
December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics
Vol. 00, No. 00, December 2008, 1–15

RESEARCH ARTICLE

An implementation of a dual tableaux system for

order-of-magnitude qualitative reasoning

A. Burriezaa and A. Morab† and M. Ojeda-Aciegob‡ and E. Or lowskac

aDept. Filosof́ıa, Univ. Málaga, Spain; bDept. Matemática Aplicada, Univ. Málaga,
Spain; cNational Institute of Telecommunications, Warsaw, Poland

(December 2008)

Logic programming has been used as a natural framework to automate deduction in the
logic of order-of-magnitude reasoning. Specifically, we introduce a Prolog implementation of
the Rasiowa-Sikorski proof system associated to the relational translation Re(OM) of the
multimodal logic of order-of-magnitude qualitative reasoning OM .

Keywords: Relational theorem proving; Rasiowa-Sikorski procedure; Modal Logic;
Tableaux procedure; Automated theorem proving.

AMS Subject Classification: 03B45; 05E10;68T15

1. Introduction

Qualitative reasoning is a broad area of AI whose main aim is to deal with physical
systems where either an information of numerical data is not sufficiently precise,
or the physical situation cannot be precisely quantified. In any case, qualitative
reasoning is a tool which enables us to reason and make inferences from abstrac-
tions of quantitative values instead of the numerical values themselves. A variety of
applications of qualitative reasoning have been developed, such as robotic naviga-
tion [17], spatial reasoning [2], diagnosis of systems [24], reasoning about economic
models [14] and many others.

A variant of qualitative reasoning, is the family of order of magnitude repre-
sentations. In this variant, coarse values are considered as abstractions of precise
quantities taken from a totally ordered set of numbers [7, 16, 18, 22]. In this con-
text, two approaches have been identified: Absolute Order of Magnitude (AOM)
and Relative Order of Magnitude (ROM). The former stratifies quantities by means
of some kind of scale, whereas the latter introduces a family of relations which en-
able to compare numbers in a different way. In general, both models, AOM and
ROM, need to be combined in order to capture all relevant information (see, for
example [25]).

Several logics have been defined to deal with qualitative reasoning, such as the
Region Connection Calculus [3] for managing qualitative spatial reasoning; or the
multimodal logics used in [26] to deal with qualitative spatio-temporal representa-
tions.

†Partially supported by P06-FQM-02049.
‡Partially supported by TIC06-15455-C03-01. Corresponding author. Email: aciego@uma.es

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 2008 Taylor & Francis
DOI: 0020716YYxxxxxxxx
http://www.informaworld.com

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

2 Implementing dual tableaux for OMR reasoning

This paper concentrates on the logic approach to order-of-magnitude qualitative
reasoning firstly introduced in [4], and further developed in [5]. These approaches
are based on a system with two landmarks and with relations of comparability
and negligibility. Roughly speaking, the approach is based on a system with two
landmarks, −α and +α, which is both simple enough to keep under control the
complexity of the system and rich enough so as to permit the representation of a
subset of the usual language of qualitative order-of-magnitude reasoning.

A formal representation of systems whose behavior is described up to an order
of magnitude usually is based on a linearly ordered set of real numbers with two
numbers distinguished as landmarks. The intuitive representation of the underlying
frames is given in the picture below, where −α and +α represent respectively the
greatest negative observable and the least positive observable, partitioning the real
line in classes of positive observable Obs+, negative observable Obs− and non-
observable numbers Inf (note that this choice makes sense, in particular, when
considering physical metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least or a greatest non-
observable number).

OBS INF OBS

α α+

+

−

−

Consider the following example which illustrates a concept of comparability. As-
sume one aims at specifying the behavior of a device for automatic control of the
speed of a car; assume the system has to maintain the speed close to some speed
limit v. For practical purposes, any value in an interval [v − ε, v + ε] for small ε
is admissible. The extreme points of this interval can then be considered as the
landmarks −α and +α; on the other hand, the sets Obs−, Inf, and Obs+ can be
interpreted as Slow, Ok and High speed.

Regarding negligibility, the representation capabilities of a pocket calculator pro-
vide an illustrative example of a relation of that kind. In such a device, it is not
possible to represent any number whose absolute value is less than 10−99. There-
fore, it makes sense to consider −α = −10−99 and +α = +10−99 since any number
between −10−99 and +10−99 cannot be either observed or represented. On the
other hand, a number x can be said to be negligible with respect to y provided
that the difference y−x cannot be distinguished from y. Numerically, and assuming
an 8+2 (digits and mantissa) display, this amounts to state that x is negligible wrt
y iff y − x > 108. Furthermore, this example suggests a real-life model in which,
for instance, −1000 is negligible with respect to −1. This is even more suggestive if
we interpret the numbers as exponents, since 10−1000 certainly can be considered
negligible with respect to 10−1.

In [6], the paradigm ‘formulas are relations’ formulated in [20] was applied to
the modal logic for order-of-magnitude (OM) reasoning introduced in [5], obtain-
ing a relational logic Re(OM) based on algebras of relations generated by some
relations specific to the frames of OM -logics; after a translation from the language
of OM -logics to the language of Re(OM), a deduction system for Re(OM) in the
Rasiowa-Sikorski style [23] was presented, paving the way for applicative research
on the implementation of the proof procedure. The main contribution of this work
consists in the development of a Prolog implementation of the Rasiowa-Sikorski
proof procedure introduced in [6]; it is worth noting that our proof system is mod-
ular, in that adding new constraints to semantics of the logic implies adding new
deduction rules or axiomatic sets, and not implementing a new system from scratch.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 3

In a nutshell, the Rasiowa-Sikorski method (named after a simple and universal
deduction mechanism introduced in [23], and which we will denote RS, for short)
is a powerful, simple and flexible methodology of developing deduction systems for
various non-classical logics based on the analysis of their semantics. Its key idea
is to obtain an adequate and complete proof mechanism for the given logic in a
systematic way, which is achieved by representing the semantics of all the logical
constructs through invertible rules operating on sequences of formulae of the logic.

