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Abstract. In this work we develop a logic for formalizing qualitative rea-
soning. This type of reasoning is generally used, for instance, when one has
a lot of data from a real world example but the complexity of the numerical
model suggests a qualitative (instead of quantitative) approach.

1 Introduction

When working with a real world problem one often encounters a lack of
quantitative (numerical) information among the observed facts. A possible
solution to this absence of information is simply to develop methods for
reasoning under an incompletely specified environment, and logic methods
have been applied to give rise to reasoning schemes for fuzzy, imprecise and
missing information [?].

A different approach is to apply ideas from qualitative reasoning and,
specifically, order of magnitude reasoning (OMR) introduced in [7] and later
extended in [2–4, 9, 11]. The underlying idea is that by reasoning in terms of
qualitative ranges of variables, as opposed to precise numerical values, it is
possible to compute information about the behavior of a system with very
little information about the system and without doing expensive numerical
simulation.

Qualitative reasoning works with continuous magnitudes by means of a
discretization so that it is possible to distinguish all the relevant aspects re-
quired by the context/specification (and only these aspects). On the other
hand, as formalized in [7], OMR systems perform inferences based on a cal-
culus of coarse values. These values are abstract representations of precise
values taken from a totally ordered set, usually the set of real numbers. A
typical OMR calculus is then designed in such a way that it generalises com-
putations over precise values to computations over coarse values. This is of
course the same approach taken by any qualitative reasoning system. The
distinctive feature of OMR is that the coarse values are generally of different
order of magnitude.
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Depending on the way the coarse values are defined, different OMR calculi
can be generated: It is usual to distinguish between Absolute Order of Magni-
tude (AOM) and Relative Order of Magnitude (ROM) models. The former is
represented by a partition of the real line, in which each element of R belongs
to a qualitative class. The latter type introduces a family of binary order of
magnitude relations which establish different comparison relations between
numbers. This can be illustrated by means of several important examples.

In [7] and extensions such as [2–4], coarse values are defined by means
of ordering relations that express the distance between coarse values on a
totally ordered domain in relation to the range they cover on that domain.
Specifically, the seminal paper [7], distinguishes three types of qualitative
relations, such as x is close to y, or x is negligible w.r.t. y or x is comparable
to y; later on, some extensions were proposed in order to improve the original
one with the inclusion of quantitative information, and allow for the control
of the inference process [2–4].

There exist attempts to integrate both approaches as well, so that an
absolute partition is combined with a set of comparison relations between real
numbers [9, 11]. For instance, it is customary to divide the real line in seven
equivalence classes and use the following labels to denote these equivalence
classes of R:
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0
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The labels correspond to “negative large”, “negative medium”, “negative
small”, “zero”, ”positive small”, “positive medium” and “positive large”,
respectively. The real numbers α and β are the landmarks used to delimit
the equivalence classes (the particular criteria to choose these numbers would
depend on the application in mind). In [9] three binary relations (close to,
comparable, negligible) were defined in the spirit of [7], but using the labels
corresponding to quantitative values, and preserving coherence between the
relative model they define and the absolute model in which they are defined.

Our aim in this paper is to develop a non-classical logic for handling qual-
itative reasoning with orders of magnitude. To the best of our knowledge, no
formal logic has been developed to deal with order-of-magnitude reasoning.
However, non-classical logics have been used as a support of qualitative rea-
soning in several ways: For instance, in [12, 10] is remarkable the role of
multimodal logics to deal with qualitative spatio-temporal representations,
and in [8] branching temporal logics have been used to describe the possible
solutions of ordinary differential equations when we have limited information
about a system.
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In this paper, as a starting point of our proposal, we will use an arbitrary
set of real numbers, not necessarily all the real line, partitioned in equivalence
classes: three classes formed by so-called observable numbers (positive or
negative) and non-observable numbers or infinitesimals (including 0). In the
class of infinitesimals we will not distinguish between positive or negative. The
landmarks are defined by a pair of numbers α+ and α−, and the equivalence
classes are denoted as follows:

– OBS+ (positive observable include α+)
– OBS− (negative observable include α−)
– INF (infinitesimals)

OBS INF OBS

a a+

+

-

-

Once we have the equivalence classes in the real line, we can make com-
parison between numbers by using binary relations such as

– x is less than y, in symbols x < y
– x is comparable to y, in symbols x < y.

where < is a restriction of the usual order of the real numbers (<) to numbers
belonging to the same equivalence class.

