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Abstract. Multi-adjoint logic programs were recently proposed as a generaliza-
tion of monotonic and residuated logic programs, in that simultaneous use of
several implications in the rules and rather general connectives in the bodies are
allowed. In this work, the need of biresiduated pairs is justified through the study
of a very intuitive family of operators, which turn out to be not necessarily com-
mutative and associative and, thus, might have two different residuated impli-
cations; finally, we introduce the framework of biresiduated multi-adjoint logic
programming and sketch some considerations on its fixpoint semantics.

1 Introduction

A number of logics have been introduced in the recent years motivated by the problem
of reasoning in situations where information may be vague or uncertain. Such type of
reasoning has been called inexact or fuzzy or approximate reasoning. Here we propose a
lattice-valued logic programming paradigm that we callbiresiduatedandmulti-adjoint,
which permits the articulation of vague concepts and generalizes several approaches to
the extension of logic programming techniques to the fuzzy case.

Multi-adjoint logic programming was introduced in [6] as a refinement of both ini-
tial work in [11] and residuated logic programming [2]. It allows for very general con-
nectives in the body of the rules and, in addition, sufficient conditions for the continuity
of its semantics are known. Such an approach is interesting for applications in which
connectives depend on different users preferences; or in which knowledge is described
by a many-valued logic program where connectives can be general aggregation opera-
tors (conjunctors, disjunctors, arithmetic mean, weighted sum, . . . ), even different ag-
gregators for different users and, moreover, the program is expected to adequately man-
age different implications for different purposes. The special features of multi-adjoint
logic programs are the following:

1. A number of different implications are allowed in the bodies of the rules.
2. Sufficient conditions for continuity of its semantics are known.
3. The requirements on the lattice of truth-values are weaker that those for the residu-

ated approach.



It is important to recall that many different “and” and “or” operations have been
proposed for use in fuzzy logic. It is therefore important to select, for each particular
application, the operations which are the best for this particular application. Several pa-
pers discuss the optimal choice of “and” and “or” operations for fuzzy control, when the
main criterion is to get the most stable control. In reasoning applications, however, it is
more appropriate to select operations which are the best in reflecting human reasoning,
i.e., operations which are “the most logical”.

In this paper, we build on the fact that conjunctors in multi-adjoint logic programs
need not be either commutative or associative and, thus, consider the possibility of
including a further generalisation of the framework, allowing forbiresiduation, in the
sense of [10]. This way, each conjunctor in our multi-adjoint setting may potentially
have two “lateral” residuated implications. This approach has been recently used by
Morsi [8] to develop a formal system based on a biresiduation construction.

Yet another reason for introducing biresiduation is that fuzzy logic in a narrow
sense [4] is still an open system and thus, new connectives can and should be intro-
duced. Note that the concept of biresiduation used in this paper is not to be confused
with the generalized biimplication, which is another usual meaning of this term as used
in v.gr. [7]. A natural question then arises, whether the basic syntactico-semantical prop-
erties are not harmed by this generalisation.

The structure of the paper is as follows: In Section 2, the preliminary definitions are
introduced; later, in Section 3, some motivating examples towards considering biresid-
uated implications are presented; in Section 4, the syntax and semantics of biresiduated
multi-adjoint logic programs is given; finally, in Section 5, some concluding remarks
and pointers to related works and ideas for future research are presented.

2 Preliminary Definitions

The main concept in the extension to logic programming to the fuzzy case is that ofad-
joint pair, firstly introduced in a logical context by Pavelka, who interpreted the poset
structure of the set of truth-values as a category, and the relation between the connec-
tives of implication and conjunction as functors in this category. The result turned out
to be another example of the well-known concept of adjunction, introduced by Kan in
the general setting of category theory in 1950.