From the semantic viewpoint, an RS system is dual to the well-known tableau
system, as shown in [12]: In order to prove the validity of a complex formula, it
is decomposed step by step into a sequence or sequences of simpler formulas, the
validity of which is equivalent to that of the original formula. The resulting decom-
position tree has the structure of a finitely branching tree with vertices labelled by
sequences of formulae; the tree is a proof if it is finite and all its leaves are labelled
with so-called “axiomatic-sets” of the logic. To get more insight on the method
and on its scope in computer science applications, the interested reader is referred
to [13, 21].

The structure of the paper is the following: in Section 2, the OM language and its
relational translation Re(OM) are introduced, together with the relational proof
system; then, the main contribution of the paper is presented in Section 3, which
contains the implementation in Prolog of the relational procedure; in Section 4
we concentrate on a particular aspect of the implementation, the use of phantom
variables, which allows for important improvements both in execution time and
space requirements; in Section 5, some executions of the Prolog engine are shown,
the input formulas are taken from the axiom system for the logic as presented in [5];
Section 6, finally, concludes and presents prospects for future work.

2. The languages OM and Re(OM): the RS proof system

For the sake of making this paper self-contained, let us introduce briefly the syntax
and semantics of the underlying language OM . More details and intuitions on the
language OM can be found in [5].

In our syntax, we consider three types of modal connectives, each one associated
to certain order relation:

−→
� and

←−
� to deal with an ordering <, the connectives−→

� and
←−
� to deal with a second ordering @ and the connectives

−→
�n and

←−
�n to deal

with a third order relation ≺ (the specific conditions required on comparability
and negligibility relations, @ and ≺, will be stated later).

Syntax of OM :

The alphabet of the language OM is defined by using:

• A stock of atoms or propositional variables, V.
• The classical connectives ¬,∧,∨ and → and the constants > and ⊥.
• The unary modal connectives

−→
� ,
←−
� ,
−→
� ,
←−
� ,
−→
�n and

←−
�n .

• The constants α+ and α−.
• The auxiliary symbols: (,).

Formulas are generated from V ∪ {α+, α−,>,⊥} by the construction rules of
classical propositional logic adding the following rule: If A is a formula, then so are−→
�A,

←−
�A,

−→
�A,

←−
�A,

−→
�n A and

←−
�n A.

Semantics of OM :

As our language is based on a multi-modal approach, its semantics is given by
using the concept of frame.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

4 Implementing dual tableaux for OMR reasoning

A frame for OM is a tuple Σ = (S,+α,−α,<,≺), where

(1) (S, <) is a linearly ordered set.
(2) +α and −α are designated points in S (called frame constants) which allow

to form the sets Obs+, Inf, and Obs− that are defined as follows:

Obs− = {x ∈ S | x ≤ −α}; Inf = {x ∈ S | −α < x < +α};

Obs+ = {x ∈ S | +α ≤ x}

(3) The negligibility relation ≺ is a restriction of <, i.e. ≺⊆<, and satisfies:
(i) If x ≺ y < z, then x ≺ z
(ii) If x < y ≺ z, then x ≺ z

(iii) If x ≺ y, then either x /∈ Inf or y /∈ Inf

The comparability relation x @ y is defined by: x < y and x, y ∈ Eq, where
Eq ∈ {Inf,Obs+,Obs−}.

Given a frame Σ, a model based on Σ is an ordered pair M = (Σ, h), where h is
a meaning function (or, interpretation) h : V −→ 2S.

Any interpretation can be uniquely extended to the set of all formulas in OM
(also denoted by h) by means of the usual conditions for the classical boolean
connectives and the constants > and ⊥, and the following conditions for the modal
operators and frame constants:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x @ y}

h(
−→
�n A) = {x ∈ S | y ∈ h(A) for all y such that x ≺ y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y @ x}

h(
←−
�n A) = {x ∈ S | y ∈ h(A) for all y such that y ≺ x}

h(α+) = {+α}

h(α−) = {−α}

The concepts of truth and validity are defined in a usual manner, i.e., a formula A
is true in a model M = (Σ, h) whenever h(A) = S, and A is OM -valid if it is true
in all OM -models.

As stated in the introduction, the language OM was translated in [6] into a
relational one in order to benefit from the RS proof procedure. As usual, the main
idea of the relational formalisation is to interpret formulas of nonclassical logics as
relations which are the elements of algebras of relations from a suitable class.

The syntax of Re(OM):

Again with the goal of maintaining this work self-contained, we recall here the
definition of the relational language Re(OM), for more details the reader is sug-
gested to consult [6].

The alphabet of Re(OM) consists of the disjoint sets listed below:

• A (nonempty) set OV = {x, y, z, . . . } of object variables.
• A set OC = {α−, α+} of object constants.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 5

• A (nonempty) set RV = {P,Q,R, . . . } of binary relation variables.
• A set RC = {1, 1′,ℵ−,ℵ+, <,@,≺} of relation constants denoting, respectively,

the universal relation, the identity relation, the constant relations being the
relational counterparts to the frame constants−α and +α, and the three ordering
relations related to the three pairs of modalities of the OM language.

