See (Barr and Wells 1995) and more concretely (Mori 2008; Kŕıdlo, Krajči, and Ojeda-Aciego 2012).
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Proposition 4. Given formal contexts C and D, a bond ρ ∈ Bonds(C,D) and
ϕρ ∈ Chu(C �D∗,⊥), the following isomorphism holds

〈⊥,⊥, ϕ¬〉( 〈C,D∗, ϕρ〉 ∼= CL(〈C,D, ρ〉)

i.e. the arrows in CHU(ChuCors,⊥) have a lattice structure which is isomorphic to
the concept lattice of a second-order formal context 〈C,D, ρ〉.

Proof. Let 〈Φ,Ψ〉 be an arrow between 〈⊥,⊥, 6=〉 and 〈C,D, ϕρ〉, such that the fol-
lowing diagram commutes

⊥�D
⊥� ψ

> ⊥�⊥

C �D

Φ�D
∨

ϕρ
> ⊥

ϕ¬
∨

or, equivalently, the following holds

↓⊥�D∗(((Φ�D∗) ◦ ϕρ)R(�))(�, a) = ↓⊥�D∗(((⊥�Ψ) ◦ ϕ¬)R(�))(�, a)

We will now show that the previous characterization of any arrow is equal to some
intent of a second-order formal context 〈C,D, ρ〉, and for that, we will introduce some
useful notations:

• Let us write C = 〈B, T, P 〉 and D = 〈O,A,Q〉
• ξρL : B → Ext(D), defined by ξρL(b)(o) = ↓D (ρ(b))(o)
• ξρR : A→ Int(C), defined by ξρR(a)(t) = ↑C (ρt(a))(t)
• ϕρ ∈ Chu(C �D∗,⊥)
• ϕρL : B ×A→ 2{�}, defined by ϕρL(b, a)(�) = ¬ρ(b)(a)
• ϕρR : {�} → 2Chu(C,D), defined by ϕρR(�) = {ϕ ∈ Chu(C,D) | ϕ ≥ ξρ}

↓⊥�D∗ (((Φ�D∗) ◦ ϕρ)R(�))(�, a) =

=
∧

δ∈Chu(⊥,D)

(((Φ�D∗) ◦ ϕρ)R(�)(δ)⇒ βδ(�)(a))

=
∧

δ∈Chu(⊥,D)

(
∨

ξ∈Chu(C,D)

((Φ�D∗)R(ξ)(δ) ∧ ϕρR(�)(ξ)⇒ βδ(�)(a))

=
∧

δ∈Chu(⊥,D)

∧
ξ∈Chu(C,D)

((Φ�D∗)R(ξ)(δ) ∧ ϕρR(�)(ξ)⇒ βδ(�)(a))

=
∧

δ∈Chu(⊥,D)

∧
ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒ ((Φ�D∗)R(ξ)(δ)⇒ βδ(�)(a)))

=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒
∧

δ∈Chu(⊥,D)

((Φ�D∗)R(ξ)(δ)⇒ βδ(�)(a)))

=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒
∧

δ∈Chu(⊥,D)

((δ ≤ ξ ◦ Φ∗)⇒ βδ(�)(a)))
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=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒
∧

δ∈Chu(⊥,D);δ≤ξ◦Φ∗
βδ(�)(a))

=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒ βξ◦Φ∗(�)(a))

=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒↑D ((ξ ◦ Φ∗)L(�))(a))

=
∧

ξ∈Chu(C,D)

(ϕρR(�)(ξ)⇒
∧
o∈O

((ξ ◦ Φ∗)L(�)(o)⇒ Q(o, a))

=
∧

ξ∈Chu(C,D)

((ξ ≥ ξρ)⇒
∧
o∈O

((ξ ◦ Φ∗)L(�)(o)⇒ Q(o, a))

=
∧
o∈O

((ξρ ◦ Φ∗)L(�)(a)⇒ Q(o, a))

=
∧
o∈O

(
∨
b∈B

(ξρL(b)(o) ∧ ΦL(�)(b))⇒ Q(o, a))

=
∧
b∈B

(ΦL(�)(b)⇒
∧
o∈O

(ξρL(b)(o)⇒ Q(o, a)))

=
∧
b∈B

(ΦL(�)(b)⇒ ρ(b)(a))

= ↑ρ(ΦL(�))(a)

Recalling that ΦL is defined as a mapping {�} → Ext(C), we obtain that ΦL(�)
is always an extent of C, and the previously analyzed arrow is in fact an intent of a
second-order formal context.

In the previous computation, we have used a simplified version of the second-
order formal context. In the general case ΦL : {�} → Ext(

∏
i∈I Ci) and, hence, ρ ∈

Bonds(
∏
i∈I Ci,

∏
j∈J Dj), the proof follows the same structure.

6. Conclusion

Two different product constructions, namely the categorical product and the tensor
product, have been studied in the category ChuCors of formal contexts and Chu
correspondences.

On the one hand, the existence of products enables us to represent tables and,
hence, binary relations as those used in formal concept analysis; on the other hand,
the tensor product is proved to fulfill the required properties of a bifunctor, which
enables us to consider the Chu construction on the category ChuCors. These two
results pave the way to conjecturing that different existing generalizations of FCA
might be captured as suitable instantiations of the Chu construction, for instance
using subcategories of CHU(ChuCors,⊥).

This conjecture has been substantiated in Section 5, where it has been shown
that the second-order formal concept analysis, introduced by Kŕıdlo, Krajči, and
Antoni (2016), can be represented in terms of the arrows of CHU(ChuCors,⊥). The
application given above seems to be just a first-step in the search for representa-
tion results of different generalizations of FCA in terms of the Chu construction
applied on different input categories. So far, we already have sketched versions of
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the representation results for the L-fuzzy extension of FCA. For future work, we
are planning to provide representations based on the Chu construction for one-sided
FCA, heterogeneous FCA, multi-adjoint FCA, et cetera.
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