Definition 1 (Adjoint pair). Let 〈P,�〉 be a partially ordered set and a pair(& ,←),
of binary operations inP , such that:

(a1) Operation& is increasing in both arguments, i.e. ifx1, x2, y ∈ P andx1 � x2,
then(x1 & y) � (x2 & y) and(y&x1) � (y&x2);

(a2) Operation← is increasing in the first argument (the consequent) and decreasing
in the second argument (the antecedent), i.e. ifx1, x2, y ∈ P andx1 � x2, then
(x1 ← y) � (x2 ← y) and(y ← x2) � (y ← x1);

(a3) For anyx, y, z ∈ P , we have thatx � (y ← z) holds if and only if(x& z) � y
holds.

Then we say that(& ,←) forms anadjoint pairin 〈P,�〉.
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The need of the monotonicity of operators← and& is clear, if they are going to
be interpreted as generalised implications and conjunctions. The third property in the
definition corresponds to the categorical adjointness, and can be adequately interpreted
in terms of multiple-valued inference as asserting both that the truth-value ofy ← z is
the maximalx satisfyingx& z � y, and also the validity of the following generalised
modus ponens rule [4]:

If x is a lower bound ofψ ← ϕ, andz is a lower bound ofϕ then a lower
boundy of ψ is x& z.

In addition to(a1)–(a3) it will be necessary to assume the existence of bottom and
top elements in the poset of truth-values (the zero and one elements), and the exis-
tence of joins (suprema) for every directed subset; that is, we will assume a structure of
complete lattice, but nothing about associativity, commutativity and general boundary
conditions of& . In particular, the requirement that(L,&,>) has to be a commuta-
tive monoid in a residuated lattice is too restrictive, in that commutativity needn’t be
required in the proofs of soundness and correctness.

Extending the results in [2, 11] to a more general setting, in which different impli-
cations (Łukasiewicz, G̈odel, product) and thus, several modus ponens-like inference
rules are used, naturally leads to considering severaladjoint pairsin the lattice:

Definition 2 (Multi-Adjoint Lattice). Let〈L,�〉 be a lattice. Amulti-adjoint latticeL
is a tuple(L,�,←1,&1, . . . ,←n,&n) satisfying the following items:

(l1) 〈L,�〉 is bounded, i.e. it has bottom(⊥) and top(>) elements;
(l2) (&i,←i) is an adjoint pair in〈L,�〉 for i = 1, . . . , n;
(l3) >&i ϑ = ϑ&i> = ϑ for all ϑ ∈ L for i = 1, . . . , n.

Remark 1.Note that residuated lattices are a special case of multi-adjoint lattice.

From the point of view of expressiveness, it is interesting to allow extra operators to
be involved with the operators in the multi-adjoint lattice. The structure which captures
this possibility is that of a multi-adjointΩ-algebra, whereΩ is the set of operators,
which comprises the set of adjoint pairs and, possibly, other monotone operators such
asdisjunctorsor aggregators.

3 Towards biresiduation

In fuzzy logic there is a well developed theory oft-norms,t-conorms and residual
implications. The objective of this section is to show some interesting non-standard
connectives to motivate the consideration of a more general class of connectives in
fuzzy logic. The motivation is the following:

When evaluating the relevance of answers to a given query it is common to use some
subjective interpretation of human preferences in a granulated way. This is, fuzzy truth-
values usually describe steps in the degree of perception (numerous advocations of this
phenomenon have been pointed out by Zadeh). This is connected to the well-known fact
that people can only distinguish finitely many degrees of quantity or quality (closeness,
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cheapness, etc.). Thus, in practice, although we used the productt-normx&py = x · y,
we would be actually working with a piece-wise constant approximation of it. In this
generality, it is possible to work with approximations of t-norms and/or conjunctions
learnt from data by a neural net.

Regarding the use of non-standard connectives, just consider that a variable repre-
sented byx can be observed withm + 1 different values, then surely we should be
working with a regular partition of[0, 1] into m pieces. This means that a given value
x should be fitted to this “observation” scale as the least upper bound with the form
k/m (analytically, this corresponds todm · xe/m whered e is the ceiling function). A
similar consideration can be applied to both, variabley and the resulting conjunction;
furthermore, it might be possible that each variable has different granularity.