We will introduce a minimal system to handle orders of magnitude based
on the proposed approach, whose linear ordering will then be extended to Q
and, finally, to R.

In our syntax we will consider the operators
−→
� and

←−
� to deal with the

usual ordering <, and the operators
−→
� and

←−
� to deal with <. The intuitive

meanings of each modal operator is as follows:−→
�A means A is true for all number greater than the current one
−→
�A means A is true for all number greater than the current one and in

the same equivalence class.
←−
�A means A is true for all number less than the current one
←−
�A means A is true for all number less than the current one and in the

same equivalence class
Although the treatment presented in this work is considerably simpler

than those stated at the beginning of this section, still it is useful as a stepping
stone for considering more complex systems, for which the logic has to be
enriched by adding new modal operators capable to treat a bigger number of
milestones, equivalence classes and/or qualitative relations.

This paper is organized as follows: In Section 2 the syntax and the seman-
tics of the proposed logic is introduced; in Section 3 then a minimal axiom
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system is presented, whic axiomatizes validity in frames with an arbitrary
set of real numbers is defined, then some extensions dealing with Q or R are
given. In Section 4 the completeness proof is given, following a Henkin-style.
In Section 5 some examples are given, which show that, although limited
in vocabulary, the presented language can formalize some interesting situ-
ations. Finally, in Section 6 some conclusions are drawn and prospects for
future work are presented.

2 Syntax and Semantics of the Language L(MQ)

The syntax of our initial language for qualitative reasoning is introduced
below:

The alphabet of the language L(MQ) is defined by using:

– A stock of atoms or propositional variables, V.
– The classical connectives ¬,∧,∨ and → and the constants > and ⊥.
– The unary modal connectives and

−→
� ,
←−
� ,
−→
� and

←−
� .

– The constants α+ and α−

– The auxiliary symbols: (, ).

Formulas are generated from V∪{α+, α−,>,⊥} by the construction rules
of classical propositional logic adding the following rule: If A is a formula,
then so are

−→
�A,

←−
�A,

−→
�A and

←−
�A. The mirror image of A is the result of

replacing in A each occurrence of
−→
� ,
←−
� ,
−→
� ,
←−
� , α+, α− by

←−
� ,
−→
� ,
←−
� ,
−→
� , α−,

α+, respectively. We shall use the symbols
−→
♦ ,
←−
♦ ,
−→
� and

←−
� as abbreviations

respectively of ¬−→�¬, ¬←−�¬, ¬−→�¬ and ¬←−�¬.
The intended meaning of our language is based on a multi-modal ap-

proach, therefore the semantics is given by using the concept of frame.

Definition 1. A multimodal qualitative frame for L(MQ) (or, simply, a
frame) is a tuple Σ = (S, α+, α−, <), where

1. S is a nonempty set of real numbers.
2. < is a strict linear order on S.
3. α+ and α− are designated points in S (called frame constants), and induce

a partition in S. The equivalence classes OBS+, INF , and OBS− are
defined as follows:

OBS− = {x ∈ S | x ≤ α−} INF = {x ∈ S | α− < x < α+}
OBS+ = {x ∈ S | α+ ≤ x}

4



Definition 2. Let Σ be a multimodal qualitative frame, a multimodal qual-
itative model on Σ (or Σ-model, for short) is an ordered pair M = (Σ, h),
where h is a meaning function (or, interpretation) h : V −→ 2S. Any inter-
pretation can be uniquely extended to the set of all formulas in L(MQ) (also
denoted by h) by using the usual conditions for the classical boolean connec-
tives and the constants > and ⊥, and the following conditions for the modal
operators and frame constants:1

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(α+) = α+ h(α−) = α−

The concepts of truth and validity are defined in a straightforward man-
ner.

3 Axiomatic systems for L(MQ)

In this section we define several axiomatic systems for multimodal qualitative
logic. A list of axiom schemes and inference rules are presented in order to
build the different systems. We also consider all the tautologies of classical
propositional logic.