• A set OP = {−,∪,∩, ; ,−1} of relational operation symbols which are interpreted
as the opposite, the union, the intersection, the composition and the inverse of
a relation.

Now, the set of relation terms and formulas of Re(OM) is given as follows:

• The set of relation terms RT is the smallest set of expressions that includes all
the relational variables and relational constants, and is closed with respect to
the operation symbols from OP.

• The set FR of formulas, consists of expressions of the form xRy where x, y denote
individual (or object) variables or constants and R is a relational term built from
the relational variables and the relational operators.

Semantics of Re(OM):

A model for Re(OM) is a pair M = (W,m) where W = W ′ ∪ {−α,+α} for
W ′ 6= ∅, and m is a meaning function satisfying:

(1) Assigns elements of W to object constants as follows:

a) m(α−) = −α b) m(α+) = +α

(2) Assigns binary relations on W to relation constants as follows:
For relation constants we should have:

• m(1) = W ×W
• m(1′) = {(w,w) | w ∈W}

• m(ℵ−) = {−α} ×W
• m(ℵ+) = {+α} ×W

• m(<) is a strict linear ordering in W satisfying (−α,+α) ∈ m(<)
• m(@) = m(<) ∩

(
(Obs− ×Obs−) ∪ (Inf× Inf) ∪ (Obs+ ×Obs+)

)
• m(≺) is a restriction of m(<) satisfying the following frame conditions,

which mimic items (3.i)–(3.iii) in the definition of a frame for OM :

∀x, ∀y if (x, y) ∈ m(≺) and (y, z) ∈ m(<), then (x, z) ∈ m(≺)

∀x, ∀y if (x, y) ∈ m(<) and (y, z) ∈ m(≺), then (x, z) ∈ m(≺)

∀x,∀y if x ∈ Inf and (x, y) ∈ m(≺), then (+α, y) ∈ m(< ∪ 1′)

∀x,∀y if x ∈ Inf and (y, x) ∈ m(≺), then (y,−α) ∈ m(< ∪ 1′)

(3) Assigns binary relations on W to relation variables.
(4) Assigns operations on binary relations to the relational operation symbols

in OP.
(5) Extends homomorphically to the set of terms in the usual manner.

The RS proof system for Re(OM):

We will now concentrate on the presentation of the RS proof system for Re(OM).
Let us recall that, given a relational formula xAy, where A may be a compound
relational expression, we successively apply decomposition or specific rules. In this
way a tree is formed whose root consists of xAy and each node (except the root) is
obtained by an application of a rule to its predecessor node. The application of rules

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

6 Implementing dual tableaux for OMR reasoning

is stopped on a node when an axiomatic set (a set of formulas whose first order
disjunction is valid) has been obtained, or when none of the rules is applicable to
the formulas in this node. Such a tree is referred to as a proof tree for the formula
xAy. A branch of a proof tree is said to be closed whenever it contains a node with
an axiomatic set of formulas. A tree is closed iff all of its branches are closed.

Our system includes the usual rules for the calculus of binary relations with
equality (these rules are not shown explicitly here due to length restrictions, see
for instance [6, 19]). Moreover, some new specific rules are included in order to
handle the specific object and relation constants of the language Re(OM). These
rules are shown in Fig. 1, in which the new variables occurring in the denominator of
some rules may be instantiated with any variable, usually one of those occurring in
the branch. In the rules, comma is interpreted as first order disjunction of formulas
and | is interpreted as branching.

xℵ−y
x1′α−, xℵ−y

(c1a)
x−ℵ−y

x−1′α−, x−ℵ−y
(c1b)

xℵ+y

x1′α+, xℵ+y
(c2a)

x−ℵ+y

x−1′α+, x−ℵ+y
(c2b)

x < α+

x1′α−, x < α+
(c3)

x−@y
x1′α−, x−@y

(c4)
x−@y

y1′α+, x−@y
(c5)

x ≤ α−, α+ ≤ x, x− @y
x ≤ α−, α+ ≤ x, x− @y, y ≤ α−

(c6)
x ≤ α−, α+ ≤ x, x− @y

x ≤ α−, α+ ≤ x, x− @y, α+ ≤ y
(c7)

α− ≤ x, x− @ y
α− ≤ x, x− @ y, α− < y

(c8)
x− < y, α− < y

x− < y, α− < y, x− @y
(c9)

x− < y, x < α+

x− < y, x < α+, x− @y
(c10)

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y
x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x @ y, x < y

(c11) x−@y
x−@y, x−<y (c12)

x < x (Iref) y−<x | x−<y | x−1′y
(Lin)

x @ y | x−@ y
(cut- @)

xRy

xRy, xRz, | xRy, zRy
(Tran)

x < y
x ≺ y, x < y (n-0)

x ≺ z
x ≺ y, x ≺ z | y < z, x ≺ z

(n-i) x ≺ z
x < y, x ≺ z | y ≺ z, x ≺ z

(n-ii)

α+ ≤ y
α− < x,α+ ≤ y | x < α+, α+ ≤ y | x ≺ y, α+ ≤ y

(n-iii)

y ≤ α−

α− < x, y ≤ α− | x < α+, y ≤ α− | y ≺ x, y ≤ α−
(n-iv)

Figure 1. Specific rules for Re(OM)

The axiomatic sets of Re(OM) are presented below; their occurrence in a node
of a branch allows for stopping the further application of the rules to formulas of
that branch.