Formally, assume inx-axis we have a partition inton pieces, iny-axis intom pieces,
and inz-axis intok pieces. Then the approximation of the product conjunction looks
like the definition below

Definition 3. Denote(z)p = dp · zep and define, for naturalsn,m, k > 0

Ck
n,m(x, y) =

(
(x)n · (y)m

)
k

Note thatCk
n,m satisfies the properties of a generalconjunctor, that is, it is monotone

in both variables and generalizes the classical conjunction.
There are connectives of the formCk

n,m(x, y) which are non-associative and, there
are connectives of the same form which are non-commutative as well. The following
example shows some of them:

Example 1.

1. The connectiveC = C10
10,10 is not associative.

C(0.7, C(0.7, 0.3)) = C(0.7, (0.21)10) = C(0.7, 0.3) = (0.21)10 = 0.3
C(C(0.7, 0.7), 0.3) = C((0.49)10, 0.3) = C(0.5, 0.3) = (0.15)10 = 0.2

2. The connectiveC4
10,5(x, y) is not commutative.

C4
10,5(0.82, 0.79) = ((0.82)10 · (0.79)5)4 = (0.9 · 0.8)4 = (0.72)4 = 0.75

C4
10,5(0.79, 0.82) = ((0.79)10 · (0.82)5)4 = (0.8 · 1)4 = 1

ut
Connectives as those in the example above can be reasonably justified as follows: If

we are looking for a hotel which is close to downtown, with reasonable price and being
a new building, then classical fuzzy approaches would assign a user “his” particular in-
terpretation of “close”, “reasonable” and “new”. As, in practice, we can only recognize
finitely many degrees of being close, reasonable, new, then the corresponding fuzzy
sets have a stepwise shape. This motivates the lattice-valued approach we will assume
in this paper: it is just a matter of representation that the outcome is done by means of
intervals of granulation and/or indistinguishability.

Although the multi-adjoint approach to logic programming has been shown to be
more general than the monotonic and residuated paradigms (which, in turn, generalizes
annotated LP, possibilistic LP, probabilistic LP, etc), the discussion below introduces a
context which cannot be easily accommodated under multi-adjointness.
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On operatorsCk
n,m and biresidua

By using operatorsCk
n,m, we study an example of adjoint pair which will motivate the

need of biresiduation. Firstly, let us recall the well-knownresiduumconstruction, which
has been extensively studied in the context of continuous t-norms, see [4, 5].

Definition 4. GivenCk
n,m : [0, 1]× [0, 1]→ [0, 1], we define the following operator:

z ↙k
n,m y = sup{x ∈ [0, 1] | Ck

n,m(x, y) ≤ z}

for eachz, y ∈ [0, 1], which is calledr-adjoint implicationofCk
n,m.

As we have proved above, in generalCk
n,m need not be commutative, therefore

we have to show that the termr-adjoint implication makes sense: actually, the pair
(Ck

n,m,↙k
n,m) satisfies the properties of adjoint pair.

We will prove a slightly more general version of the statement: that the construction
above leads to an adjoint pair assuming only that the supremum in the definition is
indeed a maximum, but without assuming either commutativity or continuity of the
conjunctor.

Proposition 1. Consider a conjunctor&: L×L→ L in a lattice, and assume that for
all y, z ∈ L there exists a maximum of the set{x ∈ L | x& y � z}. Then(&,↙) is an
adjoint pair.

Proof. Let us prove that it is increasing in the first argument. Assumez1 � z2, then

{x | x& y � z1} ⊆ {x ∈ L | x& y � z2}

therefore we have

z1 ↙ y = sup{x ∈ L | x& y � z1} � sup{x ∈ L | x& y � z2} = z2 ↙ y

To show that↙ decreases in the second argument, assumey1 � y2. By monotonicity
in the second argument, we havex& y1 � x& y2 for all x ∈ L, which implies the
following inclusion

{x ∈ L | x& y2 � z} ⊆ {x ∈ L | x& y1 � z}

thereforez ↙ y2 � z ↙ y1.
For the adjoint property, considerx, y, z ∈ L and assumex& y � z, thenx ∈ {x′ |

x′ & y � z} and, therefore

x � sup{x′ | x′ & y � z} = z ↙ y

For the converse, assume thatx � z ↙ y = sup{x′ | x′ & y � z}.
By the hypothesis, we have that the supremum is indeed a maximum; let us denote

it by x0. Then we havex � x0 and, by monotonicity in the first argument, we have

x& y � x0 & y � z

ut
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⊥

>

a
b

c

In this lattice we have

c ↙ b = sup{x | x & b � c} = sup{a, c,⊥} = >

so, forx = >, y = b, andz = c the adjoint property fails.