Schemes of axioms for
−→
� ,
−→
♦ :

K1
−→
�(A→ B)→ (

−→
�A→ −→�B)

K2 A→ −→�
←−
♦A

K3
−→
�A→ −→�−→�A

K4
(−→
♦A ∧

−→
♦B

)
→

(−→
♦ (A ∧B) ∨

−→
♦ (
−→
♦A ∧B) ∨

−→
♦ (A ∧

−→
♦B)

)
K5
−→
�
−→
�A→ −→�A

K6
−→
�A→

−→
♦A

K7 (
−→
♦A ∧

−→
♦
−→
�¬A

)
→
−→
♦ (
←−
�
−→
♦A ∧ −→�¬A))

Schemes of axioms for
−→
� ,
−→
� :

C1
−→
�(A→ B)→ (

−→
�A→ −→�B)

C2 A→ −→�
←−
�A

C3 (
−→
�A ∧ ¬α−)→

−→
�A

Mixed axiom:
1 In the following we will use x < y as an abbreviation of “x < y and x, y ∈ EQ, where

EQ ∈ {INF, OBS+, OBS−}”.
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M1
−→
�A→ −→�A Schemes of axioms for constants:

c1
←−
♦ ξ ∨ ξ ∨

−→
♦ ξ

c2 ξ → (
←−
�¬ξ ∧ −→�¬ξ)

c3 α− →
−→
♦α+

c4 α− → −→�A
c5 (
←−
♦α− ∧

−→
♦α+) → −→

�(
←−
♦α− ∧

−→
♦α+)

c6
−→
♦α− →

−→
�α−

c7 (α+ ∧ −→�A)→ −→�A

c8
−→
�A→ −→�((α− ∨

−→
♦α−)→ A)

c9 (
←−
♦α+ ∧ −→�A)→ −→�A

c10 (
←−
♦α− ∧

−→
♦α+ ∧ −→�A)→

−→
�((
←−
♦α− ∧

−→
♦α+)→ A)

We also consider as schemes of axioms the mirror images corresponding
to K1, K2, K4, K6, K7, C1–C3, M1 and c4–10.

Rules of inference:

(MP) Modus Ponens for →
(N
−→
�) If ` A then ` −→�A (N

−→
�) If ` A then ` −→�A

(N
←−
�) If ` A then ` ←−�A (N

←−
�) If ` A then ` ←−�A

Definition 3. The minimal system for L(MQ) is denoted MQ. It consists of
the axiom schemes K1–K4 plus M1, C1, C2, c1–c10 and the corresponding
mirror images. MQQ is the extension of MQ by adding K5, K6 and C3.
Finally, MQR is the extension of MQQ by adding K7.

The concepts of proof and theorem are defined in a standard way.

4 Soundness and completeness

The proof of soundness is straightforward, since validity of the axioms and
preservation of validity by inference rules is simply a standard calculation.
Thus, we need only to focus on completeness, for which a Henkin-style proof
can be constructed.

The proof of completeness follows the step-by-step method as in [1]; specif-
ically, some results about consistent (maximal consistent) sets of formulas are
needed. Some familiarity with the basic properties of maximal consistent sets
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is assumed, we shall useMC to denote the set of all maximal consistent sets
of formulas (mc-sets) of any of the systems introduced in the previous section.
We denote by S any such axiomatic system.

Definition 4. Let Γ1, Γ2, Γ3 ∈MC. Then:

1. Γ1 B Γ2 if and only if {A | −→�A ∈ Γ1} ⊆ Γ2

2. Γ1 I Γ2 if and only if {A | −→�A ∈ Γ1} ⊆ Γ2

The three lemmas below state some modal properties of the operators
B and I: the behaviour with respect to the relations just introduced, the
transitivity and linearity of those orderings, and the existence of mc-sets
with suitable properties. The statements only contain the behaviour of the
specific (black) modal connectives, the usual (white) modalities have the same
properties:

Lemma 1. Let Γ1, Γ2, Γ3 ∈MC, then:

1. Γ1 I Γ2 if and only if {A | ←−�A ∈ Γ2} ⊆ Γ1

2. Γ1 I Γ2 if and only if {
−→
�A | A ∈ Γ2} ⊆ Γ1

3. Γ1 I Γ2 if and only if {
←−
�A | A ∈ Γ1} ⊆ Γ2

4. (Lindenbaum’s Lemma) Any consistent set of formulas in S can be ex-
tended to an mc-set in S.