{x1y} {x1′x} {x−Ry, xRy} {α− < α+}

where x, y ∈ OS and R ∈ RT.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 7

3. Prolog implementation

In this section, we introduce the Prolog implementation of the relational system
given above.1

3.1 Translating to a tree of formulas in Re(OM)

To begin with, the relations have to be encoded as predicates. This is done as
follows:

A formula in OM is represented using the Prolog fact formulaOM(formula)
where the argument is a well formed formula in OM . A relational formula xRy in
Re(OM), where x, y are object variables and R is a relational term, is represented
as the Prolog fact rel(address,R, x, y). In this case, the first argument contains a
list of integers which defines the position of the node in the proof tree, as it has
been generated during the proof process.

Example 3.1 The formulas contained in a leaf of a proof tree are read disjunctively,
hence an expression as xRy ∪ xSy ∪ xℵ−y ∪ x(@; (a; 1)−)−y is translated into the
following four facts in Prolog:

rel([1],r,x,y).
rel([1],s,x,y).
rel([1],opp(alephm),x,y).
rel([1],opp(comp(sqsub,opp(comp(a,univ)))),x,y).

Note that, as Prolog only manipulates text, some symbols are renamed accord-
ingly to its reading. For instance, ℵ− is translated into alephm; the composition
operator ; is translated into comp, the relation @ is translated into sqsub, etc.

The omToreom predicate reads the formulas inOM and renders the set of formulas
in Re(OM).

omToreom:-
formulaOM(FormulaOM),
translate(FormulaOM,FormulaReOM),
retract(formulaOM(FormulaOM)),
asserta(rel([1],FormulaReOM,x,y)),
fail.

omToreom.

translate(alpham,alephm).
translate(or(P,Q),uni(Pnew,Qnew)):-

translate(P,Pnew),
translate(Q,Qnew).

translate(implication(P,Q),uni(opp(Pnew),Qnew)):-
translate(P,Pnew),
translate(Q,Qnew).

translate(wF(P),comp(<,Pnew)):-
translate(P,Pnew).

The following example outlines a formula in Re(OM) rewritten from OM .

Example 3.2 Consider now the formula
←−
♦ (α−) ∧ −→�(α−) → ←−�n (α+ ∨

←−
♦ (α+)) in

OM (axiom N6 in [4]). The representation of this axiom in Prolog, together with
the output of the omToreom predicate is given below:

1The full implementation (developed in SWI-Prolog Version 5.6.33 for Windows platform) is available from
the address http://homepage.mac.com/alicauchy/.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

8 Implementing dual tableaux for OMR reasoning

% Input formula
formulaOM(implication(and(wP(alpham), wF(alphap)),

nG(or(alphap, wP(alphap))))).
% Relational version
rel([1], uni(opp(inter(comp(>, alephm), comp(<, alephp))),

opp(comp(prec, opp(uni(alephp, comp(>, alephp)))))), x, y).

Once the system receives as an input the relational formula to be checked, it
generates a proof tree, whose leaves contain sets of relational formulas whose dis-
junctions are to be proved. The input formula gets proved when Prolog closes all
the leaves in the proof tree.

The addresses of the open leaves are stored in a list, which is handled by the
predicate open_leaves. For instance, the predicate open_leaves([n]) states that
it is necessary to prove validity of the set of formulas stored in node [n]. As
expected, the initial relational terms are valid if and only if all the leaves in the
tree can be closed.

In other alternative approaches, such as [9, 10], a Prolog program has been in-
troduced to translate from various logics to the relational formalism. In the same
way, a translator from OM to Re(OM) has been developed. The translator de-
scribed in [9] is generic, so in principle it can be applied to OM. In our paper,
we have designed a specific translation for the fixed particular language of OM,
thus obtaining a simpler translation. On the other part, in [10], a deductive tool
is presented where decomposition rules for the classical operations of the calculus
of relations are implemented. In our work, apart for the implementation of these
classical rules, there is an implementation of many other rules that are specific
for logic OM. These rules characterize properties of the constants corresponding to
the landmarks of the assumed order-of-magnitude reasoning model and the proper-
ties of the relations of negligibility and comparability of the model. Summarizing,
we provide a specific, dedicated system, while those in [9, 10] provide a general
framework which in each particular case must be appropriately adapted.

Expressing axiomatic sets and rules

When Prolog detects a relation representing an axiomatic set, the corresponding
leaf is deleted and the user informed by means of the remove leaf predicate. For
instance, if x1′x (rel(Leaf,equal,X,X)) occurs in the set of relations of the leaf
Leaf, it is removed because of the occurrence of an axiomatic set.

axiomatic_set:- rel(Leaf,equal,X,X),
remove_leaf(Leaf,[rel(Leaf,equal,X,X)]),!.

axiomatic_set:- rel(Leaf,univ,X,Y),
remove_leaf(Leaf,[rel(Leaf,univ,X,Y)]),!.

axiomatic_set:- rel(Leaf,<,alpham,alphap),
remove_leaf(Leaf,[rel(Leaf,univ,X,Y)]),!.

As noticed in Figure 1, a rule in Re(OM) has the following general form: Φ
Φ1|...|Φn

where Φ1, . . . ,Φn are non-empty sets of formulas and Φ is a finite (possibly empty)
set of formulas.