Fig. 1.Counterexample for Proposition 1.

The adjoint property might fail in the case that the supremum is not maximum, as
the following example shows:

Proposition 2. (Ck
n,m,↙k

n,m) is an adjoint pair.

Proof. By the previous proposition, we have only to show that in the definition of the
r-adjoint implication ofCk

n,m the supremum is indeed a maximum.
Given y, z,∈ [0, 1], let A denote the set{x ∈ [0, 1] | Ck

n,m(x, y) ≤ z}. The
result follows from the fact that if we havex ∈ A, then we also have(x)n ∈ A by
the definition ofCk

n,m. Thus, the only possible values for the supremum are in the set{
0, 1

n ,
2
n , . . . ,

n−1
n , 1

}
, but suprema on a discrete subset of a linear order are always

maxima. ut

An interesting ‘coherence’ property that holds for continuous t-norms and their
residua is that the truth-value of the consequent is greater or equal than the truth-value
of the antecedent if and only if the truth-value of the implication is defined to be the
top element. However, the property “ifz ≥ y, thenz ← y = >” does not hold for
connectivesCk

n,m:

Example 2.If we consider the conjunctorC8
4,5 : [0, 1] × [0, 1] → [0, 1], we can check

that0.6 ≥ 0.45 and0.6↙8
4,5 0.45 6= 1. We have,

C8
4,5(x, 0.45) =

⌈
8 · d4 · xe

4
· d5 · 0.45e

5

⌉
8

=

⌈
8 · d4 · xe

4
· 0.6

⌉
8

and then

0.6↙8
4,5 0.45 = sup{x ∈ [0, 1] | C8

4,5(x, 0.45) ≤ 0.6} = 0.75 6= 1

ut

In the following proposition, where we introduce a necessary and sufficient condi-
tion for the fulfillment of the coherence property for the connectivesCk

n,m, the notation
[0, 1]n will be used to denote the discrete set

{
0, 1

n ,
2
n , . . . ,

n−1
n , 1

}
.

Proposition 3. Considerz, y ∈ [0, 1] such thatz ≥ y thenz ↙k
n,m y = 1 if and only

if y ∈ [0, 1]k ∩ [0, 1]m

6



Proof. (⇒) Assumez ↙k
n,m y = 1 for all z ≥ y. In particular, forz = y we have,

from the hypothesis and the adjoint property, thatCk
n,m(1, y) ≤ y. Moreover, we

have the following chain of inequalities

y ≤ dm · ye
m

≤

⌈
k · dm · ye

m

⌉
k

= Ck
n,m(1, y) ≤ y

Therefore, we actually have a chain of equalities. Now, considering the first equality
we obtainm · y = dm · ye which leads toy ∈ [0, 1]m. Similarly, one can obtain
y ∈ [0, 1]k.

(⇐) It is sufficient to show that1 ∈ {x ∈ [0, 1] | Ck
n,m(x, y) ≤ z}:

Ck
n,m(1, y) =

⌈
k · dn · 1e

n
· dm · ye

m

⌉
k

=

⌈
k · dm · ye

m

⌉
k

(i)
=
dk · ye
k

(ii)
= y ≤ z

where(i) and(ii) follow from y ∈ [0, 1]m andy ∈ [0, 1]k respectively. ut

Taking into account this result we obtain a condition for the fulfillment of the coherence
property for the r-adjoint implication defined above in terms of the set of truth-values
that can be attached to any given formula.