Lemma 2. Consider Γ1, Γ2, Γ3 ∈MC, then

1. If Γ1 I Γ2 and Γ2 I Γ3, then Γ1 I Γ3.
2. If Γ1 I Γ2 and Γ1 I Γ3, then either Γ2 I Γ3, or Γ3 I Γ2, or Γ2 = Γ3.

Lemma 3. Assume Γ1 ∈MC:

1. If
−→
�A ∈ Γ1, then there exists Γ2 ∈MC such that Γ1 I Γ2 and A ∈ Γ2.

The following two lemmas are specific of our logic, since the behaviour of
specific and general connectives is studied.

Lemma 4. Consider Γ1, Γ2 ∈ MC such that Γ1 B Γ2, then Γ1 I Γ2 holds if
and only if one of the following conditions below is fulfilled:

1. There is ϕ ∈ {
←−
♦α− ∧

−→
♦α+,

←−
♦α+,

−→
♦α−} satisfying ϕ ∈ Γ1 and ϕ ∈ Γ2

2. α+ ∈ Γ1

3. α− ∈ Γ2

Lemma 5. Given Γ1, Γ2, Γ3 ∈MC we have:
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1. If Γ1 I Γ2 , then Γ1 B Γ2

2. If Γ1 I Γ2, Γ1 B Γ3 and it is not the case that Γ1 I Γ3, then Γ2 B Γ3

3. If Γ1 B Γ2 B Γ3 and Γ1 I Γ3, then Γ1 I Γ2 I Γ3

The information provided by the previous lemmas allows to give a step-
by-step proof of completeness, the details of the proof are not included due
to lack of space.

Theorem 1. If A is a valid formula of MQ, then A is a theorem of MQ.

5 Examples

In this section we introduce an example based on the physical problem of the
separation of a solution of two fluids; just note that the formulas presented
below do not intend to formally represent the underlying physical behaviour,
which appears in an oversimplified version; instead they are introduced with
the purpose of showing how the minimal language MQ can be used as a tool
for the specification.

Example 1. Let us assume that we have a solution of two fluids (say, A
and B). The idea is to heat the solution until the most volatile fluid has
been evaporated; and, obviously, we are also interested in minimizing the
cost of the heating process.

We are introducing the actions of two different agents on the process,
with slightly different behaviors. The equivalence classes OBS−, INF , and
OBS+ will be denoted, respectively, as LIQ, LIQ GAS, and GAS, and the
physical interpretation of each of these labels is the physical state of the most
volatile fluid, which can be completely liquid, or part in liquid state and part
in gas, or completely evaporated. The landmarks represent the initial and
final boiling points of the solution (which depend on the concentration of the
solution), which are assumed to be almost indistinguishable.

Agent 1. The behavior of this agent is specified by the following set of proper
axioms:

1. LIQ→ heat
2. GAS → cool
3. LIQ GAS → −→�heat
4. cool→ ¬heat

The underlying intuition of the behavior of this agent is that the heating
of the solution is being checked as the most volatile fluid is being evaporated.
Somehow, we could say that this is the parsimonious approach.
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Agent 2. This agent has its behavior specified by the following set of proper
axioms:

1. GAS →←−�cool
2. (LIQ ∨ LIQ GAS)→ heat
3. cool→ ¬heat

The behavior of this agent is different from the previous one in that the
first priority is to obtain the evaporation of the most volatile fluid and, later,
it is cooled so that it attains the state of minimum energy while preserving
the gas state.

6 Conclusions and future work

The introduction of a minimal multimodal language for the handling of qual-
itative reasoning has been justified. A sound and complete system for multi-
modal qualitative reasoning has been presented, and its completeness theorem
has been sketched. Finally, a small example taken from Physics has been used
to show the expressive power of the language.

Obviously, this minimal language is still very poor in order to represent
more interesting problems of qualitative reasoning, however as future work it
is expected to integrate further modalities expressed in terms of the Absolute
and/or Relative Orders of Magnitude, such as closeness or negligibility.

Nevertheless, the importance of using the logical apparatus in the treat-
ment of qualitative reasoning is the possibility of mechanization of its rea-
soning system. To this end, a first approach to the automatization of the
deduction in MQ is envisaged in terms of a tableau calculus.
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