The application of a rule like the previous one to a leaf assumes it is labelled by
a set X of formulas satisfying Φ ⊆ X; then, the leaf branches into n new branches,
each one with the set of formulas (X \ Φ) ∪ Φi, i = 1, . . . , n.

In general, due to the particular nature of the rules of Re(OM), whenever a
rule is applicable, it can be applied again on the resulting leaves, but this kind of

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 9

behaviour is obviously undesirable. In order to avoid repeated applications of rules
against the same formulas each application of a rule is stored in a list.

The implementation of a rule can be roughly stated as follows: firstly, the pre-
conditions (contained in the numerator of the rule) are checked, in order to know
whether the rule is applicable; if affirmative, and provided that the rule has not
been previously applied against the same arguments, the rule is displayed on the
screen and stored as used; finally, the leaf is branched and new labels are attached
to each new leaf as stated above.

In order to obtain a rough idea of how a rule is encoded, let us consider the
standard rule for the union of relations x(R ∪ S)y

xRy, xSy
(uni), its encoding is:

uni(Leaf):- rel(Leaf,uni(R,S),X,Y),
new_deduced_rels([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]),
\+rule_used(Leaf,uni,[rel(uni(R,S),X,Y)]),
write_rule(’Union’, [rel(Leaf,uni(R,S),X,Y)],

[rel(Leaf,R,X,Y), rel(Leaf,S,X,Y)]),
update_leaf([rel(Leaf,R,X,Y),rel(Leaf,S,X,Y)]).

In order to start explaining the most interesting features of the implementation,
let us consider the specific rule (n-i) below:

x ≺ z
x ≺ y, x ≺ z | y < z, x ≺ z (n-i) y any variable

This rule is implemented by using the following code:

ni(Leaf):- rel(Leaf,prec,X,Z),
new_deduced_rels([rel(Leaf,prec,X,Y), rel(Leaf,<,Y,Z)]),
\+rule_used(Leaf,ni,[rel(prec,X,Z)]),
any_variable(’ni (prec) ’,Leaf,[rel(Leaf,prec,X,Z)],Y),!,
write_rule(’ni (prec) ’, [rel(Leaf,prec,X,Z)],

[rel(Leaf,prec,X,Y),rel(Leaf,<,Y,Z)]),
branch(Leaf,2),
update_leaf(Leaf,2,[[rel(Leaf,prec,X,Y)]

,[rel(Leaf,<,Y,Z)]]),!.

In the first three lines, the rule checks that x ≺ z is in the set of relations,
that the relations introduced by the rule are new (new deduced rels) and that
the rule has not been previously applied (rule used). Then, note that, as stated
in the rule, the variable y in the denominator has to be any of the variables or
object constants occurring in the branch (this situation is similar to that of the
free tableaux systems, in which the γ rule instantiates a variable by any of the
constants occurring in the branch, whereas the δ rule always introduces a new
constant). The predicate any variable chooses some constant or variable occurring
in the branch (an optimized version of this task is given in Section 4). The predicate
branch(Leaf,2) branches the current leaf into two new leaves, and copies all the
formulas of the current leaf to the two new leaves. The predicate update leaf
appends x ≺ y to the first leaf and y < z to the second leaf.

The proof procedure

A highly automated implementation of the proof procedure is sketched here. The
main predicate in the inference engine is run engine, its implementation is given
in Fig. 2; it examines the first leaf of the tree that the proof system needs to check
and tries to apply the rules to the formulas containing this leaf.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

10 Implementing dual tableaux for OMR reasoning

run_engine:-
leaves(L),

\+is_list_null(L),
apply_rules,!.

run_engine:-
leaves(L),

\+is_list_null(L),
try_axioms,!.

run_engine:-
write(’ OK. No leaves in the proof tree.’),
write(’ VALID. ’), nl, !.

apply_rules:-
first_leaf([FirstLeaf]),
maplist(select_rule,[FirstLeaf]),!,
run_engine.

select_rule(FirstLeaf):-
non_branching_rules(FirstLeaf).

select_rule(FirstLeaf):-
non_branching_derived_rules(FirstLeaf).

select_rule(FirstLeaf):-
branching_rules(FirstLeaf).

select_rule(FirstLeaf):-
explosive_rules(FirstLeaf).

non_branching_rules(FirstLeaf):-
uni(FirstLeaf)-> axiomatic_set;
% rest of rules

non_branching_derived_rules(FirstLeaf):-
greater(FirstLeaf)-> axiomatic_set;

% rest of rules

branching_rules(FirstLeaf):-
notuni(FirstLeaf)-> axiomatic_set;
% rest of rules

explosive_rules(FirstLeaf):-
ni(FirstLeaf)-> axiomatic_set;
% rest of rules

Figure 2. The engine of the system

As stated previously, the predicate leaves stores the leaves which have not been
closed so far. If it is a non-null list, then the corresponding nodes must be visited.
Then, the predicate apply rules is called recursively as long as the tree has open
leaves. The predicate apply rules tries to apply some rule to the given leaf by
using the select rule predicate.

The rules are organized into several categories which are ordered as follows:
firstly, primitive rules that do not branch a leaf, then derived rules that do not
branch a leaf, rules that branch a leaf into several leaves and, finally, explosive rules.
The latter contains rules such as transitivity which can generate an exponential
number of new branches.