For example, consider that we are working on a multiple-valued logic, whose truth-
values are taken on a regular partition of[0, 1], then the coherence property for the
conjunctorCk

n,m automatically holds in any finitely-valued logics on a regular partition
of gcd(k,m) + 1 elements.

Consider for example that we need to work with the operatorC8
4,5 in our language.

By the result above, the r-adjoint implication only fulfills the coherence property in the
classical case, sincegcd(8, 5) = 1. Could we use another implication which turns out
to be coherent in a multiple-valued logic? We have an obvious choice by using the non-
commutativity of the operator. This leads to what we call thel-adjoint implication to
the conjunctor.

Definition 5. Given the conjunctorCk
n,m : [0, 1]× [0, 1]→ [0, 1], we define itsl-adjoint

implicationas follows:

z ↖k
n,m y = sup{x ∈ [0, 1] | Ck

n,m(y, x) ≤ z}

for eachz, y ∈ [0, 1].

It is easy to prove a similar result to that of Proposition 3 and obtain that the l-adjoint
implication toC8

4,5 is coherent on a 5-valued logic, forgcd(8, 4) = 4.
The biresiduated structure is obtained by allowing, for each adjoint conjunctor, two

“sided” adjoint implications, as detailed in the following definition:

Definition 6. Let 〈L,�〉 be a lattice. Abiresiduated multi-adjoint latticeL is a tuple
(L,�,↙1,↖1,&1, . . . ,↙n,↖n,&n) satisfying the following items:

1. 〈L,�〉 is bounded, i.e. it has bottom and top elements;

7



2. (&i,↙i,↖i) satisfies the following properties, for alli = 1, . . . , n; i.e.
(a) Operation&i is increasing in both arguments,
(b) Operations↙i,↖i are increasing in the first argument and decreasing in the

second argument,
(c) For anyx, y, z ∈ P , we have that

1. x � y↙i z if and only if x&i z � y
2. x � y↖i z if and only if z&i x � y

The last conditions in (3c) make this algebraic structure a flexible and suitable tool for
being used in a logical context, for they can be interpreted as a two possible multiple-
valuedmodus ponens-like rules. From a categorical point of view, these conditions arise
when considering the conjunctor as a bifunctor, and applying the adjointness either in its
second or first argument, respectively. Also note that the requirements of the boundary
conditions for the conjunctors are not necessary.

The proposition below introduces a characterization of the adjoint property for the
pairs(&,↖) and(&,↙).

Proposition 4. Property (3c2) in the definition of biresiduated multi-adjoint lattice is
equivalent to the following pair of conditions for allx, y ∈ P :

(r1′) x � ((y&x)↖ y) (r1′′) x � ((x& y)↙ y)
(r2′) (x&(y↖ x)) � y (r2′′) ((y↙ x) &x) � y

Remark 2.In the classical residuated case, conditions (r1) and (r2) are sometimes called
(Φ2) and(Φ3), whereas (3b) is known as(Φ1), see e.g. [3].

4 Syntax and semantics of biresiduated multi-adjoint programs

Similarly to the (mono)-residuated multi-adjoint case, the structure which allows the
possibility of using additional operators is that of abiresiduated multi-adjointΩ-algebra.
In this section we introduce the definition of the syntax and semantics of biresiduated
multiadjoint logic programs. The programs are defined on a languageF constructed on
a set of propositional symbolΠ and the set of operatorsΩ and using a biresiduated
multi-adjoint latticeL as the set of truth-values.

Definition 7. A biresiduated multi-adjoint logic program(in shorta program) on a lan-
guageF with values inL is a setP of rules of the form〈A↙i B, ϑ〉 or 〈A↖i B, ϑ〉
such that:

1. Theheadof the rule,A, is a propositional symbol ofΠ;
2. Thebodyformula,B, is a formula ofF built from propositional symbolsB1, . . . , Bn

(n ≥ 0) and monotone functions;
3. Factsare rules with empty body.
4. Theweightϑ is an element (a truth-value) ofL.