The order in which the engine tries to apply the rules is crucial. The predicate
select rule is implemented as a list of rules which are to be tried consecutively.
Clearly, the rules which do not generate new branches are at the beginning; among
these rules we have some primitive rules (either standard or specific), then some
selected derived rules have been implemented directly as primitive, in order to avoid
excessively long proofs. Finally, the system tries to apply the rules that generate
new branches. Note that the order of rules within a given category is not essential.

Whenever a non-closed leaf does not admit any of the rules in the list, then the
system asks the user about considering some cut-like rule (a rule with the empty
numerator) by using the predicate try cuts; obviously, the unrestricted use of
cut-like rules might generate excessively big trees, thus its use has to be strictly
controlled.

try_cuts:-
...
write(’Try any of the goals --> lin(Leaf,Var1,Var2).’),nl,
write(’ --> cut(Leaf,Var1,Var2).’),nl, !.

After an application of the procedure, and provided that a closed tree has been
obtained, the system provides a list of the rules used in the proof; this is done by
the predicate table of used rules.

As an example, consider the output obtained from the following relational for-
mula (which corresponds to the Axiom c4 of the system for the logic OM, the

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 11

formula α− → −→�A, see [5]):

rel([1], uni(opp(alephm),opp(comp(sqsub,opp(comp(p,univ))))),x,y).

The system traces, in reverse ordering, the rules applied in the process of building
a proof tree for the input term:

OK. No more open leaves.
VALID.

____________________________ SUMMARY ________________________
table_of_used_rules([1], c5, [rel(opp(sqsub), z, x)]).
table_of_used_rules([1], c4, [rel(opp(sqsub), z, x)]).
table_of_used_rules([1], c2b, [rel(opp(alephp), x, y)]).
table_of_used_rules([1], notinverse,[rel(opp(inv(sqsub)), x, z)]).
table_of_used_rules([1], not2, [rel(opp(opp(comp(p, univ))), z, y)]).
table_of_used_rules([1], notcomp,[rel(opp(comp(inv(sqsub), opp(comp(p, univ)))), x, y)]).
table_of_used_rules([1], uni, [rel(uni(opp(alephp), opp(comp(inv(sqsub),

opp(comp(p, univ))))), x, y)]).

leaves([]).

4. Phantom variables: postponing the choice

There are several rules in the relational system for Re(OM) which exhibit the same
behavior that Rule (n-i) regarding an introduction of new variables. We saw that
the rule branches the leaf into two new leaves, and appends x ≺ y to the first leaf
and y < z to the second leaf, where y is “any variable” occurring in the branch.
In principle, we have as many different instantiations of the rule as the values that
can be chosen for y. If we do not take this into account, the proof tree might grow
in an uncontrolled manner.

The naive approach to the implementation of this behaviour is to allow the user
to introduce a particular variable when a rule is being applied. If, eventually, the
formula could not be proved, the system would have to return to the previous
leaf and, then, choose another variable. Obviously, when the number of variables
existing in the leaf is big, the system performance will be poor, to say the least.

Anyway, a much smarter solution is possible if we introduce a non-instantiated
variable (so-called “phantom variable”) and delay its actual instantiation until we
get a guarantee that, by a unification process, an axiomatic set will be generated.
Thus, a phantom variable is a special variable whose possible instantiations are
constrained to belong to the set of variables or constants occurring in the leaf.

An optimized implementation of predicate any_variable, as in rule (n-i) above,
encodes the introduction of the phantom variable Y, whose instantiation is delayed
until a suitable value would be chosen in order to generate an axiomatic set.
any_variable(’ni (prec) ’,Leaf,[rel(Leaf,prec,X,Z)],Y)

If this choice fails and the branch will not close, then the system backtracks and
undoes the instantiation. This way, the growth of the tree is controlled.

For instance, recall that if the axiomatic set α− < α+ is present in a leaf, then
the leaf will be closed; as a result, X < α+ will be an axiomatic set provided that
X is a phantom variable which can be instantiated as α−. This particular case is
illustrated in the piece of code below:

axiomatic_set:-
rel(Leaf,<,X,alphap),
is_variable_phantom(X),
substitute([X],[alpham]),
remove_leaf(Leaf,[rel(Leaf,<,X,alphap)]),!,
axiomatic_set.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

12 Implementing dual tableaux for OMR reasoning

In addition, the implementation introduces a predicate (interactivemode)
which allows to switch between a fully automated handling of phantom variables
and an interactive mode. In the latter, the procedure can stop in order to get
feedback from the user as to an appropriate choice of a value to be used in the
instantiation.

When an application of a rule requires the introduction of a variable already
occurring on the current branch, and we are in the interactive mode, the system
provides a list of formulas occurring in that branch and the user can choose an
adequate variable for instantiation. Anyway, the user can refuse to provide feed-
back and let the system to introduce a phantom variable. In automatic mode,
any variable always returns a new phantom variable that is used in the applica-
tion of the rule.

5. Experimental results and examples

As the relational proof procedure was proved to be complete in [6], the first choice
of formulas to prove with the implementation has been the set of axioms of the
system given in [5]. The implementation has been tested against all the axioms in
the system1 with the result that every axiom has been automatically proved.

In this section we comment in detail on the performance of the implementation
on the relational translation of two specific axioms of OM .

Example 5.1 Let us consider the formula α− → −→�A, corresponding to Axiom c4
from [5]. Its relational translation is

x(−ℵ− ∪ −(@;−(A; 1)))y

which, in turn, is translated into Prolog as:

rel(1,uni(opp(alephm), opp(comp(sqsub,opp(comp(a,univ))))),x,y) .

which is stored in the file reomAxiomc4.pl. Now, the program is called to satisfy
the predicate:

?engine(’reomAxiomc4.pl’,’logc4.txt’).}

The following report in logc4.txt file is returned:

------>Input file: reomAxiomc4.pl
THE ENGINE IS RUNNING
--->opp composition Rule
[rel(1, opp(comp(sqsub, opp(comp(a, univ)))), x,y)]
__
[rel(1, opp(sqsub), x, z), rel(1,opp(opp(comp(a, univ))), z, y)]

---->c1b (opp aleph-) Rule
[rel(1, alephm, x, y)]
__
[rel(1, equal, x, alpham), rel(1, alephm, x, y)]

---->c4 (notsqsubset) Rule
[rel(1, opp(sqsub), x, z)]
__
[rel(1, equal, x, alpham), rel(1, opp(sqsub), x,z)]

1The full trace of execution of the procedure applied on all the axioms of [5] can be obtained from the
address http://homepage.mac.com/alicauchy/.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 13

Found axiomatic set. Branch: 1
- Axiomatic set: [rel(1, opp(equal), x, alpham),

rel(1, equal, x, alpham)]
- Deleted relations in branch 1

OK. No more open leaves.

The following example illustrates branching of a proof tree and a use of phantom
variables.

Example 5.2 Let us consider the formula
←−
♦α− ∨ α− ∨

−→
♦α−, corresponding to

Axiom (c1) from [5]. Its relational translation is

x((>;ℵ+) ∪ ℵ+ ∪ (<;ℵ+))y

which has the following form in Prolog:

rel([1], comp(>, alephp), x, y).
rel([1], alephp, x, y).
rel([1], comp(<, alephp), x, y).

Now, the program is called to satisfy the predicate:

?engine(’reomAxiomc1.pl’,’logc1.txt’).}

After applying some rules, the system detects the possibility of using a phantom
variable; in the interactive mode, the following information is displayed on the
screen:

Information for user
- Relations in [1]

rel([1], alephp, x, y).
rel([1], comp(<, alephp), x, y).
rel([1], equal, x, alphap).
rel([1], equal, alphap, x).
rel([1], comp(>, alephp), x, y).

Now, we can apply the following rules:
---->comp Rule
[rel([1], comp(>, alephp), x, y)]

rel(new_leaf1, >, x, var) | rel(new_leaf2, alephp, var, y)

where var can be either:
- any variable from: [x, y]
- or alpham or alphap.

We can use a non-instantiated variable (phantom).
Introduce the desired var or 0 for phantom variable.

Now, the user can either introduce any of the possible values, or let the system
introduce a phantom variable. In this example, the system is always said to intro-
duce phantom variables (which are denoted as t1, t2, etc). Thus, the log file of
this example continues as follows:

|: 0
---->comp Rule
[rel([1], comp(>, alephp), x, y)]
__
rel([1, 1], >, x, t1) | rel([1, 2], alephp, t1, y)

The system continues applying rules automatically until a new composition

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

14 Implementing dual tableaux for OMR reasoning

(comp) rule is applied. Note that, in the leaf (1,1,2) we would obtain an axiomatic
set if t2 is substituted by alphap.

---->comp Rule
[rel([1, 1], comp(<, alephp), x, y)]
__
rel([1, 1, 1], <, x, t2) | rel([1, 1, 2], alephp, t2, y)

Substitute in all relations variable phantom:t2 by alphap

This instantiation provides an extra piece of information which allows eventually
to close all the open branches of the proof tree. More details can be seen in the
demos available in the web.

6. Conclusions and future work

We have presented an implementation in Prolog of the relational proof system for
the logic of qualitative order-of-magnitude reasoning. The system has been tested
against the axiom system provided in [5], and all the axioms of the system have
been automatically proved.

Further work is planned on studying the relationship with other approaches [8],
as well as in developing relational proof systems for variants of OM logic and on
implementation of the specific rules for OM within the latter system, as already
done in [11].

As future work, the implementation will be improved in several directions. The
main point to be investigated arises when the system does not close the proof tree,
since some cut-like rule might be needed to continue the expansion; the goal would
be to detect situations in which the system can automatically suggest the user to
choose some of these rules. Despite of the improvement in automatization provided
by the use of phantom variables, our next aim is to enhance the interaction with
the user during the proof process whenever the automatic mode does not allow to
close the tree. Moreover, the graphical aspect of the interface should be enhanced,
allowing the user to specify directly the requirements by using the standard OM
logic, which is more intuitive than its relational translation into Re(OM).

Another topic for future work is to study the computational complexity of the
validity problem in OM . There are some results in the literature which give some
initial clues: on the one hand, [15] proves that validity is coNP-complete for all
finitely axiomatizable tense logics of linear time flows. As our logic is a conser-
vative extension of the type of logics studied above, we get a lower bound for its
complexity. Moreover, OM includes nominals and a negligibility relation; regard-
ing nominals, in [1] we have that the inclusion of nominals in logics whose class
of frames is that of strict total orderings does not increase the complexity. As a
result, a possible increase over coNP-completeness should be related solely to the
behaviour of the negligibility relation.

7. Acknowledgements

The authors acknowledge the anonymous referees for providing valuable suggestions
on how to improve the final version of this paper.

This work has been partially funded by the Spanish Ministry of Science and
Innovation through grant TIN06-15455-C03-01 and by the Andalusian Government
through grant P06-FQM-02049.