As usual, aquery(or goal) is a propositional symbol intended as a question?A prompt-
ing the system.
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Let IL be the set ofinterpretations, that is, the unique recursive extensions of map-
pingsI : Π → L. The ordering� of the truth-valuesL can be easily extended toIL,
which also inherits the structure of complete lattice. The minimum element of the lat-
ticeIL, which assigns⊥ to any propositional symbol, will be denotedM.

A rule of a biresiduated multi-adjoint logic program is satisfied whenever its truth-
value is greater or equal than the weight associated with the rule. The formal definition
uses the following terminology: given an operatorω ∈ Ω, we will write

.
ω to denote its

interpretation inL.

Definition 8.

1. An interpretationI ∈ IL satisfies〈A, ϑ〉 iff ϑ � I (A).

2. An interpretationI ∈ IL satisfies〈A↙i B, ϑ〉 iff ϑ
.

&i Î (B) � I (A).

3. An interpretationI ∈ IL satisfies〈A↖i B, ϑ〉 iff Î (B)
.

&i ϑ � I (A).
4. An interpretationI ∈ IL is a modelof a programP iff all weighted rules inP are

satisfied byI.
5. An elementλ ∈ L is a correct answerfor a query?A and a programP if for any

interpretationI ∈ IL which is a model ofP we haveλ � I(A).

Note that, for instance,⊥ is always a correct answer for any query and program.
The core of the Apt-van Emden-Kowalski semantics, the immediate consequences

operator, can be easily generalised to biresiduated multi-adjoint logic programs.

Definition 9. LetP be a program, theimmediate consequences operatorTP maps inter-
pretations to interpretations, and for an interpretationI and propositional variableA,
TP(I)(A) is defined as the supremum of the following set

{ϑ
.

&i Î(B) | 〈A↙i B, ϑ〉 ∈ P} ∪ {Î(B)
.

&i ϑ | 〈A↖i B, ϑ〉 ∈ P} ∪ {ϑ | 〈A, ϑ〉 ∈ P}

As usual, the semantics of a biresiduated multi-adjoint logic program is charac-
terised by the post-fixpoints ofTP; that is:

Theorem 1. An interpretationI of IL is a model of a biresiduated multi-adjoint logic
programP iff TP(I) v I.

Note that the result is still true even without any further assumptions on conjunctors,
which definitely need not be either commutative or associative or satisfy any boundary
condition.

The monotonicity of the operatorTP for biresiduated multi-adjoint logic program-
ming follows from the monotonicity of all the involved operators. As a result ofTP
being monotone, the semantics of a programP is given by its least model which, as
shown by Knaster-Tarski’s theorem, is exactly the least fixpoint ofTP, which can be
obtained by transfinitely iteratingTP from the least interpretationM.
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5 Related work and concluding remarks

To the best of our knowledge, there is not much work done using biresidua in the sense
considered in this paper. Recently, in [10] a study of the representability of biresiduated
algebras was presented. This type of algebras were introduced in a purely algebraic
context, and were studied for instance in [1]. For instance, in [9] a structure of biresid-
uated algebra is defined together with a corresponding logical system regarding the use
of fuzzy sets in the representation of multicriteria decision problems. On a different
basis, Morsi [8] developed an axiom system based on a biresiduation construction and
the completeness and soundness theorems were proved.

We have presented analytical evidence of reasonable non-commutative conjunctors
which lead to the consideration of two biresiduated implications. Some properties have
been obtained for these conjunctors and, finally, an application to the development of
an extended logic programming paradigm has been presented, together with its fixpoint
semantics. The introduction of a procedural semantics for the framework, together with
the study of existence of a completeness theorem for the given semantics is on-going.

Although the central topics of this paper are mainly at the theoretical level, some
practical applications are envisaged for the obtained results, such as the development
of a generalized multiple-valued resolution. In a generalized context it is not possible
to deal with Horn clauses and refutation, mainly due to the fact thatA ∧ ¬A can have
strictly positive truth-value, but also to the fact that material implication (the truth value
function of¬A ∨ B) has not commutative adjoint conjunctor. As our approach does
not require adjoint conjunctors to be commutative, it would allow the development of a
sound and complete graded resolution.
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