December 22, 2008 13:4 International Journal of Computer Mathematics IJCM-BMOOrR

International Journal of Computer Mathematics 15

References

[1] C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid temporal logics. Logic
Journal of the IGPL 8(2000):653–679.

[2] C. Bailey-Kellogg and F. Zhao. Qualitative spatial reasoning: extracting and reasoning with spatial
aggregates, AI Magazine, Vol. 24, No. 4 (2003), pp. 47–60

[3] B. Bennett. Modal logics for qualitative spatial reasoning. Bull. of the IGPL, 3(1995):1–22.
[4] A. Burrieza and M. Ojeda-Aciego, A multimodal logic approach to order of magnitude qualitative

reasoning, Lect. Notes in Artificial Intelligence, 3040 (2004), pp. 431–440.
[5] A. Burrieza and M. Ojeda-Aciego. A multimodal logic approach to order of magnitude qualitative

reasoning with comparability and negligibility relations, Fundamenta Informaticae, 68 (2005), pp.
21–46.

[6] A. Burrieza, M. Ojeda-Aciego, and E. Or lowska. Relational approach to order-of-magnitude reasoning,
Lect. Notes in Computer Science, 4342 (2006), pp. 105-124.

[7] P. Dague. Numeric reasoning with relative orders of magnitude. In Proc. 11th National Conference
on Artificial Intelligence, pages 541–547. The AAAI Press/The MIT Press, 1993.

[8] J. Dallien and W. MacCaull. RelDT—a dual tableaux system for relational logics, Available from
http://logic.stfx.ca/reldt/, 2005.

[9] A. Formisano, E. Omodeo, and E. Or lowska. A PROLOG tool for relational translation of modal
logics: A front-end for relational proof systems, In: B. Beckert (ed) TABLEAUX 2005 Position Papers
and Tutorial Descriptions, Universität Koblenz-Landau, Fachberichte Informatik 12 (2005), pp. 1-10.
System available from http://www.di.univaq.it/TARSKI/transIt/

[10] A. Formisano, E. Omodeo, and E. Or lowska. An environment for specifying properties of dyadic
relations and reasoning about them II: Relational presentation of non-classical logics, Lect. Notes in
Artificial Intelligence, 4342 (2006), pp. 89-104.

[11] J. Golińska-Pilarek, A. Mora and E. Muñoz-Velasco. An ATP of a Relational Proof System for Order
of Magnitude Reasoning with Negligibility, Non-closeness and Distance. Lecture Notes in Computer
Science 5351(2008):128–139

[12] J. Golińska-Pilarek and E. Or lowska. Tableaux and dual tableaux: Transformation of proofs, Studia
Logica, 85(3) 2007, pp. 283–302.

[13] B. Konikowska. Rasiowa-Sikorski deduction systems in computer science applications, Theoretical
Computer Science 286 (2002), pp. 323–366.

[14] K.R. Lang, A.B. Whinston, and A. Hinkkanen. A Set-Theoretic Foundation of Qualitative Reasoning
and its Application to the Modeling of Economics and Business Management Problems. Information
Systems Frontiers, Vol. 5, No. 4 (2003), pp. 379–399.

[15] T. Litak and F. Wolter. All finitely axiomatizable tense logics of linear time flows are coNP-complete.
Studia Logica. 75(2005): 1–13.

[16] M.L. Mavrovouniotis and G. Stephanopoulos. Reasoning with orders of magnitude and approximate
relations. In Proc. 6th National Conference on Artificial Intelligence. The AAAI Press/The MIT
Press, 1987.

[17] R. Müller, T. Röfer, A. Lankenau, R. Musto, K. Stein, and A. Eisenkolb. Coarse qualitative descrip-
tions in robot navigation, Lecture Notes in Artificial Intelligence 1849 (2000), pp. 265–276

[18] P. Nayak. Order of Magnitude Reasoning Using Logarithms. Proc. of Principles of Knowledge Rep-
resentation and Reasoning (1992), pp. 201–210.

[19] E. Or lowska. Relational interpretation of modal logics, In H. Andreka, D. Monk, and I. Nemeti,
editors, Algebraic Logic, Colloquia Mathematica Societatis Janos Bolyai, 54 (1988), pp. 443–471.

[20] E. Or lowska. Relational semantics for nonclassical logics: Formulas are relations, In J. Wolenski,
editor, Philosophical Logic in Poland, Kluwer, 1994, pp. 167–186.

[21] E. Or lowska and J. Golińska-Pilarek. Dual tableaux and their Applications. Draft of a book, 2008.
[22] O. Raiman. Order of magnitude reasoning. Artificial Intelligence. 51(1991): 11–38.
[23] H. Rasiowa and R. Sikorski. Mathematics of Metamathematics, Polish Scientific Publishers, (1963).
[24] S. Subramanian and R. Mooney. Multiple-Fault Diagnosis Using General Qualitative Models with

Fault Models. Working Notes of the IJCAI-95 Workshop on Engineering Problems for Qualitative
Reasoning, pp. 321-325, 1995.

[25] L. Travé-Massuyès, F. Prats, M. Sánchez, and N. Agell. Relative and absolute order-of-magnitude
models unified. Annals of Mathematics and Artificial Intelligence 45(2005):323–341

[26] F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and reasoning: a com-
putational perspective. In G. Lakemeyer and B. Nebel (eds), Exploring Artificial Intelligence in the
New Millenium. Morgan Kaufmann, 2002.

